Abstract

One of the more significant indicators of neural age-related loss and disease is reduced temporal processing speed. It would, therefore, be useful to have an accurate and practical device that measures the full range of an individual's temporal processing abilities (characterized as the temporal contrast sensitivity function, TCSF). 70 subjects (15-84 yrs) were tested. A small tabletop device utilizing electronic control of light-emitting diodes (LEDs) was constructed that delivered a 1-degree, 660 nm test (the modulation depth of which could be adjusted directly by the subject) centered within a 10-degree 660 nm surround. The method provided a TCSF that had a shape consistent with past studies (peaking around 8 Hz). Also consistent with past work, the largest age-decline was found at the highest frequencies and for the central fovea (r = 0.47, p<0.0001, ~2 Hz per decade). Psychophysical assessment of temporal vision offers an easy and dynamic measure of central visual function.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A number of terms have been used to describe human temporal sensitivity. An early, and still relatively common, usage was the temporal modulation transfer function. Such a term, however, refers to physical characteristics of the stimulus not to the psychophysical response. Even with respect to the latter, the “modulation transfer function” is more aptly used to refer to the ability of a lens or optical system to faithfully transmit an image (in terms of its contrast, etc). “Contrast sensitivity” is the most descriptive term because it directly describes the actual values one obtains. Of course, contrast can be varied in either the spatial or temporal domains so this must also be specified (to wit, the SCSF or the TCSF).
  2. H. de Lange, “Experiments on flicker and some calculations on an electrical analogue of the foveal systems,” Physica 18(11), 935–950 (1952).
    [CrossRef]
  3. A. B. Watson, “Temporal sensitivity,” in Handbook of perception and human performance, K. R. Boff, L. Kaufman, & J. P. Thomas, eds. (Wiley, New York, NY, 1986).
  4. D. H. Kelly, “Spatio-temporal frequency chracteristics of color-vision mechanisms,” J. Opt. Soc. Am. 64(7), 983–990 (1974).
    [CrossRef] [PubMed]
  5. M. J. Mayer, C. B. Y. Kim, A. Svingos, and A. Glucs, “Foveal flicker sensitivity in healthy aging eyes. I. Compensating for pupil variation,” J. Opt. Soc. Am. A 5(12), 2201–2209 (1988).
    [CrossRef] [PubMed]
  6. C. W. Tyler, “Two processes control variations in flicker sensitivity over the life span,” J. Opt. Soc. Am. A 6(4), 481–490 (1989).
    [CrossRef] [PubMed]
  7. W. H. Seiple, V. Greenstein, and R. Carr, “Losses of temporal modulation sensitivity in retinal degenerations,” Br. J. Ophthalmol. 73(6), 440–447 (1989).
    [CrossRef] [PubMed]
  8. M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Foveal flicker sensitivity discriminates ARM-risk from healthy eyes,” Invest. Ophthalmol. Vis. Sci. 33(11), 3143–3149 (1992).
    [PubMed]
  9. M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Preliminary evaluation of flicker sensitivity as a predictive test for exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 33(11), 3150–3155 (1992).
    [PubMed]
  10. U. T. Keesey, “Variables determining flicker sensitivity in small fields,” J. Opt. Soc. Am. 60(3), 390–398 (1970).
    [CrossRef] [PubMed]
  11. A. Peters, “Structural changes that occur during normal aging of primate cerebral hemispheres,” Neurosci. Biobehav. Rev. 26(7), 733–741 (2002).
    [CrossRef] [PubMed]
