Abstract

We demonstrate a method for imaging the wound healing process with near infrared fluorescent fibrinogen. Wound healing studies were performed on a rat punch biopsy model. Fibrinogen was conjugated with a near infrared fluorescent dye and injected into the tail vein. Fibrinogen is a useful protein for tracking wound healing because it is involved in fibrin clot formation and formation of new provisional matrix through transglutaminase’s crosslinking activity. Strong fluorescence specific to the wound was observed and persisted for several days, indicating that the fibrinogen is converted to crosslinked fibrin. Administration of contrast agent simultaneously with wound creation led to primary labeling of the fibrin clot, indicating that the wound was in its early phase of healing. Administration on the following day showed labeling on the wound periphery, indicating location of formation of a new provisional matrix. This method may prove to be useful as a diagnostic for basic studies of the wound healing process, in drug development, or in clinical assessment of chronic wounds.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
    [CrossRef] [PubMed]
  2. A. J. Singer and R. A. F. Clark, “Mechanisms of disease - Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
    [CrossRef] [PubMed]
  3. R. Gillitzer and M. Goebeler, “Chemokines in cutaneous wound healing,” J. Leukoc. Biol. 69(4), 513–521 (2001).
    [PubMed]
  4. T. Kisseleva and D. A. Brenner, “Mechanisms of fibrogenesis,” Exp. Biol. Med. (Maywood) 233(2), 109–122 (2008).
    [CrossRef] [PubMed]
  5. D. Telci and M. Griffin, “Tissue transglutaminase (TG2)--a wound response enzyme,” Front. Biosci. 11(1), 867–882 (2006).
    [CrossRef] [PubMed]
  6. E. A. Verderio, T. S. Johnson, and M. Griffin, “Transglutaminases in wound healing and inflammation,” Prog. Exp. Tumor Res. 38, 89–114 (2005).
    [CrossRef] [PubMed]
  7. M. Griffin, R. Casadio, and C. M. Bergamini, “Transglutaminases: nature’s biological glues,” Biochem. J. 368(2), 377–396 (2002).
    [CrossRef] [PubMed]
  8. C. S. Greenberg, P. J. Birckbichler, and R. H. Rice, “Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues,” FASEB J. 5(15), 3071–3077 (1991).
    [PubMed]
  9. S. Kojima, K. Nara, and D. B. Rifkin, “Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells,” J. Cell Biol. 121(2), 439–448 (1993).
    [CrossRef] [PubMed]
  10. M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
    [CrossRef]
  11. E. A. Zemskov, A. Janiak, J. Hang, A. Waghray, and A. M. Belkin, “The role of tissue transglutaminase in cell-matrix interactions,” Front. Biosci. 11(1), 1057–1076 (2006).
    [CrossRef] [PubMed]
  12. C. S. Greenberg, K. E. Achyuthan, M. J. Borowitz, and M. A. Shuman, “The transglutaminase in vascular cells and tissues could provide an alternate pathway for fibrin stabilization,” Blood 70(3), 702–709 (1987).
    [PubMed]
  13. D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988).
    [CrossRef] [PubMed]
  14. D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004).
    [CrossRef] [PubMed]
  15. R. Salcido, “The future of wound measurement,” Adv. Skin Wound Care 13(2), 54, 56 (2000).
    [PubMed]
  16. J. W. Griffin, E. A. Tolley, R. E. Tooms, R. A. Reyes, and J. K. Clifft, “A comparison of photographic and transparency-based methods for measuring wound surface area,” Phys. Ther. 73(2), 117–122 (1993).
    [PubMed]
  17. D. J. Leaper, “Angiography as an index of healing in experimental laparotomy wounds and colonic anastomoses,” Ann. R. Coll. Surg. Engl. 65(1), 20–23 (1983).
    [PubMed]
  18. M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006).
    [CrossRef] [PubMed]
  19. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
    [CrossRef] [PubMed]
  20. A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
    [CrossRef] [PubMed]
  21. M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003).
    [CrossRef] [PubMed]
  22. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
    [CrossRef] [PubMed]
  23. G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005).
    [CrossRef] [PubMed]
  24. F. A. Jaffer, D. E. Sosnovik, M. Nahrendorf, and R. Weissleder, “Molecular imaging of myocardial infarction,” J. Mol. Cell. Cardiol. 41(6), 921–933 (2006).
    [CrossRef] [PubMed]
  25. F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
    [CrossRef] [PubMed]
  26. J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
    [PubMed]
  27. Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999).
    [PubMed]
  28. J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle, “Crystal structure of human fibrinogen,” Biochemistry 48(18), 3877–3886 (2009).
    [CrossRef] [PubMed]
  29. Z. A. Haroon, J. M. Hettasch, T. S. Lai, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis,” FASEB J. 13(13), 1787–1795 (1999).
    [PubMed]
  30. S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
    [CrossRef] [PubMed]
  31. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  32. D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
    [CrossRef] [PubMed]
  33. L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35(12), 5758–5767 (2008).
    [CrossRef] [PubMed]
  34. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
    [CrossRef] [PubMed]
  35. H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
    [CrossRef] [PubMed]
  36. L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
    [CrossRef] [PubMed]
  37. Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006).
    [CrossRef] [PubMed]

