Abstract

Er:YAG and Ho:YAG laser beams were combined to irradiate hard tissues to achieve highly efficient ablation with low laser power. The delay time between pulses of the two lasers was controlled to irradiate alumina ceramic balls used as hard tissue models. With optimized delay time, the combined laser beam perforated the sample 40% deeper than independent radiation by either an Er:YAG or Ho:YAG laser. An ultra-high-speed camera and an infrared thermography camera were used to observe and investigate the ablation mechanisms.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
    [CrossRef] [PubMed]
  2. M. K. Yiu, P. L. Liu, T. F. Yiu, and A. Y. T. Chan, “Clinical experience with holmium:YAG laser lithotripsy of ureteral calculi,” Lasers Surg. Med. 19(1), 103–106 (1996).
    [CrossRef] [PubMed]
  3. M. Grasso, “Experience with the holmium laser as an endoscopic lithotrite,” Urology 48(2), 199–206 (1996).
    [CrossRef] [PubMed]
  4. K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
    [CrossRef] [PubMed]
  5. L. J. Walsh, “The current status of laser applications in dentistry,” Aust. Dent. J. 48(3), 146–155, quiz 198 (2003).
    [CrossRef] [PubMed]
  6. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  7. D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129(1-2), 852–856 (1998).
    [CrossRef]
  8. H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38(1), 39–51 (2006).
    [CrossRef] [PubMed]
  9. K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
    [CrossRef]
  10. P. Carmona, J. Bellanato, and E. Escolar, “Infrared and raman spectroscopy of urinary calculi: A review,” Biospectroscopy 3(5), 331–346 (1997).
    [CrossRef]
  11. D. Lezal, J. Pedlikova, and J. Horak, “GeO2-PbO glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
    [CrossRef]
  12. J. A. Harrington, Infrared Fibers and Their Applications (SPIE PRESS, 2004)
  13. K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
    [CrossRef]
  14. Y. Yang, C. A. Chaney, and N. M. Fried, “Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibers,” J. Endourol. 18(9), 830–835 (2004).
    [CrossRef] [PubMed]
  15. S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, and M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41(7), 1251–1255 (2002).
    [CrossRef] [PubMed]
  16. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45(26), 6736–6740 (2006).
    [CrossRef] [PubMed]
  17. D. Fried, J. Ragadio, and A. Champion, “Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm,” Lasers Surg. Med. 29(3), 221–229 (2001).
    [CrossRef] [PubMed]
  18. H. Pratisto, M. Ith, M. Frenz, and H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67(14), 1963–1965 (1995).
    [CrossRef]
  19. H. Pratisto, M. Frenz, M. Ith, H. J. Altermatt, E. D. Jansen, and H. P. Weber, “Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water,” Appl. Opt. 35(19), 3328–3337 (1996).
    [CrossRef]
  20. J. Morita MFG, Co. http://www.jmorita-mfg.co.jp/html/jp_products_laser_erwin_adverl.htm .
  21. Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, “Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37(33), 7758–7762 (1998).
    [CrossRef] [PubMed]
  22. K. Iwai, Y. W. Shi, K. Nito, Y. Matsuura, T. Kasai, M. Miyagi, S. Saito, Y. Arai, N. Ioritani, Y. Okagami, M. Nemec, J. Sulc, H. Jelinkova, M. Zavoral, O. Kohler, and P. Drlik, “Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap,” Appl. Opt. 42(13), 2431–2435 (2003).
    [CrossRef] [PubMed]
  23. K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
    [CrossRef] [PubMed]
  24. J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
    [CrossRef]
  25. K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm-1 using intense picosecond laser pulses,” J. Chem. Phys. 94(8), 5389–5393 (1991).
    [CrossRef]
  26. R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and Modeling of the Dynamic Changes in the Absorption Coefficient of Water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
    [CrossRef]

2006

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38(1), 39–51 (2006).
[CrossRef] [PubMed]

Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45(26), 6736–6740 (2006).
[CrossRef] [PubMed]

2004

Y. Yang, C. A. Chaney, and N. M. Fried, “Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibers,” J. Endourol. 18(9), 830–835 (2004).
[CrossRef] [PubMed]

2003

2002

S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, and M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41(7), 1251–1255 (2002).
[CrossRef] [PubMed]

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[CrossRef] [PubMed]

2001

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and Modeling of the Dynamic Changes in the Absorption Coefficient of Water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

D. Fried, J. Ragadio, and A. Champion, “Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm,” Lasers Surg. Med. 29(3), 221–229 (2001).
[CrossRef] [PubMed]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

1999

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
[CrossRef] [PubMed]

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
[CrossRef] [PubMed]

1998

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129(1-2), 852–856 (1998).
[CrossRef]

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, “Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37(33), 7758–7762 (1998).
[CrossRef] [PubMed]

1997

P. Carmona, J. Bellanato, and E. Escolar, “Infrared and raman spectroscopy of urinary calculi: A review,” Biospectroscopy 3(5), 331–346 (1997).
[CrossRef]

1996

D. Lezal, J. Pedlikova, and J. Horak, “GeO2-PbO glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

M. K. Yiu, P. L. Liu, T. F. Yiu, and A. Y. T. Chan, “Clinical experience with holmium:YAG laser lithotripsy of ureteral calculi,” Lasers Surg. Med. 19(1), 103–106 (1996).
[CrossRef] [PubMed]

M. Grasso, “Experience with the holmium laser as an endoscopic lithotrite,” Urology 48(2), 199–206 (1996).
[CrossRef] [PubMed]

H. Pratisto, M. Frenz, M. Ith, H. J. Altermatt, E. D. Jansen, and H. P. Weber, “Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water,” Appl. Opt. 35(19), 3328–3337 (1996).
[CrossRef]

1995

H. Pratisto, M. Ith, M. Frenz, and H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67(14), 1963–1965 (1995).
[CrossRef]

1994

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[CrossRef]

1991

K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm-1 using intense picosecond laser pulses,” J. Chem. Phys. 94(8), 5389–5393 (1991).
[CrossRef]

1990

J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
[CrossRef]

1973

Abe, Y.

Altermatt, H. J.

Arai, K.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
[CrossRef] [PubMed]

Arai, Y.

Bellanato, J.

P. Carmona, J. Bellanato, and E. Escolar, “Infrared and raman spectroscopy of urinary calculi: A review,” Biospectroscopy 3(5), 331–346 (1997).
[CrossRef]

Carmona, P.

P. Carmona, J. Bellanato, and E. Escolar, “Infrared and raman spectroscopy of urinary calculi: A review,” Biospectroscopy 3(5), 331–346 (1997).
[CrossRef]

Champion, A.

D. Fried, J. Ragadio, and A. Champion, “Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm,” Lasers Surg. Med. 29(3), 221–229 (2001).
[CrossRef] [PubMed]

Chan, A. Y. T.

M. K. Yiu, P. L. Liu, T. F. Yiu, and A. Y. T. Chan, “Clinical experience with holmium:YAG laser lithotripsy of ureteral calculi,” Lasers Surg. Med. 19(1), 103–106 (1996).
[CrossRef] [PubMed]

Chan, K. F.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
[CrossRef] [PubMed]

Chaney, C. A.

Y. Yang, C. A. Chaney, and N. M. Fried, “Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibers,” J. Endourol. 18(9), 830–835 (2004).
[CrossRef] [PubMed]

Choi, B.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

Drlik, P.

Duhn, C.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129(1-2), 852–856 (1998).
[CrossRef]

Escolar, E.

P. Carmona, J. Bellanato, and E. Escolar, “Infrared and raman spectroscopy of urinary calculi: A review,” Biospectroscopy 3(5), 331–346 (1997).
[CrossRef]

Featherstone, J. D. B.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129(1-2), 852–856 (1998).
[CrossRef]

Feld, M. S.

