Abstract

Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software’s framework and provide details to guide users with development of this and similar software.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Blood, N. Pouratian, and A. W. Toga, “Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation,” J. Neurophysiol. 88(1), 422–437 (2002).
    [PubMed]
  2. I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
    [CrossRef] [PubMed]
  3. D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
    [CrossRef] [PubMed]
  4. G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
    [CrossRef] [PubMed]
  5. S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
    [CrossRef] [PubMed]
  6. M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
    [CrossRef] [PubMed]
  7. J. Lawlor, D. W. Fletcher-Holmes, A. R. Harvey, and A. I. McNaught, “In Vivo Hyperspectral Imaging of Human Retina and Optic Disc,” Invest. Ophthalmol. Vis. Sci. 34, 4350 (2002).
  8. K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
    [PubMed]
  9. C. W. Zemlin, O. Bernus, A. Matiukas, C. J. Hyatt, and A. M. Pertsov, “Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts,” Biophys. J. 95(2), 942–950 (2008).
    [CrossRef] [PubMed]
  10. E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
    [CrossRef] [PubMed]
  11. M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nat. Rev. Drug Discov. 2(2), 123–131 (2003).
    [CrossRef] [PubMed]
  12. R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69(8), 748–758 (2006).
    [CrossRef] [PubMed]
  13. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
    [CrossRef] [PubMed]
  14. R. Sun, M. B. Bouchard, S. A. Burgess, A. J. Radosevich, and E. M. C. Hillman, “A Low-Cost, Portable System for High-Speed Multispectral Optical Imaging,” in OSA Biomedical Optics(Optical Society of America, Miami, FL, 2010).
  15. E. M. C. Hillman, “Hillman Lab: Research: Instrumentation,” (Laboratory for Functional Optical Imaging, 2010), http://www.bme.columbia.edu/~hillman/Instrumentation.html , Accessed May 25, 2010, 2010.
  16. O. 1394-Trade, “Frequently Asked Questions,” (1394 Trade Organization, 2008), http://www.1394ta.org/consumers/FAQ.html , Accessed May 25, 2010, 2010.
  17. Microsoft, “Performance of 1394 devices may decrease after you install Windows XP Service Pack 2,” (Microsoft, 2006), http://support.microsoft.com/kb/885222 , Accessed May 25, 2010, 2010.
  18. Microsoft, “1394 Bus Driver in Windows 7,” (Microsoft, 2009), http://www.microsoft.com/whdc/connect/1394_Windows7.mspx , Accessed May 25, 2010, 2010.
  19. National Instruments, “Ring Acquisitions,” (National Instruments, 2007), http://zone.ni.com/devzone/cda/tut/p/id/4001 , Accessed May 25, 2010, 2010.
  20. Advanced Micro Devices, “ATI Stream Technology,” (2010), http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx , Accessed July 23, 2010.
  21. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
    [CrossRef] [PubMed]
  22. Khronos Group, “OpenCL,” (2010), http://www.khronos.org/opencl/ , Accessed July 23, 2010.
  23. Microsoft, “DirectCompute PDC HOL - Home - ” (2008), http://code.msdn.microsoft.com/directcomputehol , Accessed July 23, 2010.

2010 (1)

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

2009 (4)

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[CrossRef] [PubMed]

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
[CrossRef] [PubMed]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[CrossRef] [PubMed]

2008 (1)

C. W. Zemlin, O. Bernus, A. Matiukas, C. J. Hyatt, and A. M. Pertsov, “Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts,” Biophys. J. 95(2), 942–950 (2008).
[CrossRef] [PubMed]

2007 (1)

E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
[CrossRef] [PubMed]

2006 (1)

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69(8), 748–758 (2006).
[CrossRef] [PubMed]

2005 (1)

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

2003 (1)

M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nat. Rev. Drug Discov. 2(2), 123–131 (2003).
[CrossRef] [PubMed]

2002 (2)

J. Lawlor, D. W. Fletcher-Holmes, A. R. Harvey, and A. I. McNaught, “In Vivo Hyperspectral Imaging of Human Retina and Optic Disc,” Invest. Ophthalmol. Vis. Sci. 34, 4350 (2002).

A. J. Blood, N. Pouratian, and A. W. Toga, “Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation,” J. Neurophysiol. 88(1), 422–437 (2002).
[PubMed]

1999 (1)

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

1998 (1)

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Andersson-Engels, S.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Arieli, A.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

Azar, F.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Bernus, O.

C. W. Zemlin, O. Bernus, A. Matiukas, C. J. Hyatt, and A. M. Pertsov, “Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts,” Biophys. J. 95(2), 942–950 (2008).
[CrossRef] [PubMed]

Blood, A. J.

A. J. Blood, N. Pouratian, and A. W. Toga, “Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation,” J. Neurophysiol. 88(1), 422–437 (2002).
[PubMed]

Boas, D. A.

Bouchard, M. B.

Bown, S.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Burgess, S. A.

Chaturvedi, P.

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

Chen, B. R.

