Abstract

Inhalation of vasoactive gases such as carbon dioxide and oxygen can provide strong changes in tissue hemodynamics. In this report, we present a preliminary clinical study aimed at assessing the feasibility of inhalation-based contrast with near infrared continuous wave transillumination for breast imaging. We describe a method for fitting the transient absorbance that provides the wavelength dependence of the optical pathlength as parametrized by tissue oxygenation and scatter power as well as the differential changes in oxy- and deoxy-hemoglobin. We also present a principal component analysis data reduction technique to assess the dynamic response from the tissue that uses coercion to provide single temporal eigenvalues associated with both oxy- and deoxy-hemoglobin changes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
    [CrossRef] [PubMed]
  2. A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
    [CrossRef] [PubMed]
  3. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
    [CrossRef] [PubMed]
  4. Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
    [PubMed]
  5. S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
    [CrossRef]
  6. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
    [CrossRef] [PubMed]
  7. A. Li, J. Liu, W. Tanamai, R. Kwong, A. E. Cerussi, and B. J. Tromberg, “Assessing the spatial extent of breast tumor intrinsic optical contrast using ultrasound and diffuse optical spectroscopy,” J. Biomed. Opt. 13(3), 030504 (2008).
    [CrossRef] [PubMed]
  8. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
    [CrossRef] [PubMed]
  9. H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
    [CrossRef] [PubMed]
  10. K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16(1), 19–31 (2008).
    [CrossRef] [PubMed]
  11. S. S. Dixit, H. Kim, B. Visser, and G. W. Faris, “Development of a transillumination infrared modality for differential vasoactive optical imaging,” Appl. Opt. 48(10), D178–D186 (2009).
    [CrossRef] [PubMed]
  12. S. S. Dixit, H. Kim, B. Visser, C. Comstock, and G. W. Faris, “Hyperoxic/hypercapnic gas inhalation as a route to increase contrast from tumor tissue in near-infrared imaging of breast tissue,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), BTuD4.
  13. D. R. Fischer, J. R. Reichenbach, A. Rauscher, J. Sedlacik, and W. A. Kaiser, “Application of an exogenous hyperoxic contrast agent in MR mammography: initial results,” Eur. Radiol. 15(4), 829–832 (2005).
    [CrossRef] [PubMed]
  14. C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging,” Med. Phys. 37(4), 1638–1646 (2010).
    [CrossRef] [PubMed]
  15. C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
    [CrossRef] [PubMed]
  16. N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
    [CrossRef] [PubMed]
  17. D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
    [CrossRef] [PubMed]
  18. H. L. Liu, “Unified analysis of the sensitivities of reflectance and path length to scattering variations in a diffusive medium,” Appl. Opt. 40(10), 1742–1746 (2001).
    [CrossRef] [PubMed]
  19. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
    [CrossRef] [PubMed]
  20. T. Yokoo, B. W. Knight, and L. Sirovich, “An optimization approach to signal extraction from noisy multivariate data,” Neuroimage 14(6), 1309–1326 (2001).
    [CrossRef] [PubMed]
  21. L. Sirovich and R. Everson, “Management and analysis of large scientific datasets,” International Journal Of Supercomputer Applications And High Performance Computing 6, 50–68 (1992).
  22. L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of human faces,” J. Opt. Soc. Am. A 4(3), 519–524 (1987).
    [CrossRef] [PubMed]
  23. G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” in Optical tomography and spectroscopy of tissue IV, Proceedings of the SPIE 2001), 130–141.