J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
[CrossRef]

Fitzmaurice, M.

J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
[CrossRef]

Frenz, M.

H. Pratisto, M. Frenz, M. Ith, H. J. Altermatt, E. D. Jansen, and H. P. Weber, “Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water,” Appl. Opt. 35(19), 3328–3337 (1996).
[CrossRef]

H. Pratisto, M. Ith, M. Frenz, and H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67(14), 1963–1965 (1995).
[CrossRef]

Fried, D.

D. Fried, J. Ragadio, and A. Champion, “Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm,” Lasers Surg. Med. 29(3), 221–229 (2001).
[CrossRef] [PubMed]

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and Modeling of the Dynamic Changes in the Absorption Coefficient of Water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129(1-2), 852–856 (1998).
[CrossRef]

Fried, N. M.

Y. Yang, C. A. Chaney, and N. M. Fried, “Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibers,” J. Endourol. 18(9), 830–835 (2004).
[CrossRef] [PubMed]

Glickman, R. D.

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
[CrossRef] [PubMed]

Grasso, M.

M. Grasso, “Experience with the holmium laser as an endoscopic lithotrite,” Urology 48(2), 199–206 (1996).
[CrossRef] [PubMed]

Hale, G. M.

Hammer, D. X.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

Horak, J.

D. Lezal, J. Pedlikova, and J. Horak, “GeO2-PbO glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

Iida, S.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
[CrossRef] [PubMed]

Inoue, M.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
[CrossRef] [PubMed]

Ioritani, N.

Ith, M.

H. Pratisto, M. Frenz, M. Ith, H. J. Altermatt, E. D. Jansen, and H. P. Weber, “Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water,” Appl. Opt. 35(19), 3328–3337 (1996).
[CrossRef]

H. Pratisto, M. Ith, M. Frenz, and H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67(14), 1963–1965 (1995).
[CrossRef]

Ito, K.

Itoh, K.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[CrossRef]

Itzkan, I.

J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
[CrossRef]

Iwai, K.

Iwakura, M.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[CrossRef]

Izatt, J. A.

J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
[CrossRef]

Jansen, E. D.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

H. Pratisto, M. Frenz, M. Ith, H. J. Altermatt, E. D. Jansen, and H. P. Weber, “Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water,” Appl. Opt. 35(19), 3328–3337 (1996).
[CrossRef]

Jelinkova, H.

Kang, H. W.

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38(1), 39–51 (2006).
[CrossRef] [PubMed]

Kasai, T.

Kohler, O.

Lee, H.

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38(1), 39–51 (2006).
[CrossRef] [PubMed]

Lezal, D.

D. Lezal, J. Pedlikova, and J. Horak, “GeO2-PbO glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

Liu, P. L.

M. K. Yiu, P. L. Liu, T. F. Yiu, and A. Y. T. Chan, “Clinical experience with holmium:YAG laser lithotripsy of ureteral calculi,” Lasers Surg. Med. 19(1), 103–106 (1996).
[CrossRef] [PubMed]

Ma, L.

Masuda, I.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[CrossRef]

Matsuoka, K.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
[CrossRef] [PubMed]

Matsuura, Y.

McCormack, S. M.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129(1-2), 852–856 (1998).
[CrossRef]

Miura, K.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[CrossRef]

Miyagi, M.

Mohri, S.

Nahen, K.

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[CrossRef] [PubMed]

Nemec, M.

Nito, K.

Noda, S.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
[CrossRef] [PubMed]

Oh, J.

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38(1), 39–51 (2006).
[CrossRef] [PubMed]

Okagami, Y.

Partovi, F.

J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
[CrossRef]

Pedlikova, J.

D. Lezal, J. Pedlikova, and J. Horak, “GeO2-PbO glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

Pfefer, T. J.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
[CrossRef] [PubMed]

Pratisto, H.