Colleen, S.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Diddens, H.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Fang, Q.

Fletcher-Holmes, D. W.

J. Lawlor, D. W. Fletcher-Holmes, A. R. Harvey, and A. I. McNaught, “In Vivo Hyperspectral Imaging of Human Retina and Optic Disc,” Invest. Ophthalmol. Vis. Sci. 34, 4350 (2002).

Frangioni, J. V.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Gibbs-Strauss, S. L.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Gillenwater, A.

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

Gioux, S.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Glaser, D. E.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

Gregory, G.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Grinvald, A.

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

Harvey, A. R.

J. Lawlor, D. W. Fletcher-Holmes, A. R. Harvey, and A. I. McNaught, “In Vivo Hyperspectral Imaging of Human Retina and Optic Disc,” Invest. Ophthalmol. Vis. Sci. 34, 4350 (2002).

Hildesheim, R.

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

Hillman, E. M.

E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
[CrossRef] [PubMed]

Hillman, E. M. C.

Hyatt, C. J.

C. W. Zemlin, O. Bernus, A. Matiukas, C. J. Hyatt, and A. M. Pertsov, “Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts,” Biophys. J. 95(2), 942–950 (2008).
[CrossRef] [PubMed]

Idvall, I.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Ingole, N.

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

Ingvar, C.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Jocham, D.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Kenet, T.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

Khamene, A.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Kianzad, V.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Lawlor, J.

J. Lawlor, D. W. Fletcher-Holmes, A. R. Harvey, and A. I. McNaught, “In Vivo Hyperspectral Imaging of Human Retina and Optic Disc,” Invest. Ophthalmol. Vis. Sci. 34, 4350 (2002).

Levenson, R. M.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69(8), 748–758 (2006).
[CrossRef] [PubMed]

Mansfield, J. R.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69(8), 748–758 (2006).
[CrossRef] [PubMed]

Matiukas, A.

C. W. Zemlin, O. Bernus, A. Matiukas, C. J. Hyatt, and A. M. Pertsov, “Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts,” Biophys. J. 95(2), 942–950 (2008).
[CrossRef] [PubMed]

Matsui, A.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

McNaught, A. I.

J. Lawlor, D. W. Fletcher-Holmes, A. R. Harvey, and A. I. McNaught, “In Vivo Hyperspectral Imaging of Human Retina and Optic Disc,” Invest. Ophthalmol. Vis. Sci. 34, 4350 (2002).

Montán, S.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Moore, A.

E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
[CrossRef] [PubMed]

Ngo, L.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Ntziachristos, V.

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[CrossRef] [PubMed]

Oketokoun, R.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Pertsov, A. M.

C. W. Zemlin, O. Bernus, A. Matiukas, C. J. Hyatt, and A. M. Pertsov, “Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts,” Biophys. J. 95(2), 942–950 (2008).
[CrossRef] [PubMed]

Pouratian, N.

A. J. Blood, N. Pouratian, and A. W. Toga, “Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation,” J. Neurophysiol. 88(1), 422–437 (2002).
[PubMed]

Rahman, M. S.

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

Richards-Kortum, R.

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

Roblyer, D.

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

Rudin, M.

M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nat. Rev. Drug Discov. 2(2), 123–131 (2003).
[CrossRef] [PubMed]

Rydell, R.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Schulz, R.

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[CrossRef] [PubMed]

Shastri, S.

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

Shoham, D.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

Soh, K. S.

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[CrossRef] [PubMed]

Stepanek, V.

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

Svanberg, K.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Svanberg, S.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Themelis, G.

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[CrossRef] [PubMed]

Toga, A. W.

A. J. Blood, N. Pouratian, and A. W. Toga, “Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation,” J. Neurophysiol. 88(1), 422–437 (2002).
[PubMed]

Toledo, Y.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

Troyan, S. L.

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Vanzetta, I.

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

Wang, I.

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Weissleder, R.

M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nat. Rev. Drug Discov. 2(2), 123–131 (2003).
[CrossRef] [PubMed]

Wijnbergen, C.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

Yoo, J. S.

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[CrossRef] [PubMed]

Zemlin, C. W.

C. W. Zemlin, O. Bernus, A. Matiukas, C. J. Hyatt, and A. M. Pertsov, “Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts,” Biophys. J. 95(2), 942–950 (2008).
[CrossRef] [PubMed]

Acta Radiol. (1)

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours--initial experience,” Acta Radiol. 39(1), 2–9 (1998).
[PubMed]

Ann. Surg. Oncol. (1)

S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16(10), 2943–2952 (2009).
[CrossRef] [PubMed]

Biophys. J. (1)

C. W. Zemlin, O. Bernus, A. Matiukas, C. J. Hyatt, and A. M. Pertsov, “Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts,” Biophys. J. 95(2), 942–950 (2008).
[CrossRef] [PubMed]

Cytometry A (1)

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69(8), 748–758 (2006).
[CrossRef] [PubMed]

Head Neck Oncol (1)

M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol 2(1), 10 (2010).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. Lawlor, D. W. Fletcher-Holmes, A. R. Harvey, and A. I. McNaught, “In Vivo Hyperspectral Imaging of Human Retina and Optic Disc,” Invest. Ophthalmol. Vis. Sci. 34, 4350 (2002).