  12. C. W. Tyler, “Specific deficits of flicker sensitivity in glaucoma and ocular hypertension,” Invest. Ophthalmol. Vis. Sci. 20(2), 204–212 (1981).
    [PubMed]
  13. K. Neelam, J. Nolan, U. Chakravarthy, and S. Beatty, “Psychophysical function in age-related maculopathy,” Surv. Ophthalmol. 54(2), 167–210 (2009).
    [CrossRef] [PubMed]
  14. M. J. Mayer, B. Ward, R. Klein, J. B. Talcott, R. F. Dougherty, and A. Glucs, “Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 35(3), 1138–1149 (1994).
    [PubMed]
  15. J. A. Phipps, T. M. Dang, A. J. Vingrys, and R. H. Guymer, “Flicker perimetry losses in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 45(9), 3355–3360 (2004).
    [CrossRef] [PubMed]
  16. C. W. Tyler, “Analysis of normal flicker sensitivity and its variability in the visuogram test,” Invest. Ophthalmol. Vis. Sci. 32(9), 2552–2560 (1991).
    [PubMed]
  17. R. Granit and P. Harper, “Comparative studies on the peripheral and central retina: II.Synaptic reaction in the eye,” Am. J. Physiol. 95, 211–228 (1930).
  18. E. S. Ferry, “Persistence of vision,” Am. J. Sci. 44, 192–207 (1892).
  19. T. C. Porter, “Contributions to the study of flicker, II,” Proc. R. Soc. Lond. 70A, 31–329 (1902).
  20. C. W. Tyler and R. D. Hamer, “Analysis of visual modulation sensitivity. IV. Validity of the Ferry-Porter law,” J. Opt. Soc. Am. A 7(4), 743–758 (1990).
    [CrossRef] [PubMed]
  21. M. A. García-Pérez and E. Peli, “Luminance artifacts of cathode-ray tube displays for vision research,” Spat. Vis. 14(2), 201–215 (2001).
    [CrossRef] [PubMed]
  22. A. J. Zele and A. J. Vingrys, “Cathode-ray-tube monitor artefacts in neurophysiology,” J. Neurosci. Methods 141(1), 1–7 (2005).
    [CrossRef] [PubMed]
  23. M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
    [CrossRef] [PubMed]
  24. A. B. Metha, A. J. Vingrys, and D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
  25. C. W. Tyler, “Analysis of visual modulation sensitivity. II. Peripheral retina and the role of photoreceptor dimensions,” J. Opt. Soc. Am. A 2(3), 393–398 (1985).
    [CrossRef] [PubMed]
  26. B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25(4), 315–319 (2005).
    [CrossRef] [PubMed]
  27. B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 35(3), 1132–1137 (1994).
    [PubMed]
  28. The results for our age analysis were limited by the fact that we did not sample equally across ages (there are more young subjects) and six of our oldest subjects could not detect flicker at the highest frequency even at maximum contrast (hence, the age-reduction may be greater for the highest frequencies). It should also be noted that we used a different field size in the two locations which also could have contributed to the differences in age-loss we report.
  29. D. H. Kelly, “Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements,” J. Opt. Soc. Am. A 51(4), 422–429 (1961).
    [CrossRef]
  30. J. M. Rovamo and A. Raninen, “Critical flicker frequency and M-scaling of stimulus size and retinal illuminance,” Vision Res. 24(10), 1127–1131 (1984).
    [CrossRef] [PubMed]
  31. J. R. Jarvis, N. B. Prescott, and C. M. Wathes, “A mechanistic inter-species comparison of flicker sensitivity,” Vision Res. 43(16), 1723–1734 (2003).
    [CrossRef] [PubMed]
  32. P. J. B. Barten, Contrast sensitivity of the human eye and its effects on image quality. (SPIE Optical Engineering Press, Washington, 1999).
  33. J. M. Rovamo, A. Raninen, and K. Donner, “The effects of temporal noise and retinal illuminance on foveal flicker sensitivity,” Vision Res. 39(3), 533–550 (1999).
    [CrossRef] [PubMed]
  34. J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
    [PubMed]