H. Pratisto, M. Frenz, M. Ith, H. J. Altermatt, E. D. Jansen, and H. P. Weber, “Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water,” Appl. Opt. 35(19), 3328–3337 (1996).
[CrossRef]

H. Pratisto, M. Ith, M. Frenz, and H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67(14), 1963–1965 (1995).
[CrossRef]

Querry, M. R.

Ragadio, J.

D. Fried, J. Ragadio, and A. Champion, “Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm,” Lasers Surg. Med. 29(3), 221–229 (2001).
[CrossRef] [PubMed]

Rava, R. P.

J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
[CrossRef]

Saito, S.

Sankey, N. D.

J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
[CrossRef]

Sato, S.

Seka, W.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129(1-2), 852–856 (1998).
[CrossRef]

Shi, Y. W.

Shori, R. K.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and Modeling of the Dynamic Changes in the Absorption Coefficient of Water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

Sorg, B.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

Stafsudd, O. M.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and Modeling of the Dynamic Changes in the Absorption Coefficient of Water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

Sulc, J.

Taniwaki, M.

Teichman, J. M. H.

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38(1), 39–51 (2006).
[CrossRef] [PubMed]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
[CrossRef] [PubMed]

Tomiyasu, K.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
[CrossRef] [PubMed]

Uyama, H.

Vargas, G.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

Vassar, G. J.

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
[CrossRef] [PubMed]

Vodopyanov, K. L.

K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm-1 using intense picosecond laser pulses,” J. Chem. Phys. 94(8), 5389–5393 (1991).
[CrossRef]

Vogel, A.

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[CrossRef] [PubMed]

Walsh, J. T.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and Modeling of the Dynamic Changes in the Absorption Coefficient of Water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

Walsh, L. J.

L. J. Walsh, “The current status of laser applications in dentistry,” Aust. Dent. J. 48(3), 146–155, quiz 198 (2003).
[CrossRef] [PubMed]

Walston, A. A.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and Modeling of the Dynamic Changes in the Absorption Coefficient of Water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

Wang, Y.

Weber, H. P.

H. Pratisto, M. Frenz, M. Ith, H. J. Altermatt, E. D. Jansen, and H. P. Weber, “Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water,” Appl. Opt. 35(19), 3328–3337 (1996).
[CrossRef]

H. Pratisto, M. Ith, M. Frenz, and H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67(14), 1963–1965 (1995).
[CrossRef]

Weintraub, S. T.

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
[CrossRef] [PubMed]

Welch, A. J.

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38(1), 39–51 (2006).
[CrossRef] [PubMed]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
[CrossRef] [PubMed]

Yamashita, T.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[CrossRef]

Yang, Y.

Y. Yang, C. A. Chaney, and N. M. Fried, “Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibers,” J. Endourol. 18(9), 830–835 (2004).
[CrossRef] [PubMed]

Yiu, M. K.

M. K. Yiu, P. L. Liu, T. F. Yiu, and A. Y. T. Chan, “Clinical experience with holmium:YAG laser lithotripsy of ureteral calculi,” Lasers Surg. Med. 19(1), 103–106 (1996).
[CrossRef] [PubMed]

Yiu, T. F.

M. K. Yiu, P. L. Liu, T. F. Yiu, and A. Y. T. Chan, “Clinical experience with holmium:YAG laser lithotripsy of ureteral calculi,” Lasers Surg. Med. 19(1), 103–106 (1996).
[CrossRef] [PubMed]

Yoshida, T.

Yoshii, S.

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
[CrossRef] [PubMed]

Zavoral, M.

Zuerlein, M.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129(1-2), 852–856 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Pratisto, M. Ith, M. Frenz, and H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67(14), 1963–1965 (1995).
[CrossRef]

Appl. Surf. Sci.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129(1-2), 852–856 (1998).
[CrossRef]

Aust. Dent. J.