J. Biomed. Opt. (1)

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

A. J. Blood, N. Pouratian, and A. W. Toga, “Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation,” J. Neurophysiol. 88(1), 422–437 (2002).
[PubMed]

J. Neurosci. (1)

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
[CrossRef] [PubMed]

Nat. Rev. Drug Discov. (1)

M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nat. Rev. Drug Discov. 2(2), 123–131 (2003).
[CrossRef] [PubMed]

Neuron (1)

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[CrossRef] [PubMed]

Opt. Express (2)

Other (9)

R. Sun, M. B. Bouchard, S. A. Burgess, A. J. Radosevich, and E. M. C. Hillman, “A Low-Cost, Portable System for High-Speed Multispectral Optical Imaging,” in OSA Biomedical Optics(Optical Society of America, Miami, FL, 2010).

E. M. C. Hillman, “Hillman Lab: Research: Instrumentation,” (Laboratory for Functional Optical Imaging, 2010), http://www.bme.columbia.edu/~hillman/Instrumentation.html , Accessed May 25, 2010, 2010.

O. 1394-Trade, “Frequently Asked Questions,” (1394 Trade Organization, 2008), http://www.1394ta.org/consumers/FAQ.html , Accessed May 25, 2010, 2010.

Microsoft, “Performance of 1394 devices may decrease after you install Windows XP Service Pack 2,” (Microsoft, 2006), http://support.microsoft.com/kb/885222 , Accessed May 25, 2010, 2010.

Microsoft, “1394 Bus Driver in Windows 7,” (Microsoft, 2009), http://www.microsoft.com/whdc/connect/1394_Windows7.mspx , Accessed May 25, 2010, 2010.

National Instruments, “Ring Acquisitions,” (National Instruments, 2007), http://zone.ni.com/devzone/cda/tut/p/id/4001 , Accessed May 25, 2010, 2010.

Advanced Micro Devices, “ATI Stream Technology,” (2010), http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx , Accessed July 23, 2010.

Khronos Group, “OpenCL,” (2010), http://www.khronos.org/opencl/ , Accessed July 23, 2010.

Microsoft, “DirectCompute PDC HOL - Home - ” (2008), http://code.msdn.microsoft.com/directcomputehol , Accessed July 23, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

High-speed, low-cost, portable multispectral optical imaging system. The system consists of four principal elements: an IEEE 1394 Firewire camera, a camera control computer, a programmable microcontroller, and modulatable light sources (LEDs are shown here). Strobed illumination is driven via the microcontroller and derived from the TTL ‘Camera Exposure Signal’ generated by the camera. Data from the camera is streamed to the computer’s hard disk. All components of the system are modular and can be replaced with compatible pieces of hardware (for example, the LEDs can be replaced with laser diodes). An optional ‘stimulus control computer’ is also shown which can be used to drive external triggers or stimuli and/or log experimental parameters such as animal physiology.

Fig. 2
Fig. 2

The SPLASSH Graphical User Interface provides a single window from which to control all aspects of multispectral and fluorescence imaging acquisition. The GUI is organized into panels which contain buttons that access similar types of high-level routines (see Section 3.2 for descriptions). Acquired images are displayed in their own pop-up windows, separate from the control GUI. When initializing the program, SPLASSH dynamically communicates with the camera to determine its capabilities and available camera properties. SPLASSH then updates the corresponding GUI interfaces to reflect these values (e.g. the number of available binning modes).

Fig. 3
Fig. 3

‘Movie’ Image Acquisition Routine Flowchart details the major subroutines called during a ‘Movie’ image sequence acquisition. Before the ‘Movie’ acquisition can begin, SPLASSH executes a series of preparatory subroutines. After the camera begins image acquisition, SPLASSH enters the image acquisition loop in which frames are grabbed from the ring buffer, the image filename is incremented to reflect the number of the image acquired in the sequence, and the image is saved to the camera control computer’s hard disk. Once the number of requested frames is acquired (determined by the frame rate multiplied by the length of the movie) the image acquisition loop ends. To end the ‘Movie’ acquisition, SPLASSH executes a series of closing subroutines that prepare the system for the next acquisition.

Fig. 4
Fig. 4

Multispectral illumination with a microcontroller flowchart. Multispectral illumination is provided through the interface of a microcontroller, control computer, and camera. Once the user inputs a desired strobing sequence from the GUI, the control computer checks the validity of the pattern and instructs the microcontroller to use a preprogrammed strobe sequence. If the process is successful, the user is allowed to begin image acquisition. During acquisition the microcontroller is driven by the camera to turn the LEDs on/off. A frame counter provides the next LED in the sequence. When acquisition ends, the microcontroller is reset.

Metrics