2009 (1)

K. Neelam, J. Nolan, U. Chakravarthy, and S. Beatty, “Psychophysical function in age-related maculopathy,” Surv. Ophthalmol. 54(2), 167–210 (2009).
[CrossRef] [PubMed]

2005 (2)

A. J. Zele and A. J. Vingrys, “Cathode-ray-tube monitor artefacts in neurophysiology,” J. Neurosci. Methods 141(1), 1–7 (2005).
[CrossRef] [PubMed]

B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25(4), 315–319 (2005).
[CrossRef] [PubMed]

2004 (1)

J. A. Phipps, T. M. Dang, A. J. Vingrys, and R. H. Guymer, “Flicker perimetry losses in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 45(9), 3355–3360 (2004).
[CrossRef] [PubMed]

2003 (1)

J. R. Jarvis, N. B. Prescott, and C. M. Wathes, “A mechanistic inter-species comparison of flicker sensitivity,” Vision Res. 43(16), 1723–1734 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Peters, “Structural changes that occur during normal aging of primate cerebral hemispheres,” Neurosci. Biobehav. Rev. 26(7), 733–741 (2002).
[CrossRef] [PubMed]

2001 (1)

M. A. García-Pérez and E. Peli, “Luminance artifacts of cathode-ray tube displays for vision research,” Spat. Vis. 14(2), 201–215 (2001).
[CrossRef] [PubMed]

1999 (2)

J. M. Rovamo, A. Raninen, and K. Donner, “The effects of temporal noise and retinal illuminance on foveal flicker sensitivity,” Vision Res. 39(3), 533–550 (1999).
[CrossRef] [PubMed]

J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
[PubMed]

1997 (1)

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[CrossRef] [PubMed]

1994 (2)

M. J. Mayer, B. Ward, R. Klein, J. B. Talcott, R. F. Dougherty, and A. Glucs, “Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 35(3), 1138–1149 (1994).
[PubMed]

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 35(3), 1132–1137 (1994).
[PubMed]

1993 (1)

A. B. Metha, A. J. Vingrys, and D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).

1992 (2)

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Foveal flicker sensitivity discriminates ARM-risk from healthy eyes,” Invest. Ophthalmol. Vis. Sci. 33(11), 3143–3149 (1992).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Preliminary evaluation of flicker sensitivity as a predictive test for exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 33(11), 3150–3155 (1992).
[PubMed]

1991 (1)

C. W. Tyler, “Analysis of normal flicker sensitivity and its variability in the visuogram test,” Invest. Ophthalmol. Vis. Sci. 32(9), 2552–2560 (1991).
[PubMed]

1990 (1)

1989 (2)

C. W. Tyler, “Two processes control variations in flicker sensitivity over the life span,” J. Opt. Soc. Am. A 6(4), 481–490 (1989).
[CrossRef] [PubMed]

W. H. Seiple, V. Greenstein, and R. Carr, “Losses of temporal modulation sensitivity in retinal degenerations,” Br. J. Ophthalmol. 73(6), 440–447 (1989).
[CrossRef] [PubMed]

1988 (1)

1985 (1)

1984 (1)

J. M. Rovamo and A. Raninen, “Critical flicker frequency and M-scaling of stimulus size and retinal illuminance,” Vision Res. 24(10), 1127–1131 (1984).
[CrossRef] [PubMed]

1981 (1)

C. W. Tyler, “Specific deficits of flicker sensitivity in glaucoma and ocular hypertension,” Invest. Ophthalmol. Vis. Sci. 20(2), 204–212 (1981).
[PubMed]

1974 (1)

1970 (1)

1961 (1)

D. H. Kelly, “Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements,” J. Opt. Soc. Am. A 51(4), 422–429 (1961).
[CrossRef]

1952 (1)

H. de Lange, “Experiments on flicker and some calculations on an electrical analogue of the foveal systems,” Physica 18(11), 935–950 (1952).
[CrossRef]

1930 (1)

R. Granit and P. Harper, “Comparative studies on the peripheral and central retina: II.Synaptic reaction in the eye,” Am. J. Physiol. 95, 211–228 (1930).

1902 (1)

T. C. Porter, “Contributions to the study of flicker, II,” Proc. R. Soc. Lond. 70A, 31–329 (1902).

1892 (1)

E. S. Ferry, “Persistence of vision,” Am. J. Sci. 44, 192–207 (1892).

Bach, M.

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[CrossRef] [PubMed]

Badcock, D. R.

A. B. Metha, A. J. Vingrys, and D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).

Beatty, S.

K. Neelam, J. Nolan, U. Chakravarthy, and S. Beatty, “Psychophysical function in age-related maculopathy,” Surv. Ophthalmol. 54(2), 167–210 (2009).
[CrossRef] [PubMed]

Bickford, P. C.

J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
[PubMed]

Bielinski, D.

J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
[PubMed]

Carr, R.

W. H. Seiple, V. Greenstein, and R. Carr, “Losses of temporal modulation sensitivity in retinal degenerations,” Br. J. Ophthalmol. 73(6), 440–447 (1989).
[CrossRef] [PubMed]

Chakravarthy, U.

K. Neelam, J. Nolan, U. Chakravarthy, and S. Beatty, “Psychophysical function in age-related maculopathy,” Surv. Ophthalmol. 54(2), 167–210 (2009).
[CrossRef] [PubMed]

Dang, T. M.

J. A. Phipps, T. M. Dang, A. J. Vingrys, and R. H. Guymer, “Flicker perimetry losses in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 45(9), 3355–3360 (2004).
[CrossRef] [PubMed]

de Lange, H.

