Abstract

Non-invasive near-infrared fluorescence (NIRF) imaging is a powerful tool to study pathophysiology in a wide variety of animal disease models including brain diseases. However, especially in NIRF imaging of the brain or other deeper laying target sites, background fluorescence emitted from the scalp or superficial blood vessels can impede the detection of fluorescence in deeper tissue. Here, we introduce an effective method to reduce the impact of fluorescence from superficial layers. The approach uses excitation light at two different wavelengths generating two images with different depth sensitivities followed by an adapted subtraction algorithm. This technique leads to significant enhancement of the contrast and the detectability of fluorochromes located in deep tissue layers in tissue simulating phantoms and murine models with stroke.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
    [CrossRef] [PubMed]
  3. M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
    [CrossRef] [PubMed]
  4. A. Wunder and J. Klohs, “Optical imaging of vascular pathophysiology,” Basic Res. Cardiol. 103(2), 182–190 (2008).
    [CrossRef] [PubMed]
  5. A. Wunder, R. H. Straub, S. Gay, J. Funk, and U. Müller-Ladner, “Molecular imaging: novel tools in visualizing rheumatoid arthritis,” Rheumatology (Oxford) 44(11), 1341–1349 (2005).
    [CrossRef] [PubMed]
  6. A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
    [CrossRef] [PubMed]
  7. C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
    [CrossRef] [PubMed]
  8. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
    [CrossRef] [PubMed]
  9. M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
    [CrossRef] [PubMed]
  10. D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
    [CrossRef] [PubMed]
  11. J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
    [CrossRef] [PubMed]
  12. J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
    [CrossRef] [PubMed]
  13. J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
    [CrossRef] [PubMed]
  14. J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
    [PubMed]
  15. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
    [CrossRef] [PubMed]
  16. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
    [CrossRef] [PubMed]
  17. S. A. Prahl, (2001), http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  18. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [CrossRef] [PubMed]
  19. L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
    [CrossRef] [PubMed]
  20. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [CrossRef] [PubMed]
  21. C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
    [CrossRef] [PubMed]
  22. E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 044019 (2005).
    [CrossRef] [PubMed]
  23. R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
    [CrossRef] [PubMed]
  24. M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt. 44(26), 5468–5474 (2005).
    [CrossRef] [PubMed]
  25. A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).
    [CrossRef] [PubMed]

2010 (1)

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[CrossRef] [PubMed]

2009 (6)

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
[CrossRef] [PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

2008 (4)

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

A. Wunder and J. Klohs, “Optical imaging of vascular pathophysiology,” Basic Res. Cardiol. 103(2), 182–190 (2008).
[CrossRef] [PubMed]

2007 (1)

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[CrossRef] [PubMed]

2006 (3)

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[CrossRef] [PubMed]

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
[CrossRef] [PubMed]

2005 (4)

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

A. Wunder, R. H. Straub, S. Gay, J. Funk, and U. Müller-Ladner, “Molecular imaging: novel tools in visualizing rheumatoid arthritis,” Rheumatology (Oxford) 44(11), 1341–1349 (2005).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt. 44(26), 5468–5474 (2005).
[CrossRef] [PubMed]

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 044019 (2005).
[CrossRef] [PubMed]

2003 (1)

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

1999 (1)

1997 (1)

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[CrossRef] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Ahn, S.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Aikawa, E.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Badawi, R. D.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Baeva, N.

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

Bahmani, P.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

Beard, P.

Benav, H.

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

Betz, T.

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

Bevilacqua, F.

Boeth, H.

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

Boettcher, C.

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

Bourayou, R.

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

Braun, J.

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Brooks, D. H.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Chaudhari, A. J.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Chen, J. W.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Chen, X.

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
[CrossRef] [PubMed]

Cherry, S. R.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Cordell, R.

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

Davis, S. C.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[CrossRef] [PubMed]

de Kleine, R.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Depeursinge, C.

Dietrich, T.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

Dirnagl, U.

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Endres, M.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

Enz, A.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Figueiredo, J. L.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Frey, P.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Funk, J.

A. Wunder, R. H. Straub, S. Gay, J. Funk, and U. Müller-Ladner, “Molecular imaging: novel tools in visualizing rheumatoid arthritis,” Rheumatology (Oxford) 44(11), 1341–1349 (2005).
[CrossRef] [PubMed]

Gao, M.

Gay, S.

A. Wunder, R. H. Straub, S. Gay, J. Funk, and U. Müller-Ladner, “Molecular imaging: novel tools in visualizing rheumatoid arthritis,” Rheumatology (Oxford) 44(11), 1341–1349 (2005).
[CrossRef] [PubMed]

Graf, K.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

Gräfe, M.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

Graves, E. E.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 044019 (2005).
[CrossRef] [PubMed]

Greger, K.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

Gremlich, H. U.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Greve, J. M.

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
[CrossRef] [PubMed]

Gross, J. D.

Halle, E.

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Harms, C.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

Hillman, E. M.

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[CrossRef] [PubMed]

Hintersteiner, M.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Hou, L. C.

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
[CrossRef] [PubMed]

Hsu, A. R.

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
[CrossRef] [PubMed]

Hyde, D.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Jaton, A. L.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Javier, D. J.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

Kinzy, W.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Klohs, J.

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

A. Wunder and J. Klohs, “Optical imaging of vascular pathophysiology,” Basic Res. Cardiol. 103(2), 182–190 (2008).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

Kneuer, R.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Kronenberg, G.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

Krucker, T.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Laufer, J.

Leahy, R. M.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Leblond, F.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[CrossRef] [PubMed]

Levenson, R.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Lewis, G.

Licha, K.

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

Lindauer, U.

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

MacLaurin, S. A.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Marquet, P.

