Abstract

Pseudo-random single photon counting (PRSPC) is a new time-resolved optical measurement method which combines the spread spectrum time-resolved method with single photon counting. A pseudo-random bit sequence is used to modulate a continuous wave laser diode, while single photon counting is used to build up the optical signal in response to the modulated excitation. Periodic cross-correlation is performed to obtain the temporal profile of the subject of interest. Compared with conventional time-correlated single photon counting (TCSPC), PRSPC enjoys many advantages such as low cost and high count rate without compromising the sensitivity and time-resolution. In this paper, we report a PRSPC system that can be used for high-speed acquisition of the temporal point spread function of diffuse photons. It can reach a photon count rate as high as 3 Mcps (counts per second). Phantom experiments have been conducted to demonstrate the system performance.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
    [CrossRef] [PubMed]
  2. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007).
    [CrossRef] [PubMed]
  3. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [CrossRef] [PubMed]
  4. J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17(11), 2926–2933 (2007).
    [CrossRef] [PubMed]
  5. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
    [CrossRef] [PubMed]
  6. T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
    [CrossRef] [PubMed]
  7. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
    [CrossRef] [PubMed]
  8. M. Schweiger, A. Gibson, and S. R. Arridge, “Computational aspectcts of diffuse optical tomography,” Comput. Opt. 5, 33–41 (2001).
  9. F. Gao, H. J. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41(4), 778–791 (2002).
    [CrossRef] [PubMed]
  10. W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).
  11. F. Schmidt, M. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
    [CrossRef]
  12. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
    [CrossRef]
  13. H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 44(10), 1905–1916 (2005).
    [CrossRef] [PubMed]
  14. Becker & Hickl GmbH, The bh TCSPC Handbook, http://www.becker-hickl.com/literature.htm
  15. Q. Zhang, H. W. Soon, H. Tian, S. Fernando, Y. Ha, and N. G. Chen, “Pseudo-random single photon counting for time-resolved optical measurement,” Opt. Express 16(17), 13233–13239 (2008).
    [CrossRef] [PubMed]
  16. A. V. Bykov, A. K. Indukaev, A. V. Priezzhev, and R. Myllylä, “Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue,” Quantum Electron. 38(5), 491–496 (2008).
    [CrossRef]
  17. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [CrossRef]

2008 (3)

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Q. Zhang, H. W. Soon, H. Tian, S. Fernando, Y. Ha, and N. G. Chen, “Pseudo-random single photon counting for time-resolved optical measurement,” Opt. Express 16(17), 13233–13239 (2008).
[CrossRef] [PubMed]

A. V. Bykov, A. K. Indukaev, A. V. Priezzhev, and R. Myllylä, “Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue,” Quantum Electron. 38(5), 491–496 (2008).
[CrossRef]

2007 (2)

2006 (3)

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

2005 (2)

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 44(10), 1905–1916 (2005).
[CrossRef] [PubMed]

2003 (1)

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

M. Schweiger, A. Gibson, and S. R. Arridge, “Computational aspectcts of diffuse optical tomography,” Comput. Opt. 5, 33–41 (2001).

2000 (1)

F. Schmidt, M. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

1999 (2)

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

Arridge, A. R.

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

Arridge, S. R.

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

M. Schweiger, A. Gibson, and S. R. Arridge, “Computational aspectcts of diffuse optical tomography,” Comput. Opt. 5, 33–41 (2001).

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Austin, T.

J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17(11), 2926–2933 (2007).
[CrossRef] [PubMed]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

Becker, W.

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

Bergmann, A.

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

Boas, D. A.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

Branco, G.

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Bykov, A. V.

A. V. Bykov, A. K. Indukaev, A. V. Priezzhev, and R. Myllylä, “Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue,” Quantum Electron. 38(5), 491–496 (2008).
[CrossRef]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Chen, N. G.

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Dehghani, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Delpy, D. T.

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

F. Schmidt, M. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Diamond, S. G.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

Douek, M.