H. de Lange, “Experiments on flicker and some calculations on an electrical analogue of the foveal systems,” Physica 18(11), 935–950 (1952).
[CrossRef]

Denisova, N. A.

J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
[PubMed]

Donner, K.

J. M. Rovamo, A. Raninen, and K. Donner, “The effects of temporal noise and retinal illuminance on foveal flicker sensitivity,” Vision Res. 39(3), 533–550 (1999).
[CrossRef] [PubMed]

Dougherty, R. F.

M. J. Mayer, B. Ward, R. Klein, J. B. Talcott, R. F. Dougherty, and A. Glucs, “Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 35(3), 1138–1149 (1994).
[PubMed]

Elliott, D. B.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 35(3), 1132–1137 (1994).
[PubMed]

Ferry, E. S.

E. S. Ferry, “Persistence of vision,” Am. J. Sci. 44, 192–207 (1892).

García-Pérez, M. A.

M. A. García-Pérez and E. Peli, “Luminance artifacts of cathode-ray tube displays for vision research,” Spat. Vis. 14(2), 201–215 (2001).
[CrossRef] [PubMed]

Glucs, A.

M. J. Mayer, B. Ward, R. Klein, J. B. Talcott, R. F. Dougherty, and A. Glucs, “Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 35(3), 1138–1149 (1994).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Preliminary evaluation of flicker sensitivity as a predictive test for exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 33(11), 3150–3155 (1992).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Foveal flicker sensitivity discriminates ARM-risk from healthy eyes,” Invest. Ophthalmol. Vis. Sci. 33(11), 3143–3149 (1992).
[PubMed]

M. J. Mayer, C. B. Y. Kim, A. Svingos, and A. Glucs, “Foveal flicker sensitivity in healthy aging eyes. I. Compensating for pupil variation,” J. Opt. Soc. Am. A 5(12), 2201–2209 (1988).
[CrossRef] [PubMed]

Granit, R.

R. Granit and P. Harper, “Comparative studies on the peripheral and central retina: II.Synaptic reaction in the eye,” Am. J. Physiol. 95, 211–228 (1930).

Greenstein, V.

W. H. Seiple, V. Greenstein, and R. Carr, “Losses of temporal modulation sensitivity in retinal degenerations,” Br. J. Ophthalmol. 73(6), 440–447 (1989).
[CrossRef] [PubMed]

Guymer, R. H.

J. A. Phipps, T. M. Dang, A. J. Vingrys, and R. H. Guymer, “Flicker perimetry losses in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 45(9), 3355–3360 (2004).
[CrossRef] [PubMed]

Hamer, R. D.

Hammond, B. R.

B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25(4), 315–319 (2005).
[CrossRef] [PubMed]

Harper, P.

R. Granit and P. Harper, “Comparative studies on the peripheral and central retina: II.Synaptic reaction in the eye,” Am. J. Physiol. 95, 211–228 (1930).

Jarvis, J. R.

J. R. Jarvis, N. B. Prescott, and C. M. Wathes, “A mechanistic inter-species comparison of flicker sensitivity,” Vision Res. 43(16), 1723–1734 (2003).
[CrossRef] [PubMed]

Joseph, J. A.

J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
[PubMed]

Keesey, U. T.

Kelly, D. H.

D. H. Kelly, “Spatio-temporal frequency chracteristics of color-vision mechanisms,” J. Opt. Soc. Am. 64(7), 983–990 (1974).
[CrossRef] [PubMed]

D. H. Kelly, “Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements,” J. Opt. Soc. Am. A 51(4), 422–429 (1961).
[CrossRef]

Kim, C. B.

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Preliminary evaluation of flicker sensitivity as a predictive test for exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 33(11), 3150–3155 (1992).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Foveal flicker sensitivity discriminates ARM-risk from healthy eyes,” Invest. Ophthalmol. Vis. Sci. 33(11), 3143–3149 (1992).
[PubMed]

Kim, C. B. Y.

Klein, R.

M. J. Mayer, B. Ward, R. Klein, J. B. Talcott, R. F. Dougherty, and A. Glucs, “Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 35(3), 1138–1149 (1994).
[PubMed]

Martin, A.

J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
[PubMed]

Mayer, M. J.