2010 (3)

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging,” Med. Phys. 37(4), 1638–1646 (2010).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
[CrossRef] [PubMed]

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (5)

K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16(1), 19–31 (2008).
[CrossRef] [PubMed]

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

A. Li, J. Liu, W. Tanamai, R. Kwong, A. E. Cerussi, and B. J. Tromberg, “Assessing the spatial extent of breast tumor intrinsic optical contrast using ultrasound and diffuse optical spectroscopy,” J. Biomed. Opt. 13(3), 030504 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

2005 (2)

D. R. Fischer, J. R. Reichenbach, A. Rauscher, J. Sedlacik, and W. A. Kaiser, “Application of an exogenous hyperoxic contrast agent in MR mammography: initial results,” Eur. Radiol. 15(4), 829–832 (2005).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

2003 (2)

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
[CrossRef] [PubMed]

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

2001 (3)

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

H. L. Liu, “Unified analysis of the sensitivities of reflectance and path length to scattering variations in a diffusive medium,” Appl. Opt. 40(10), 1742–1746 (2001).
[CrossRef] [PubMed]

T. Yokoo, B. W. Knight, and L. Sirovich, “An optimization approach to signal extraction from noisy multivariate data,” Neuroimage 14(6), 1309–1326 (2001).
[CrossRef] [PubMed]

1999 (1)

S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
[CrossRef]

1992 (1)

L. Sirovich and R. Everson, “Management and analysis of large scientific datasets,” International Journal Of Supercomputer Applications And High Performance Computing 6, 50–68 (1992).

1988 (1)

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

1987 (1)

Amin, K.

Arridge, S.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Baddeley, H.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Bakker, L.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Bassarova, A.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Beek, M.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Bick, U.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Borgen, E.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Brendel, B.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Butler, J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

Carpenter, C. M.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging,” Med. Phys. 37(4), 1638–1646 (2010).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

Cerussi, A. E.

A. Li, J. Liu, W. Tanamai, R. Kwong, A. E. Cerussi, and B. J. Tromberg, “Assessing the spatial extent of breast tumor intrinsic optical contrast using ultrasound and diffuse optical spectroscopy,” J. Biomed. Opt. 13(3), 030504 (2008).
[CrossRef] [PubMed]

Chen, N. G.

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Colak, S. B.

S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
[CrossRef]

Compton, M.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

Cope, M.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Culver, L. A.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Daniel, B. L.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
[CrossRef] [PubMed]

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Dehghani, H.

Delpy, D. T.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Dhakal, H. P.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Diekmann, F.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Dixit, S. S.

Durkin, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

Elias, S.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Everson, R.

L. Sirovich and R. Everson, “Management and analysis of large scientific datasets,” International Journal Of Supercomputer Applications And High Performance Computing 6, 50–68 (1992).

Faris, G. W.

Fels, L.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Fischer, D. R.

D. R. Fischer, J. R. Reichenbach, A. Rauscher, J. Sedlacik, and W. A. Kaiser, “Application of an exogenous hyperoxic contrast agent in MR mammography: initial results,” Eur. Radiol. 15(4), 829–832 (2005).
[CrossRef] [PubMed]

Freund, T.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Gibbs, A. D.

Gibson, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Giercksky, K. E.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Glover, G. H.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging,” Med. Phys. 37(4), 1638–1646 (2010).
[CrossRef] [PubMed]

Goodchild, K. A.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Griffiths, J. R.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Hamm, B.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Haroon, Z.

Hebden, J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Hedge, P.

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Hoogenraad, J. H.

S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
[CrossRef]

Hoskin, P. J.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

Huang, M. M.

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Jagjivan, B.

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Jiang, S.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging,” Med. Phys. 37(4), 1638–1646 (2010).
[CrossRef] [PubMed]

Kaaresen, R.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Kaiser, W. A.

D. R. Fischer, J. R. Reichenbach, A. Rauscher, J. Sedlacik, and W. A. Kaiser, “Application of an exogenous hyperoxic contrast agent in MR mammography: initial results,” Eur. Radiol. 15(4), 829–832 (2005).
[CrossRef] [PubMed]

Kane, M.

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Kim, H.

Kirby, M.

Knight, B. W.

T. Yokoo, B. W. Knight, and L. Sirovich, “An optimization approach to signal extraction from noisy multivariate data,” Neuroimage 14(6), 1309–1326 (2001).
[CrossRef] [PubMed]

Kotz, K. T.

Kuijpers, F. A.

S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
[CrossRef]

Kurtzman, S. H.

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Kwong, R.