2010 (1)

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

2009 (3)

J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle, “Crystal structure of human fibrinogen,” Biochemistry 48(18), 3877–3886 (2009).
[CrossRef] [PubMed]

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

2008 (4)

L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35(12), 5758–5767 (2008).
[CrossRef] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

T. Kisseleva and D. A. Brenner, “Mechanisms of fibrogenesis,” Exp. Biol. Med. (Maywood) 233(2), 109–122 (2008).
[CrossRef] [PubMed]

2007 (1)

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

2006 (7)

D. Telci and M. Griffin, “Tissue transglutaminase (TG2)--a wound response enzyme,” Front. Biosci. 11(1), 867–882 (2006).
[CrossRef] [PubMed]

M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006).
[CrossRef] [PubMed]

E. A. Zemskov, A. Janiak, J. Hang, A. Waghray, and A. M. Belkin, “The role of tissue transglutaminase in cell-matrix interactions,” Front. Biosci. 11(1), 1057–1076 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[CrossRef] [PubMed]

F. A. Jaffer, D. E. Sosnovik, M. Nahrendorf, and R. Weissleder, “Molecular imaging of myocardial infarction,” J. Mol. Cell. Cardiol. 41(6), 921–933 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006).
[CrossRef] [PubMed]

2005 (3)

G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005).
[CrossRef] [PubMed]

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

E. A. Verderio, T. S. Johnson, and M. Griffin, “Transglutaminases in wound healing and inflammation,” Prog. Exp. Tumor Res. 38, 89–114 (2005).
[CrossRef] [PubMed]

2004 (3)

A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004).
[CrossRef] [PubMed]

F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Griffin, R. Casadio, and C. M. Bergamini, “Transglutaminases: nature’s biological glues,” Biochem. J. 368(2), 377–396 (2002).
[CrossRef] [PubMed]

2001 (1)

R. Gillitzer and M. Goebeler, “Chemokines in cutaneous wound healing,” J. Leukoc. Biol. 69(4), 513–521 (2001).
[PubMed]

2000 (1)

R. Salcido, “The future of wound measurement,” Adv. Skin Wound Care 13(2), 54, 56 (2000).
[PubMed]

1999 (3)

A. J. Singer and R. A. F. Clark, “Mechanisms of disease - Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[CrossRef] [PubMed]

Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999).
[PubMed]

Z. A. Haroon, J. M. Hettasch, T. S. Lai, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis,” FASEB J. 13(13), 1787–1795 (1999).
[PubMed]

1996 (1)

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

1993 (2)

S. Kojima, K. Nara, and D. B. Rifkin, “Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells,” J. Cell Biol. 121(2), 439–448 (1993).
[CrossRef] [PubMed]

J. W. Griffin, E. A. Tolley, R. E. Tooms, R. A. Reyes, and J. K. Clifft, “A comparison of photographic and transparency-based methods for measuring wound surface area,” Phys. Ther. 73(2), 117–122 (1993).
[PubMed]

1992 (1)

L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
[CrossRef] [PubMed]

1991 (1)

C. S. Greenberg, P. J. Birckbichler, and R. H. Rice, “Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues,” FASEB J. 5(15), 3071–3077 (1991).
[PubMed]

1988 (1)

D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988).
[CrossRef] [PubMed]

1987 (1)

C. S. Greenberg, K. E. Achyuthan, M. J. Borowitz, and M. A. Shuman, “The transglutaminase in vascular cells and tissues could provide an alternate pathway for fibrin stabilization,” Blood 70(3), 702–709 (1987).
[PubMed]

1983 (1)

D. J. Leaper, “Angiography as an index of healing in experimental laparotomy wounds and colonic anastomoses,” Ann. R. Coll. Surg. Engl. 65(1), 20–23 (1983).
[PubMed]

Achyuthan, K. E.