M. J. Mayer, B. Ward, R. Klein, J. B. Talcott, R. F. Dougherty, and A. Glucs, “Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 35(3), 1138–1149 (1994).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Foveal flicker sensitivity discriminates ARM-risk from healthy eyes,” Invest. Ophthalmol. Vis. Sci. 33(11), 3143–3149 (1992).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Preliminary evaluation of flicker sensitivity as a predictive test for exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 33(11), 3150–3155 (1992).
[PubMed]

M. J. Mayer, C. B. Y. Kim, A. Svingos, and A. Glucs, “Foveal flicker sensitivity in healthy aging eyes. I. Compensating for pupil variation,” J. Opt. Soc. Am. A 5(12), 2201–2209 (1988).
[CrossRef] [PubMed]

McEwen, J. J.

J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
[PubMed]

Meigen, T.

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[CrossRef] [PubMed]

Metha, A. B.

A. B. Metha, A. J. Vingrys, and D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).

Neelam, K.

K. Neelam, J. Nolan, U. Chakravarthy, and S. Beatty, “Psychophysical function in age-related maculopathy,” Surv. Ophthalmol. 54(2), 167–210 (2009).
[CrossRef] [PubMed]

Nolan, J.

K. Neelam, J. Nolan, U. Chakravarthy, and S. Beatty, “Psychophysical function in age-related maculopathy,” Surv. Ophthalmol. 54(2), 167–210 (2009).
[CrossRef] [PubMed]

Peli, E.

M. A. García-Pérez and E. Peli, “Luminance artifacts of cathode-ray tube displays for vision research,” Spat. Vis. 14(2), 201–215 (2001).
[CrossRef] [PubMed]

Peters, A.

A. Peters, “Structural changes that occur during normal aging of primate cerebral hemispheres,” Neurosci. Biobehav. Rev. 26(7), 733–741 (2002).
[CrossRef] [PubMed]

Phillips, N. J.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 35(3), 1132–1137 (1994).
[PubMed]

Phipps, J. A.

J. A. Phipps, T. M. Dang, A. J. Vingrys, and R. H. Guymer, “Flicker perimetry losses in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 45(9), 3355–3360 (2004).
[CrossRef] [PubMed]

Porter, T. C.

T. C. Porter, “Contributions to the study of flicker, II,” Proc. R. Soc. Lond. 70A, 31–329 (1902).

Prescott, N. B.

J. R. Jarvis, N. B. Prescott, and C. M. Wathes, “A mechanistic inter-species comparison of flicker sensitivity,” Vision Res. 43(16), 1723–1734 (2003).
[CrossRef] [PubMed]

Raninen, A.

J. M. Rovamo, A. Raninen, and K. Donner, “The effects of temporal noise and retinal illuminance on foveal flicker sensitivity,” Vision Res. 39(3), 533–550 (1999).
[CrossRef] [PubMed]

J. M. Rovamo and A. Raninen, “Critical flicker frequency and M-scaling of stimulus size and retinal illuminance,” Vision Res. 24(10), 1127–1131 (1984).
[CrossRef] [PubMed]

Rovamo, J. M.

J. M. Rovamo, A. Raninen, and K. Donner, “The effects of temporal noise and retinal illuminance on foveal flicker sensitivity,” Vision Res. 39(3), 533–550 (1999).
[CrossRef] [PubMed]

J. M. Rovamo and A. Raninen, “Critical flicker frequency and M-scaling of stimulus size and retinal illuminance,” Vision Res. 24(10), 1127–1131 (1984).
[CrossRef] [PubMed]

Seiple, W. H.

W. H. Seiple, V. Greenstein, and R. Carr, “Losses of temporal modulation sensitivity in retinal degenerations,” Br. J. Ophthalmol. 73(6), 440–447 (1989).
[CrossRef] [PubMed]

Shukitt-Hale, B.

J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
[PubMed]

Spiegler, S. J.

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Preliminary evaluation of flicker sensitivity as a predictive test for exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 33(11), 3150–3155 (1992).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Foveal flicker sensitivity discriminates ARM-risk from healthy eyes,” Invest. Ophthalmol. Vis. Sci. 33(11), 3143–3149 (1992).
[PubMed]

Strasburger, H.

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[CrossRef] [PubMed]

Svingos, A.

Talcott, J. B.

M. J. Mayer, B. Ward, R. Klein, J. B. Talcott, R. F. Dougherty, and A. Glucs, “Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 35(3), 1138–1149 (1994).
[PubMed]

Tyler, C. W.

Vingrys, A. J.

