Abstract

Scanning laser ophthalmoscopy (SLO) and spectral domain optical coherence tomography (SDOCT) have become essential clinical diagnostic tools in ophthalmology by allowing for video-rate noninvasive en face and depth-resolved visualization of retinal structure. Current generation multimodal imaging systems that combine both SLO and OCT as a means of image tracking remain complex in their hardware implementations. Here, we combine a spectrally encoded confocal scanning laser ophthalmoscope (SECSLO) with an ophthalmic SDOCT system. This novel implementation of an interlaced SECSLO-SDOCT system allows for video-rate SLO fundus images to be acquired alternately with high-resolution SDOCT B-scans as a means of image aiming, guidance, and registration as well as motion tracking. The system shares the illumination source, detection system, and scanning optics between both SLO and OCT as a method of providing a simple multimodal ophthalmic imaging system that can readily be implemented as a table-top or hand-held device.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
    [CrossRef] [PubMed]
  2. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987).
    [CrossRef] [PubMed]
  3. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980).
    [CrossRef] [PubMed]
  4. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
    [CrossRef] [PubMed]
  5. A. G. H. Podoleanu, G. M. Dobre, R. G. Cucu, and R. B. Rosen, “Sequential optical coherence tomography and confocal imaging,” Opt. Lett. 29(4), 364–366 (2004).
    [CrossRef] [PubMed]
  6. R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
    [CrossRef] [PubMed]
  7. N. V. Iftimia, D. X. Hammer, C. E. Bigelow, T. E. Ustun, A. H. Burbo, J. F. de Boer, and R. D. Ferguson, “Hybrid LSLO/SDOCT retinal imager,” in Proceedings of SPIE (SPIE, 2007), p. 642602.
  8. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).
    [CrossRef] [PubMed]
  9. N. V. Iftimia, D. X. Hammer, C. E. Bigelow, T. E. Ustun, J. F. de Boer, and R. D. Ferguson, “Hybrid retinal imager using line-scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Opt. Express 14(26), 12909–12914 (2006).
    [CrossRef] [PubMed]
  10. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
    [CrossRef] [PubMed]
  11. M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  12. M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008).
    [CrossRef] [PubMed]
  13. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
    [CrossRef] [PubMed]
  14. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett. 29(18), 2139–2141 (2004).
    [CrossRef] [PubMed]
  15. D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005).
    [CrossRef] [PubMed]
  16. A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
    [CrossRef] [PubMed]
  17. A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
    [CrossRef] [PubMed]
  18. G. J. Tearney, M. Shishkov, and B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27(6), 412–414 (2002).
    [CrossRef] [PubMed]
  19. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
    [CrossRef] [PubMed]
  20. Y. K. Tao and J. A. Izatt, “Spectrally encoded confocal scanning laser ophthalmoscopy,” Opt. Lett. 35(4), 574–576 (2010).
    [CrossRef] [PubMed]
  21. C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
    [CrossRef] [PubMed]
  22. D. Yelin, B. E. Bouma, N. V. Iftimia, and G. J. Tearney, “Three-dimensional spectrally encoded imaging,” Opt. Lett. 28(23), 2321–2323 (2003).
    [CrossRef] [PubMed]
  23. D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008).
    [CrossRef] [PubMed]
  24. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
    [CrossRef] [PubMed]
  25. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
    [CrossRef] [PubMed]
  26. D. Yelin, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Three-dimensional imaging using spectral encoding heterodyne interferometry,” Opt. Lett. 30(14), 1794–1796 (2005).
    [CrossRef] [PubMed]
  27. M. Merman, A. Abramov, and D. Yelin, “Theoretical analysis of spectrally encoded endoscopy,” Opt. Express 17(26), 24045–24059 (2009).
    [CrossRef] [PubMed]
  28. T. Wilson, Confocal microscopy (Academic Press, London; San Diego, 1990).
  29. S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express 18(10), 9755–9764 (2010).
    [CrossRef] [PubMed]
  30. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004).
    [CrossRef] [PubMed]

2010 (3)

A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
[CrossRef] [PubMed]