McCann, C. M.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Megow, D.

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Meisel, A.

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Meisel, C.

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Miller, E.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Mueller, S.

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

Müller-Ladner, U.

A. Wunder, R. H. Straub, S. Gay, J. Funk, and U. Müller-Ladner, “Molecular imaging: novel tools in visualizing rheumatoid arthritis,” Rheumatology (Oxford) 44(11), 1341–1349 (2005).
[CrossRef] [PubMed]

Neumann, U.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Nierhaus, T.

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

Ntziachristos, V.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt. 44(26), 5468–5474 (2005).
[CrossRef] [PubMed]

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 044019 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Pierce, M. C.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

Piguet, D.

Pogue, B. W.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[CrossRef] [PubMed]

Prass, K.

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Priller, J.

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

Raivich, G.

Richards-Kortum, R.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

Royl, G.

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

Rudin, M.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Schirner, M.

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

Soubret, A.

Staufenbiel, M.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Steinbrink, J.

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

Stelzer, E. H.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

Stibenz, D.

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

Stoeckli, M.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Straub, R. H.

A. Wunder, R. H. Straub, S. Gay, J. Funk, and U. Müller-Ladner, “Molecular imaging: novel tools in visualizing rheumatoid arthritis,” Rheumatology (Oxford) 44(11), 1341–1349 (2005).
[CrossRef] [PubMed]

Tromberg, B. J.

Tse, V.

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
[CrossRef] [PubMed]

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Turner, G.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 044019 (2005).
[CrossRef] [PubMed]

Turner, G. M.

Valdés, P. A.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[CrossRef] [PubMed]

Veeravagu, A.

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
[CrossRef] [PubMed]

Victorov, I.

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Vogel, H.

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
[CrossRef] [PubMed]

Volk, H. D.

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Waterman, P.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Weissleder, R.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 044019 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Wiederhold, K. H.

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Wolf, T.

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Wunder, A.

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

A. Wunder and J. Klohs, “Optical imaging of vascular pathophysiology,” Basic Res. Cardiol. 103(2), 182–190 (2008).
[CrossRef] [PubMed]

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

A. Wunder, R. H. Straub, S. Gay, J. Funk, and U. Müller-Ladner, “Molecular imaging: novel tools in visualizing rheumatoid arthritis,” Rheumatology (Oxford) 44(11), 1341–1349 (2005).
[CrossRef] [PubMed]

Yessayan, D.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 044019 (2005).
[CrossRef] [PubMed]

Zhang, E.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[CrossRef] [PubMed]

Appl. Opt. (3)

Basic Res. Cardiol. (1)

A. Wunder and J. Klohs, “Optical imaging of vascular pathophysiology,” Basic Res. Cardiol. 103(2), 182–190 (2008).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (2)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[CrossRef] [PubMed]

Int. J. Cancer (1)

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[CrossRef] [PubMed]

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 044019 (2005).
[CrossRef] [PubMed]

R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[CrossRef] [PubMed]

Mol. Imaging (1)

J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006).
[PubMed]

Mol. Imaging Biol. (1)

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005).
[CrossRef] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Neuroimage (2)

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Rheumatology (Oxford) (1)

A. Wunder, R. H. Straub, S. Gay, J. Funk, and U. Müller-Ladner, “Molecular imaging: novel tools in visualizing rheumatoid arthritis,” Rheumatology (Oxford) 44(11), 1341–1349 (2005).
[CrossRef] [PubMed]

Stroke (2)

J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008).
[CrossRef] [PubMed]

C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003).
[CrossRef] [PubMed]

Other (1)

S. A. Prahl, (2001), http://omlc.ogi.edu/spectra/hemoglobin/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 2
Fig. 2

Color-coded NIRF images of the tissue phantom study. Capsules containing NIRF dye Cy5.5 embedded in meat as sketched in a vertical view in the first column. Images with illumination at 670 (left) or 633 nm (middle), and the resulting depth-weighted images (right) are shown. The red circles indicate the position of the fluorescent target. (a) capsule located 4 mm below the surface. (b) capsule located 8 mm below the surface. The asterisk indicates an area of strong superficial tissue autofluorescence, which is strongly reduced in the depth-weighted image. (c) capsule located 8 mm below the surface and a dye solution is applied topically on the surface. The color bars represent relative fluorescence intensities (arbitrary units).

Fig. 3
Fig. 3

Non-invasive NIRF images of a live mouse implanted with an intracranial capsule containing 10−12 mol Cy5.5-PEG. Images after illumination with light of 670 or 633 nm wavelengths, and the resulting depth-weighted images are depicted. (a) before and (b) after i.v.-injection of 2 x 10−10mol Cy5.5-PEG.

Fig. 4
Fig. 4

Non-invasive NIRF images of a live mouse after experimentally induced cerebral ischemia in the left hemisphere 2 h after i.v.-injection of NIRF-labeled albumin.

Fig. 1
Fig. 1

Monte-Carlo results. (a) Normalized sensitivity in a logarithmic scale as a function of depth for a point inclusion fluorescing at 710 nm, spread excitation beams at 633 nm and 670 nm and a point-wise detection. This mimics the spread excitation of a fluorescent source in an epi-fluorescence imaging system and the detection with a camera system. (b) Quotient of the normalized sensitivities shown in (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 633 n m f l u o = α 1 ( S 633 n m s u r f c s u r f + S 633 n m d e e p c d e e p )
I 670 n m f l u o = α 2 ( S 670 n m s u r f c s u r f + S 670 n m d e e p c d e e p )
Î = I 670 n m f l u o β I 633 n m f l u o
Î = c d e e p α 2 ( S 670 n m d e e p S 670 n m s u r f S 633 n m s u r f S 633 n m d e e p )

Metrics