A. Li, J. Liu, W. Tanamai, R. Kwong, A. E. Cerussi, and B. J. Tromberg, “Assessing the spatial extent of breast tumor intrinsic optical contrast using ultrasound and diffuse optical spectroscopy,” J. Biomed. Opt. 13(3), 030504 (2008).
[CrossRef] [PubMed]

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Li, A.

A. Li, J. Liu, W. Tanamai, R. Kwong, A. E. Cerussi, and B. J. Tromberg, “Assessing the spatial extent of breast tumor intrinsic optical contrast using ultrasound and diffuse optical spectroscopy,” J. Biomed. Opt. 13(3), 030504 (2008).
[CrossRef] [PubMed]

Liu, H. L.

Liu, J.

A. Li, J. Liu, W. Tanamai, R. Kwong, A. E. Cerussi, and B. J. Tromberg, “Assessing the spatial extent of breast tumor intrinsic optical contrast using ultrasound and diffuse optical spectroscopy,” J. Biomed. Opt. 13(3), 030504 (2008).
[CrossRef] [PubMed]

Luijten, P.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Mali, W.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Mark, M.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Martin, J. C.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Mehta, R.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

Nachabe, R.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Naume, B.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Nesland, J. M.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Nielsen, T.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Orduna, J. M.

Padhani, A. R.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Paulsen, K. D.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging,” Med. Phys. 37(4), 1638–1646 (2010).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
[CrossRef] [PubMed]

Phillips, H.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Poellinger, A.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Pogue, B. W.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging,” Med. Phys. 37(4), 1638–1646 (2010).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
[CrossRef] [PubMed]

Ponder, S. L.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Poplack, S. P.

Powell, M. E. B.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Rakow-Penner, R.

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
[CrossRef] [PubMed]

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging,” Med. Phys. 37(4), 1638–1646 (2010).
[CrossRef] [PubMed]

Rauscher, A.

D. R. Fischer, J. R. Reichenbach, A. Rauscher, J. Sedlacik, and W. A. Kaiser, “Application of an exogenous hyperoxic contrast agent in MR mammography: initial results,” Eur. Radiol. 15(4), 829–832 (2005).
[CrossRef] [PubMed]

Reichenbach, J. R.

D. R. Fischer, J. R. Reichenbach, A. Rauscher, J. Sedlacik, and W. A. Kaiser, “Application of an exogenous hyperoxic contrast agent in MR mammography: initial results,” Eur. Radiol. 15(4), 829–832 (2005).
[CrossRef] [PubMed]

Saunders, M. I.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Schlichting, E.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Sedlacik, J.

D. R. Fischer, J. R. Reichenbach, A. Rauscher, J. Sedlacik, and W. A. Kaiser, “Application of an exogenous hyperoxic contrast agent in MR mammography: initial results,” Eur. Radiol. 15(4), 829–832 (2005).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

Sirovich, L.

T. Yokoo, B. W. Knight, and L. Sirovich, “An optimization approach to signal extraction from noisy multivariate data,” Neuroimage 14(6), 1309–1326 (2001).
[CrossRef] [PubMed]

L. Sirovich and R. Everson, “Management and analysis of large scientific datasets,” International Journal Of Supercomputer Applications And High Performance Computing 6, 50–68 (1992).

L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of human faces,” J. Opt. Soc. Am. A 4(3), 519–524 (1987).
[CrossRef] [PubMed]

Stirling, J. J.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Synnestvedt, M.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

t Hooft, G. W.

S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
[CrossRef]

Tanamai, W.

A. Li, J. Liu, W. Tanamai, R. Kwong, A. E. Cerussi, and B. J. Tromberg, “Assessing the spatial extent of breast tumor intrinsic optical contrast using ultrasound and diffuse optical spectroscopy,” J. Biomed. Opt. 13(3), 030504 (2008).
[CrossRef] [PubMed]

Taylor, N. J.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Thoumine, M.

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Li, J. Liu, W. Tanamai, R. Kwong, A. E. Cerussi, and B. J. Tromberg, “Assessing the spatial extent of breast tumor intrinsic optical contrast using ultrasound and diffuse optical spectroscopy,” J. Biomed. Opt. 13(3), 030504 (2008).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

van der Linden, E. S.