Y. K. Tao and J. A. Izatt, “Spectrally encoded confocal scanning laser ophthalmoscopy,” Opt. Lett. 35(4), 574–576 (2010).
[CrossRef] [PubMed]

S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express 18(10), 9755–9764 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Merman, A. Abramov, and D. Yelin, “Theoretical analysis of spectrally encoded endoscopy,” Opt. Express 17(26), 24045–24059 (2009).
[CrossRef] [PubMed]

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

2008 (4)

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008).
[CrossRef] [PubMed]

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
[CrossRef] [PubMed]

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

N. V. Iftimia, D. X. Hammer, C. E. Bigelow, T. E. Ustun, J. F. de Boer, and R. D. Ferguson, “Hybrid retinal imager using line-scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Opt. Express 14(26), 12909–12914 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (5)

2003 (1)

2002 (1)

1998 (2)

G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
[CrossRef] [PubMed]

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[CrossRef] [PubMed]

1987 (1)

1981 (1)

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
[CrossRef] [PubMed]

1980 (1)

Abramov, A.

Beaton, S.

Bigelow, C. E.

Boudoux, C.

Bouma, B. E.

D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008).
[CrossRef] [PubMed]

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
[CrossRef] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

D. Yelin, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Three-dimensional imaging using spectral encoding heterodyne interferometry,” Opt. Lett. 30(14), 1794–1796 (2005).
[CrossRef] [PubMed]

C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, N. V. Iftimia, and G. J. Tearney, “Three-dimensional spectrally encoded imaging,” Opt. Lett. 28(23), 2321–2323 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. Shishkov, and B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27(6), 412–414 (2002).
[CrossRef] [PubMed]

G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
[CrossRef] [PubMed]

Bower, B. A.

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008).
[CrossRef] [PubMed]

Cense, B.

Chen, T. C.

Cucu, R. G.

Davies, E.

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008).
[CrossRef] [PubMed]

Daxhelet, X.

de Boer, J. F.

Delori, F. C.

Dilworth, W.

Dobre, G. M.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
[CrossRef] [PubMed]

A. G. H. Podoleanu, G. M. Dobre, R. G. Cucu, and R. B. Rosen, “Sequential optical coherence tomography and confocal imaging,” Opt. Lett. 29(4), 364–366 (2004).
[CrossRef] [PubMed]

Duker, J.

Enyedi, L. B.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Evans, J. W.

Farsiu, S.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Ferguson, R. D.

Fujimoto, J. G.

Gabriele, M.

Garcia, P.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
[CrossRef] [PubMed]

Godbout, N.

Hammer, D.

Hammer, D. X.

Hasan, T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Hathaway, M.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hughes, G. W.

Iftimia, N.

Iftimia, N. V.

Ishikawa, H.

Izatt, J. A.

Y. K. Tao and J. A. Izatt, “Spectrally encoded confocal scanning laser ophthalmoscopy,” Opt. Lett. 35(4), 574–576 (2010).
[CrossRef] [PubMed]

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008).
[CrossRef] [PubMed]

Kagemann, L.

Ko, T.

Kowalczyk, A.

Krishnan, N.

A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
[CrossRef] [PubMed]

Lemire-Renaud, S.

Mahendradas, P.

A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
[CrossRef] [PubMed]

Mallipatna, A.

A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
[CrossRef] [PubMed]

Merman, M.

Morneau, D.

Motz, J. T.

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
[CrossRef] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Nassif, N. A.

Oh, W. Y.

Park, B. H.

Paunescu, L. A.

Pedro, J.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
[CrossRef] [PubMed]

Pierce, M. C.

Pircher, M.

Podoleanu, A. G. H.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
[CrossRef] [PubMed]

A. G. H. Podoleanu, G. M. Dobre, R. G. Cucu, and R. B. Rosen, “Sequential optical coherence tomography and confocal imaging,” Opt. Lett. 29(4), 364–366 (2004).
[CrossRef] [PubMed]

Pomerantzeff, O.

Rivard, M.