A. J. Zele and A. J. Vingrys, “Cathode-ray-tube monitor artefacts in neurophysiology,” J. Neurosci. Methods 141(1), 1–7 (2005).
[CrossRef] [PubMed]

J. A. Phipps, T. M. Dang, A. J. Vingrys, and R. H. Guymer, “Flicker perimetry losses in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 45(9), 3355–3360 (2004).
[CrossRef] [PubMed]

A. B. Metha, A. J. Vingrys, and D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).

Ward, B.

M. J. Mayer, B. Ward, R. Klein, J. B. Talcott, R. F. Dougherty, and A. Glucs, “Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 35(3), 1138–1149 (1994).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Foveal flicker sensitivity discriminates ARM-risk from healthy eyes,” Invest. Ophthalmol. Vis. Sci. 33(11), 3143–3149 (1992).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Preliminary evaluation of flicker sensitivity as a predictive test for exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 33(11), 3150–3155 (1992).
[PubMed]

Wathes, C. M.

J. R. Jarvis, N. B. Prescott, and C. M. Wathes, “A mechanistic inter-species comparison of flicker sensitivity,” Vision Res. 43(16), 1723–1734 (2003).
[CrossRef] [PubMed]

Whitaker, D.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 35(3), 1132–1137 (1994).
[PubMed]

Winn, B.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 35(3), 1132–1137 (1994).
[PubMed]

Wooten, B. R.

B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25(4), 315–319 (2005).
[CrossRef] [PubMed]

Zele, A. J.

A. J. Zele and A. J. Vingrys, “Cathode-ray-tube monitor artefacts in neurophysiology,” J. Neurosci. Methods 141(1), 1–7 (2005).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

R. Granit and P. Harper, “Comparative studies on the peripheral and central retina: II.Synaptic reaction in the eye,” Am. J. Physiol. 95, 211–228 (1930).

Am. J. Sci. (1)

E. S. Ferry, “Persistence of vision,” Am. J. Sci. 44, 192–207 (1892).

Behav. Res. Methods Instrum. Comput. (1)

A. B. Metha, A. J. Vingrys, and D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).

Br. J. Ophthalmol. (1)

W. H. Seiple, V. Greenstein, and R. Carr, “Losses of temporal modulation sensitivity in retinal degenerations,” Br. J. Ophthalmol. 73(6), 440–447 (1989).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Foveal flicker sensitivity discriminates ARM-risk from healthy eyes,” Invest. Ophthalmol. Vis. Sci. 33(11), 3143–3149 (1992).
[PubMed]

M. J. Mayer, S. J. Spiegler, B. Ward, A. Glucs, and C. B. Kim, “Preliminary evaluation of flicker sensitivity as a predictive test for exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 33(11), 3150–3155 (1992).
[PubMed]

C. W. Tyler, “Specific deficits of flicker sensitivity in glaucoma and ocular hypertension,” Invest. Ophthalmol. Vis. Sci. 20(2), 204–212 (1981).
[PubMed]

M. J. Mayer, B. Ward, R. Klein, J. B. Talcott, R. F. Dougherty, and A. Glucs, “Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 35(3), 1138–1149 (1994).
[PubMed]

J. A. Phipps, T. M. Dang, A. J. Vingrys, and R. H. Guymer, “Flicker perimetry losses in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 45(9), 3355–3360 (2004).
[CrossRef] [PubMed]

C. W. Tyler, “Analysis of normal flicker sensitivity and its variability in the visuogram test,” Invest. Ophthalmol. Vis. Sci. 32(9), 2552–2560 (1991).
[PubMed]

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Vis. Sci. 35(3), 1132–1137 (1994).
[PubMed]

J. Neurosci. (1)

J. A. Joseph, B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford, “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” J. Neurosci. 19(18), 8114–8121 (1999).
[PubMed]

J. Neurosci. Methods (1)

A. J. Zele and A. J. Vingrys, “Cathode-ray-tube monitor artefacts in neurophysiology,” J. Neurosci. Methods 141(1), 1–7 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (5)

Neurosci. Biobehav. Rev. (1)

A. Peters, “Structural changes that occur during normal aging of primate cerebral hemispheres,” Neurosci. Biobehav. Rev. 26(7), 733–741 (2002).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic Physiol. Opt. 25(4), 315–319 (2005).
[CrossRef] [PubMed]

Physica (1)

H. de Lange, “Experiments on flicker and some calculations on an electrical analogue of the foveal systems,” Physica 18(11), 935–950 (1952).
[CrossRef]