S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
[CrossRef]

van der Mark, M. B.

S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
[CrossRef]

Ven, S.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Visser, B.

Voort, M.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Wiedswang, G.

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Wiethoff, A.

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Yokoo, T.

T. Yokoo, B. W. Knight, and L. Sirovich, “An optimization approach to signal extraction from noisy multivariate data,” Neuroimage 14(6), 1309–1326 (2001).
[CrossRef] [PubMed]

Zarfos, K.

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Zee, P.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Zhu, Q. I.

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Acad. Radiol. (1)

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Appl. Opt. (3)

Breast Cancer Res. (1)

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[CrossRef] [PubMed]

Breast Cancer Res. Treat. (1)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[CrossRef] [PubMed]

Clin. Cancer Res. (1)

H. P. Dhakal, B. Naume, M. Synnestvedt, E. Borgen, R. Kaaresen, E. Schlichting, G. Wiedswang, A. Bassarova, K. E. Giercksky, and J. M. Nesland, “Vascularization in primary breast carcinomas: its prognostic significance and relationship with tumor cell dissemination,” Clin. Cancer Res. 14(8), 2341–2350 (2008).
[CrossRef] [PubMed]

Eur. Radiol. (1)

D. R. Fischer, J. R. Reichenbach, A. Rauscher, J. Sedlacik, and W. A. Kaiser, “Application of an exogenous hyperoxic contrast agent in MR mammography: initial results,” Eur. Radiol. 15(4), 829–832 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
[CrossRef]

International Journal Of Supercomputer Applications And High Performance Computing (1)

L. Sirovich and R. Everson, “Management and analysis of large scientific datasets,” International Journal Of Supercomputer Applications And High Performance Computing 6, 50–68 (1992).

J. Biomed. Opt. (2)

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt. 15(3), 036026 (2010).
[CrossRef] [PubMed]

A. Li, J. Liu, W. Tanamai, R. Kwong, A. E. Cerussi, and B. J. Tromberg, “Assessing the spatial extent of breast tumor intrinsic optical contrast using ultrasound and diffuse optical spectroscopy,” J. Biomed. Opt. 13(3), 030504 (2008).
[CrossRef] [PubMed]

J. Magn. Reson. Imaging (1)

N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging,” Med. Phys. 37(4), 1638–1646 (2010).
[CrossRef] [PubMed]

Mol. Imaging Biol. (1)

S. Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. Voort, R. Nachabe, M. Mark, M. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12(3), 343–348 (2010).
[CrossRef] [PubMed]

Neoplasia (1)

Q. I. Zhu, M. M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Neuroimage (1)

T. Yokoo, B. W. Knight, and L. Sirovich, “An optimization approach to signal extraction from noisy multivariate data,” Neuroimage 14(6), 1309–1326 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

Other (2)

S. S. Dixit, H. Kim, B. Visser, C. Comstock, and G. W. Faris, “Hyperoxic/hypercapnic gas inhalation as a route to increase contrast from tumor tissue in near-infrared imaging of breast tissue,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), BTuD4.

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” in Optical tomography and spectroscopy of tissue IV, Proceedings of the SPIE 2001), 130–141.

Supplementary Material (1)

» Media 1: AVI (1134 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The NIR imaging instrument placed on the C-arm of a stereo-tactic breast biopsy table. The red arrows indicate the position of the breast during imaging. (b) Top view as seen from the table platform. The space between the two spot paddles localizes the breast tissue. (c) A schematic of the front face of the spot paddles. The white region is the only transparent zone on the paddle. This zone interfaces with the breast tissue.