Rizvi, I.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Rogers, J.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
[CrossRef] [PubMed]

Rosen, R. B.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
[CrossRef] [PubMed]

A. G. H. Podoleanu, G. M. Dobre, R. G. Cucu, and R. B. Rosen, “Sequential optical coherence tomography and confocal imaging,” Opt. Lett. 29(4), 364–366 (2004).
[CrossRef] [PubMed]

Ruttimann, U. E.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[CrossRef] [PubMed]

Schuman, J.

Schuman, J. S.

Scott, A. W.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Shetty, K. B.

A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
[CrossRef] [PubMed]

Shetty, R.

A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
[CrossRef] [PubMed]

Shishkov, M.

Sivakumar, M.

A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stopa, M.

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008).
[CrossRef] [PubMed]

Strupler, M.

Tao, Y. K.

Tearney, G. J.

D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008).
[CrossRef] [PubMed]

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
[CrossRef] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

D. Yelin, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Three-dimensional imaging using spectral encoding heterodyne interferometry,” Opt. Lett. 30(14), 1794–1796 (2005).
[CrossRef] [PubMed]

C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, N. V. Iftimia, and G. J. Tearney, “Three-dimensional spectrally encoded imaging,” Opt. Lett. 28(23), 2321–2323 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. Shishkov, and B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27(6), 412–414 (2002).
[CrossRef] [PubMed]

G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
[CrossRef] [PubMed]

Thévenaz, P.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[CrossRef] [PubMed]

Toth, C. A.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008).
[CrossRef] [PubMed]

Unser, M.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[CrossRef] [PubMed]

Ustun, T.

Ustun, T. E.

Verpillat, F.

Vinekar, A.

A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
[CrossRef] [PubMed]

Wallace, D. K.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Webb, R. H.

Werner, J. S.

White, W. M.

Wojtkowski, M.

Wollstein, G.

Yelin, D.

Yun, S. H.

Zawadzki, R. J.

Am. J. Ophthalmol. (1)

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Appl. Opt. (2)

Eye (Lond.) (1)

A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (1)

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

Nature (1)

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Opt. Express (9)

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
[CrossRef] [PubMed]

D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008).
[CrossRef] [PubMed]

C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
[CrossRef] [PubMed]

M. Merman, A. Abramov, and D. Yelin, “Theoretical analysis of spectrally encoded endoscopy,” Opt. Express 17(26), 24045–24059 (2009).
[CrossRef] [PubMed]

S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express 18(10), 9755–9764 (2010).
[CrossRef] [PubMed]

N. V. Iftimia, D. X. Hammer, C. E. Bigelow, T. E. Ustun, J. F. de Boer, and R. D. Ferguson, “Hybrid retinal imager using line-scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Opt. Express 14(26), 12909–12914 (2006).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

Opt. Lett. (9)

G. J. Tearney, M. Shishkov, and B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27(6), 412–414 (2002).
[CrossRef] [PubMed]

G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
[CrossRef] [PubMed]

Y. K. Tao and J. A. Izatt, “Spectrally encoded confocal scanning laser ophthalmoscopy,” Opt. Lett. 35(4), 574–576 (2010).
[CrossRef] [PubMed]

A. G. H. Podoleanu, G. M. Dobre, R. G. Cucu, and R. B. Rosen, “Sequential optical coherence tomography and confocal imaging,” Opt. Lett. 29(4), 364–366 (2004).
[CrossRef] [PubMed]

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, N. V. Iftimia, and G. J. Tearney, “Three-dimensional spectrally encoded imaging,” Opt. Lett. 28(23), 2321–2323 (2003).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett. 29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

D. Yelin, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Three-dimensional imaging using spectral encoding heterodyne interferometry,” Opt. Lett. 30(14), 1794–1796 (2005).
[CrossRef] [PubMed]

Retina (1)

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008).
[CrossRef] [PubMed]

Other (2)

N. V. Iftimia, D. X. Hammer, C. E. Bigelow, T. E. Ustun, A. H. Burbo, J. F. de Boer, and R. D. Ferguson, “Hybrid LSLO/SDOCT retinal imager,” in Proceedings of SPIE (SPIE, 2007), p. 642602.