Proc. R. Soc. Lond. (1)

T. C. Porter, “Contributions to the study of flicker, II,” Proc. R. Soc. Lond. 70A, 31–329 (1902).

Spat. Vis. (2)

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[CrossRef] [PubMed]

M. A. García-Pérez and E. Peli, “Luminance artifacts of cathode-ray tube displays for vision research,” Spat. Vis. 14(2), 201–215 (2001).
[CrossRef] [PubMed]

Surv. Ophthalmol. (1)

K. Neelam, J. Nolan, U. Chakravarthy, and S. Beatty, “Psychophysical function in age-related maculopathy,” Surv. Ophthalmol. 54(2), 167–210 (2009).
[CrossRef] [PubMed]

Vision Res. (3)

J. M. Rovamo and A. Raninen, “Critical flicker frequency and M-scaling of stimulus size and retinal illuminance,” Vision Res. 24(10), 1127–1131 (1984).
[CrossRef] [PubMed]

J. R. Jarvis, N. B. Prescott, and C. M. Wathes, “A mechanistic inter-species comparison of flicker sensitivity,” Vision Res. 43(16), 1723–1734 (2003).
[CrossRef] [PubMed]

J. M. Rovamo, A. Raninen, and K. Donner, “The effects of temporal noise and retinal illuminance on foveal flicker sensitivity,” Vision Res. 39(3), 533–550 (1999).
[CrossRef] [PubMed]

Other (4)

P. J. B. Barten, Contrast sensitivity of the human eye and its effects on image quality. (SPIE Optical Engineering Press, Washington, 1999).

A. B. Watson, “Temporal sensitivity,” in Handbook of perception and human performance, K. R. Boff, L. Kaufman, & J. P. Thomas, eds. (Wiley, New York, NY, 1986).

A number of terms have been used to describe human temporal sensitivity. An early, and still relatively common, usage was the temporal modulation transfer function. Such a term, however, refers to physical characteristics of the stimulus not to the psychophysical response. Even with respect to the latter, the “modulation transfer function” is more aptly used to refer to the ability of a lens or optical system to faithfully transmit an image (in terms of its contrast, etc). “Contrast sensitivity” is the most descriptive term because it directly describes the actual values one obtains. Of course, contrast can be varied in either the spatial or temporal domains so this must also be specified (to wit, the SCSF or the TCSF).

The results for our age analysis were limited by the fact that we did not sample equally across ages (there are more young subjects) and six of our oldest subjects could not detect flicker at the highest frequency even at maximum contrast (hence, the age-reduction may be greater for the highest frequencies). It should also be noted that we used a different field size in the two locations which also could have contributed to the differences in age-loss we report.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic of the stimulus used to measure the central TCSF.

Fig. 2
Fig. 2

A schematic of the optical system used to measure the TCSF. A1-A2, apertures; BS1-BS2, cover slip beam splitters; PC, photocell; M, mirror, D1-D2, diffusers; S1, S2, LED light sources; L1-L2, planoconvex lenses; FX, fixation point light source; EP, eye piece with the artificial pupil.

Fig. 3
Fig. 3

The average TCSF (n = 70) as measured with a foveal target (one-degree diameter, centrally fixated) and a parafoveal target (two-degree diameter, seven degrees, temporal retina). The associated standard deviation values for the fovea (from high to low frequency) were 0.23, 0.25, 0.28, 0.28, 0.26, 0.34, 0.35, 0.27, and 0.22. The associated standard deviation values for the parafovea (from high to low frequency) were 0.38, 0.21, 0.24, 0.22, 0.23, 0.19, 0.22, 0.19, and 0.19. The smooth lines are 3rd order polynomial fits.

Fig. 4
Fig. 4

The relation between age and TCS as measured in the fovea at 25. 1 Hz (Y = 0.84 - 0.006X, r = −0.48, p<0.0001).

Fig. 7
Fig. 7

The relation between age and TCS as measured in the parafovea at 2.5 Hz (Y = 0.94 - 0.001X, r = −0.15).

Fig. 5
Fig. 5

The relation between age and TCS as measured in the fovea at 2.5 Hz (Y = 1.44 - 0.004X, r = −0.33, p <0.01).

Fig. 6
Fig. 6

The relation between age and TCS as measured in the parafovea at 25. 1 Hz (Y = 0.52 - 0.002X, r = −0.15).

Metrics