L. J. Walsh, “The current status of laser applications in dentistry,” Aust. Dent. J. 48(3), 146–155, quiz 198 (2003).
[CrossRef] [PubMed]

Biospectroscopy

P. Carmona, J. Bellanato, and E. Escolar, “Infrared and raman spectroscopy of urinary calculi: A review,” Biospectroscopy 3(5), 331–346 (1997).
[CrossRef]

IEEE J. Quantum Electron.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Quantum Electron. 7(6), 1022–1033 (2001).
[CrossRef]

J. A. Izatt, N. D. Sankey, F. Partovi, M. Fitzmaurice, R. P. Rava, I. Itzkan, and M. S. Feld, “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26(12), 2261–2270 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and Modeling of the Dynamic Changes in the Absorption Coefficient of Water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001).
[CrossRef]

J. Biomed. Opt.

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[CrossRef] [PubMed]

J. Chem. Phys.

K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm-1 using intense picosecond laser pulses,” J. Chem. Phys. 94(8), 5389–5393 (1991).
[CrossRef]

J. Endourol.

Y. Yang, C. A. Chaney, and N. M. Fried, “Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibers,” J. Endourol. 18(9), 830–835 (2004).
[CrossRef] [PubMed]

J. Non-Cryst. Solids

D. Lezal, J. Pedlikova, and J. Horak, “GeO2-PbO glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[CrossRef]

Lasers Surg. Med.

D. Fried, J. Ragadio, and A. Champion, “Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm,” Lasers Surg. Med. 29(3), 221–229 (2001).
[CrossRef] [PubMed]

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).
[CrossRef] [PubMed]

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38(1), 39–51 (2006).
[CrossRef] [PubMed]

K. Matsuoka, S. Iida, M. Inoue, S. Yoshii, K. Arai, K. Tomiyasu, and S. Noda, “Endoscopic lithotripsy with the holmium:YAG laser,” Lasers Surg. Med. 25(5), 389–395 (1999).
[CrossRef] [PubMed]

M. K. Yiu, P. L. Liu, T. F. Yiu, and A. Y. T. Chan, “Clinical experience with holmium:YAG laser lithotripsy of ureteral calculi,” Lasers Surg. Med. 19(1), 103–106 (1996).
[CrossRef] [PubMed]

Urology

M. Grasso, “Experience with the holmium laser as an endoscopic lithotrite,” Urology 48(2), 199–206 (1996).
[CrossRef] [PubMed]

Other

J. A. Harrington, Infrared Fibers and Their Applications (SPIE PRESS, 2004)

J. Morita MFG, Co. http://www.jmorita-mfg.co.jp/html/jp_products_laser_erwin_adverl.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental setup with dual-wavelength laser.

Fig. 2
Fig. 2

Laser beam sizes measured from burn patterns.

Fig. 3
Fig. 3

Widths and depths of ablated holes as a function of number of laser pulses.

Fig. 4
Fig. 4

Cross sections of alumina balls after ablation of 30 pulses.

Fig. 5
Fig. 5

Weight decreases of alumina balls after laser irradiation.

Fig. 6
Fig. 6

Cross sections of alumina balls ablated by dual-wavelength laser with a delay time of (a) −100 μs, (b) no delay, (c) 200 μs.

Fig. 7
Fig. 7

Ablation depths of alumina balls as a function of delay time.

Fig. 8
Fig. 8

Ablation depths of alumina balls as a function of number of pulses.

Fig. 9
Fig. 9

Moment of ablation with Ho:YAG and Er:YAG lasers

Fig. 10
Fig. 10

Thermal images of cross sections of balls after laser pulse irradiation.

Fig. 11
Fig. 11

Moment of ablation of dentin with Ho:YAG and Er:YAG lasers.

Fig. 12
Fig. 12

Cross section of human dentin after laser irradiation.

Fig. 13
Fig. 13

Surface of dentin after laser ablation.

Metrics