T. Wilson, Confocal microscopy (Academic Press, London; San Diego, 1990).

Supplementary Material (3)

» Media 1: AVI (8365 KB)     
» Media 2: AVI (7788 KB)     
» Media 3: AVI (9954 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical schematic and timing diagram of the interlaced SECSLO-SDOCT. (a) Fiber-based combined SECSLO-SDOCT system with SECSLO (red-dashed), SDOCT (blue), and shared (green) optical paths. CCD, linear CCD array; f, focal length of collimating, relay, and focusing elements; G, galvanometer; PC, polarization controller; M, mirror; VPHG, grating. (b) Galvanometer timing diagram showing driving signals for the fast-axis SECSLO-SDOCT scanner (Gx) and slow-axis scanner and SECSLO-SDOCT switch (Gy, S) with frame trigger. Driving waveforms shown corresponds to interlaced acquisition of a single SECSLO fundus image with a SDOCT B-scan. (c) Diagram illustrating the scanning geometry of interlaced SECSLO-SDOCT acquisition.

Fig. 2
Fig. 2

Interlaced SECSLO-SDOCT of in vivo human retina. (a) 5 x 3 mm2 (lateral x spectral) raw SECSLO fundus image acquired interlaced with (b) 5 x 5 x 1.8 mm3 (lateral x lateral x axial) raw SDOCT B-scan. (c) Co-registered and averaged 20 raw SECSLO frames demonstrating improved SNR and reduced speckle noise. (d) SVP of OCT volume acquired interlaced with SECSLO frames illustrating inherent co-registration between SECSLO and OCT images as a result of shared sample arm optical paths. Red line in SVP indicates position corresponding to B-scan shown in (b). All images were acquired with 1024 x 1024 pixels at 20 kHz line-rate. SECSLO-SDOCT volume was acquired with 200 frames, 100 fundus images interlaced with 100 B-scans. Illumination power = 700 μW.

Fig. g003
Fig. g003

Fig. 3. (Media 1) Movie of interlaced SECSLO-SDOCT of in vivo human retina showing raw SECSLO fundus images and SDOCT B-scans acquired at 20 kHz line-rate, an average of 20 co-registered fundus images, and SVP calculated from a volumetric OCT data set.

Fig. 4
Fig. 4

(Media 2) Movie of post-processed interlaced SECSLO-SDOCT data of in vivo human retina showing running average of 5 co-registered SECSLO fundus images displayed at an effective frame-rate of 2 Hz and rendering of a volumetric SDOCT data set acquired at 20 kHz line-rate.

Fig. 5
Fig. 5

(Media 3) Movie demonstrating motion tracking of interlaced SECSLO-SDOCT of in vivo human retina. Sequential SECSLO fundus images (acquired at an effective frame rate of 10 Hz) were co-registered using an affine transformation algorithm in post-processing and the resulting lateral motion is plotted (blue line). This motion can be tracked as a function of time in both lateral position (red dot) and angular rotation (red line).

Fig. 6
Fig. 6

Motion compensated interlaced SECSLO-SDOCT of in vivo human retina. (a) A region-of-interest (red box) in a series of 100 5 x 3 mm2 (lateral x spectral) raw SECSLO fundus images were co-registered using an affine transformation. The resulting transformation matrices were used to compensate for bulk motion in an SDOCT volume acquired interlaced with the SECSLO fundus images. (b) 5 x 5 mm2 SDOCT SVP without motion compensation. (c) Maximum intensity projection of SDOCT SVP data following correction for bulk motion (black areas represent regions of data never acquired due to patient motion), and (d) interpolated motion compensated SVP demonstrating the utility of real-time SECSLO fundus imaging as a method for motion tracking and image registration of SDOCT B-scans. In these data sets, discrete lateral discontinuities, as a result of saccades, were compensated using motion tracking (red arrow). Furthermore, accumulated lateral drifts during imaging, with total displacements of several hundred microns (Fig. 5), resulted in misrepresentations of the structural morphology in the raw SDOCT volume as evidenced by the distorted borders of the SVP (blue arrow), which were also compensated using the co-registered SECSLO fundus images.

Metrics