Dunn, J. F.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

Everdell, N.

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

Everdell, N. L.

Fernando, S.

Franceschini, M. A.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

Fry, M.

F. Schmidt, M. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Gao, F.

Gibson, A.

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

M. Schweiger, A. Gibson, and S. R. Arridge, “Computational aspectcts of diffuse optical tomography,” Comput. Opt. 5, 33–41 (2001).

Gibson, A. P.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

Ha, Y.

Hebden, J. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17(11), 2926–2933 (2007).
[CrossRef] [PubMed]

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

F. Schmidt, M. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Hillman, E. M. C.

F. Schmidt, M. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Homma, K.

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Huppert, T. J.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

Indukaev, A. K.

A. V. Bykov, A. K. Indukaev, A. V. Priezzhev, and R. Myllylä, “Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue,” Quantum Electron. 38(5), 491–496 (2008).
[CrossRef]

Ito, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Jennions, D.

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

Joseph, D. K.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

Keshtgar, M.

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Meek, J. H.

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

Myllylä, R.

A. V. Bykov, A. K. Indukaev, A. V. Priezzhev, and R. Myllylä, “Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue,” Quantum Electron. 38(5), 491–496 (2008).
[CrossRef]

Oda, I.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Oikawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Paulsen, K. D.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Pogue, B. W.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Priezzhev, A. V.

A. V. Bykov, A. K. Indukaev, A. V. Priezzhev, and R. Myllylä, “Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue,” Quantum Electron. 38(5), 491–496 (2008).
[CrossRef]

Richardson, C.

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Schmidt, F.

F. Schmidt, M. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Schweiger, M.

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

M. Schweiger, A. Gibson, and S. R. Arridge, “Computational aspectcts of diffuse optical tomography,” Comput. Opt. 5, 33–41 (2001).

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Soon, H. W.

Springett, R.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Takada, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Tamura, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Tanikawa, Y.

Tian, H.

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Tsunazawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Wada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Wyatt, J. S.

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

Xu, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Yamada, Y.

Yamashita, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Yusof, R. M.

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

Zhang, Q.

Zhao, H.

Zhao, H. J.

Appl. Opt. (3)

Breast Cancer Res. Treat. (1)

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Comput. Opt. (1)

M. Schweiger, A. Gibson, and S. R. Arridge, “Computational aspectcts of diffuse optical tomography,” Comput. Opt. 5, 33–41 (2001).

Eur. Radiol. (1)

J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17(11), 2926–2933 (2007).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

J. Biomed. Opt. (3)

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Neuroimage (1)

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Proc. SPIE (1)

W. Becker, A. Bergmann, A. Gibson, N. Everdell, D. Jennions, M. Schweiger, A. R. Arridge, and J. C. Hebden, “Multi-dimensional time-correlated single photon counting applied to diffuse optical tomography,” Proc. SPIE 5693, 34–42 (2005).

Quantum Electron. (1)

A. V. Bykov, A. K. Indukaev, A. V. Priezzhev, and R. Myllylä, “Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue,” Quantum Electron. 38(5), 491–496 (2008).
[CrossRef]

Rev. Sci. Instrum. (2)

F. Schmidt, M. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999).
[CrossRef]

Other (1)

Becker & Hickl GmbH, The bh TCSPC Handbook, http://www.becker-hickl.com/literature.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the PRSPC system. The dash lines represent the optical signal path and the solid lines represent the electrical signal.

Fig. 2
Fig. 2

Calibration result of the PRSPC system

Fig. 3
Fig. 3

Configuration of laser probes and lipofundin sample. Left, lateral view; right, vertical view. The dash square in the vertical view corresponds to the image reconstruction area.

Fig. 4
Fig. 4

Reconstructed optical properties of the X-Y plane at Z = 29 mm. The unit for the color bar is cm−1. The dash circle represents the actual target position while the solid circle represents the reconstructed target position. (a) for absorption coefficients and (b) for reduced scattering coefficients.

Metrics