Abstract

A dual mode scanning acoustic microscope is investigated, yielding simultaneously images with optical and acoustical contrast. Short laser pulses are used to excite acoustic waves in a sample for the photoacoustic imaging mode. At the same time the pulses irradiate a conical target generating limited diffraction acoustic waves (X-waves) for large depth of field ultrasound imaging. For photoacoustic as well as for ultrasound imaging a focusing, ring shaped detector is applied. First phantom experiments demonstrate the possibility to acquire data for both imaging modes in a single scan, by separating images due to their different time of flight.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
    [CrossRef] [PubMed]
  2. M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [CrossRef]
  3. T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041–22046 (2009).
    [CrossRef] [PubMed]
  4. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  5. J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(1), 19–31 (1992).
    [CrossRef] [PubMed]
  6. J. Y. Lu and J. F. Greenleaf, “Experimental verification of nondiffracting X waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 441–446 (1992).
    [CrossRef] [PubMed]
  7. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
    [CrossRef]
  8. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic Generation of X-waves and their Application in a Dual Mode Scanning Acoustic Microscope,” Proc. SPIE 7371, 73710R (2009).
  9. S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon transducer,” Proc. SPIE 7371, 73710W (2009).
  10. T. Berer, H. Gruen, C. Hofer, and P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).
  11. H. Gruen, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based Detectors for Photoacoustic Imaging,” Proc. SPIE 73710T (2009).
  12. G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).
  13. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327 (2004).
    [CrossRef] [PubMed]

2009 (6)

T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041–22046 (2009).
[CrossRef] [PubMed]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic Generation of X-waves and their Application in a Dual Mode Scanning Acoustic Microscope,” Proc. SPIE 7371, 73710R (2009).

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon transducer,” Proc. SPIE 7371, 73710W (2009).

T. Berer, H. Gruen, C. Hofer, and P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).

2006 (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

2005 (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

2004 (1)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327 (2004).
[CrossRef] [PubMed]

1992 (2)

J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(1), 19–31 (1992).
[CrossRef] [PubMed]

J. Y. Lu and J. F. Greenleaf, “Experimental verification of nondiffracting X waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 441–446 (1992).
[CrossRef] [PubMed]

Berer, T.

T. Berer, H. Gruen, C. Hofer, and P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).

Burgholzer, P.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic Generation of X-waves and their Application in a Dual Mode Scanning Acoustic Microscope,” Proc. SPIE 7371, 73710R (2009).

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

T. Berer, H. Gruen, C. Hofer, and P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).

de Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327 (2004).
[CrossRef] [PubMed]

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Gratt, S.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon transducer,” Proc. SPIE 7371, 73710W (2009).

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic Generation of X-waves and their Application in a Dual Mode Scanning Acoustic Microscope,” Proc. SPIE 7371, 73710R (2009).

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).

Greenleaf, J. F.

J. Y. Lu and J. F. Greenleaf, “Experimental verification of nondiffracting X waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 441–446 (1992).
[CrossRef] [PubMed]

J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(1), 19–31 (1992).
[CrossRef] [PubMed]

Gruen, H.

T. Berer, H. Gruen, C. Hofer, and P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).

Harrison, T.

Hofer, C.

T. Berer, H. Gruen, C. Hofer, and P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327 (2004).
[CrossRef] [PubMed]

Jaeger, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327 (2004).
[CrossRef] [PubMed]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Lu, H.

Lu, J. Y.

J. Y. Lu and J. F. Greenleaf, “Experimental verification of nondiffracting X waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 441–446 (1992).
[CrossRef] [PubMed]

J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(1), 19–31 (1992).
[CrossRef] [PubMed]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Mathewson, K.

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Nuster, R.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic Generation of X-waves and their Application in a Dual Mode Scanning Acoustic Microscope,” Proc. SPIE 7371, 73710R (2009).

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon transducer,” Proc. SPIE 7371, 73710W (2009).

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).

Paltauf, G.

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon transducer,” Proc. SPIE 7371, 73710W (2009).

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic Generation of X-waves and their Application in a Dual Mode Scanning Acoustic Microscope,” Proc. SPIE 7371, 73710R (2009).

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

Passler, K.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic Generation of X-waves and their Application in a Dual Mode Scanning Acoustic Microscope,” Proc. SPIE 7371, 73710R (2009).

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon transducer,” Proc. SPIE 7371, 73710W (2009).

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).

Ranasinghesagara, J. C.

Steenbergen, W.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327 (2004).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

van Leeuwen, T. G.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327 (2004).
[CrossRef] [PubMed]

Walsh, A.

Wang, L. V.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Xu, M. H.

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Zemp, R. J.

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

IEEE Trans. Med. Imaging (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(1), 19–31 (1992).
[CrossRef] [PubMed]

J. Y. Lu and J. F. Greenleaf, “Experimental verification of nondiffracting X waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 441–446 (1992).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327 (2004).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Proc. SPIE (4)

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic Generation of X-waves and their Application in a Dual Mode Scanning Acoustic Microscope,” Proc. SPIE 7371, 73710R (2009).

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon transducer,” Proc. SPIE 7371, 73710W (2009).

T. Berer, H. Gruen, C. Hofer, and P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).

Rev. Sci. Instrum. (1)

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Other (1)

H. Gruen, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based Detectors for Photoacoustic Imaging,” Proc. SPIE 73710T (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Layout of an axicon transducer. Laser pulses absorbed in a black layer on a conical surface give rise to acoustic waves that converge on an axis along a length given by the DOF.

Fig. 2
Fig. 2

schematic experimental setup for dual mode scanning acoustic microscopy (DSAM): ring shaped illumination (IA) for the pulse echo-mode, free beam illumination (IP) for the photoacoustic mode; T: water filled tank; DET: piezoelectric ultrasound detector; CA: black coated axicon; DA: divergent optical axicon; OPA: operating area of the DSAM; Ri and Ro: inner and outer radii of the ultrasound detector.

Fig. 3
Fig. 3

(a) Cross section image of a horse hair (b) temporal signals in and 300µm outside the focus, at the positions marked in (a) with dashed lines.

Fig. 4
Fig. 4

Maximum amplitude projection images of the acoustic mode (left) and the photoacoustic mode (right) of the horse hair phantom (see inset)

Fig. 5
Fig. 5

(a,b): Section images perpendicular to the z-axis at two depths, showing each horse hair separately. (c) Maximum amplitude projection in z-direction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D O F ( a x i c o n ) = R tan ζ 1 , R [ 0 , R a x ]

Metrics