Fig. 2
Fig. 2

Data during carbogen inhalation for a healthy volunteer. For all time dependent data, the region shaded blue shows the period of carbogen inhalation. (a) End tidal and inspired percent CO2 from capnometer (capnometer readings are delayed relative to gas changes). (b) Time dependence of natural absorbance data, -ln(IT /IB ), at four wavelengths (solid lines) at a single pixel. (c) Histograms of pathlengths calculated from absorbance data. (d) and (e) Scatter power and oxygenation values for each pixel from fitting. The resulting static images are for the entire imaged regions after processing each pixel through the analysis methodology presented in Section 3. (f) and (g) Time dependence of ∆[HbO2]*L813 and ∆[Hb]*L813 in units of mM*cm for the same pixel as in (b). There are 5 overlapping traces calculated using combinations of the multi-wavelength data in (b) and the pathlengths summarized in (c-e). The mean values of the ∆[HbO2] and ∆[Hb] data from (d) and (e) were used with the pathlengths in (c-e) to calculate absorbance at each wavelength, which are also plotted as the dashed lines in (b); these are only partially visible due to the high overlap with the measurements (solid lines). (h) Eigenvalues from coerced PCA. Temporal eigenvectors and eigenimages for this data set are shown in Fig. 3.

Fig. 3
Fig. 3

Temporal eigenvectors and eigenimages from coerced PCA for the data in Fig. 2. The first two eigenvalues indicate that the corresponding eigenimages show maximum deviations from the mean and also carry signals in response to the gas stimulus. The first set of eigenimages indicate a marked increase the ∆[HbO2] values with a corresponding decrease in the ∆[Hb] values. The magnitudes of the corresponding eigenvalues are also indicated at the bottom of the figure.

Fig. 4
Fig. 4

Data acquired for mild compression without gas inhalation for the same subject as Figs. 2 and 3. (a), (b), and (c) summarize pathlength ratios as a histogram, scatter power image, and oxygenation image, respectively. (d) First four temporal eigenvectors and eigenimages from coerced PCA with the corresponding magnitudes for the eigenvalues for this set.

Fig. 5
Fig. 5

(Media 1) Data from a subject with fibroadenoma. (a), (b), and (c) Pathlength ratio histogram, scatter power image, and oxygenation image, respectively. The images in (b) and (c) are obtained after analyzing each pixel in the original image according to the methodology presented in Section 3. (d) First four temporal eigenvectors and eigenimages from coerced PCA with the corresponding magnitudes for the eigenvalues for this set.

Fig. 6
Fig. 6

Data from subject with invasive carcinoma with mixed ductal and lobular features. (a) Raw transillumination images at 680, 734 and 813 nm acquired during air inhalation without any image processing are shown. (b), (c), and (d) pathlength histogram, scatter power imaging and oxygenation image, respectively obtained by analyzing the signal at each pixel. (e) The first six temporal eigenvectors and eigenimages from coerced PCA. The corresponding eigenvalues are also indicated. A video file showing the temporal dependence of ∆[HbO2]*L813 and ∆[Hb]*L813 in units of mM*cm (media 1) shows the onset of carbogen inhalation stimulating a sharp rise in oxygenation and fluctuations in the tumor region and the blood vessel at the top of the image.

Fig. 7
Fig. 7

Pathlength histogram, scatter power image, and oxygenation image for subject with infiltrating ductal carcinoma.

Tables (1)

Tables Icon

Table 1 Number of Subjects Imaged in this Study.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I T λ i = I B λ i exp ( Δ μ a λ i L λ i )
Δ μ a λ i = ln ( 10 ) { ε H b λ i Δ [ H b ] + ε H b O 2 λ i Δ [ H b O 2 ] } ,
L λ i 3 2 μ s λ i Δ μ a λ i ρ
μ a λ i = ln ( 10 ) { ε H b λ i [ H b ] + ε H b O 2 λ i [ H b O 2 ] }
μ a λ i = ln ( 10 ) { ( 1 x ) ε H b λ i + x ε H b O 2 λ i } [ H b t o t ]
μ s = A λ S P
L λ i L λ 0 ( λ i λ 0 ) S P ( 1 x ) ε H b λ 0 + x ε H b O 2 λ 0 s ( 1 x ) ε H b λ i + x ε H b O 2 λ i .
I * ( i , j , t ) = I ( i , j , t ) I ( t )

Metrics