D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988).
[CrossRef] [PubMed]

C. S. Greenberg, K. E. Achyuthan, M. J. Borowitz, and M. A. Shuman, “The transglutaminase in vascular cells and tissues could provide an alternate pathway for fibrin stabilization,” Blood 70(3), 702–709 (1987).
[PubMed]

Adler, G.

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

Altmeyer, P.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Bandarenko, N.

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Belkin, A. M.

E. A. Zemskov, A. Janiak, J. Hang, A. Waghray, and A. M. Belkin, “The role of tissue transglutaminase in cell-matrix interactions,” Front. Biosci. 11(1), 1057–1076 (2006).
[CrossRef] [PubMed]

Bergamini, C. M.

M. Griffin, R. Casadio, and C. M. Bergamini, “Transglutaminases: nature’s biological glues,” Biochem. J. 368(2), 377–396 (2002).
[CrossRef] [PubMed]

Berse, B.

L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
[CrossRef] [PubMed]

Birckbichler, P. J.

C. S. Greenberg, P. J. Birckbichler, and R. H. Rice, “Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues,” FASEB J. 5(15), 3071–3077 (1991).
[PubMed]

Borowitz, M. J.

C. S. Greenberg, K. E. Achyuthan, M. J. Borowitz, and M. A. Shuman, “The transglutaminase in vascular cells and tissues could provide an alternate pathway for fibrin stabilization,” Blood 70(3), 702–709 (1987).
[PubMed]

Bowering, C. K.

D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004).
[CrossRef] [PubMed]

Brenner, D. A.

T. Kisseleva and D. A. Brenner, “Mechanisms of fibrogenesis,” Exp. Biol. Med. (Maywood) 233(2), 109–122 (2008).
[CrossRef] [PubMed]

Brown, L. F.

L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
[CrossRef] [PubMed]

Brownlee, M.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Burchette, J. L.

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Burrows, C.

D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004).
[CrossRef] [PubMed]

Cable, A.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Casadio, R.

M. Griffin, R. Casadio, and C. M. Bergamini, “Transglutaminases: nature’s biological glues,” Biochem. J. 368(2), 377–396 (2002).
[CrossRef] [PubMed]

Chang, E. I.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Chen, C. W.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Chen, Y.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Chen, Y. C.

M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006).
[CrossRef] [PubMed]

Chen, Z. P.

A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Choi, K.

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

Clark, R. A. F.

A. J. Singer and R. A. F. Clark, “Mechanisms of disease - Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[CrossRef] [PubMed]

Clifft, J. K.

J. W. Griffin, E. A. Tolley, R. E. Tooms, R. A. Reyes, and J. K. Clifft, “A comparison of photographic and transparency-based methods for measuring wound surface area,” Phys. Ther. 73(2), 117–122 (1993).
[PubMed]

Cobb, M. J.

M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006).
[CrossRef] [PubMed]

D’Souza, L.

D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004).
[CrossRef] [PubMed]

Dewhirst, M. W.

G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005).
[CrossRef] [PubMed]

Z. A. Haroon, J. M. Hettasch, T. S. Lai, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis,” FASEB J. 13(13), 1787–1795 (1999).
[PubMed]

Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999).
[PubMed]

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Dinh, T.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Doolittle, R. F.

J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle, “Crystal structure of human fibrinogen,” Biochemistry 48(18), 3877–3886 (2009).
[CrossRef] [PubMed]

Du, X. L.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Dvorak, H. F.

L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
[CrossRef] [PubMed]

Dyson, M.

M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003).
[CrossRef] [PubMed]

Evans, A. W.

D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004).
[CrossRef] [PubMed]

Freeman, J. E.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Gaffney, P. J.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Galiano, R. D.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Galvez, M. G.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Gambichler, T.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Gillitzer, R.

R. Gillitzer and M. Goebeler, “Chemokines in cutaneous wound healing,” J. Leukoc. Biol. 69(4), 513–521 (2001).
[PubMed]

Giurini, J. M.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Goebeler, M.

R. Gillitzer and M. Goebeler, “Chemokines in cutaneous wound healing,” J. Leukoc. Biol. 69(4), 513–521 (2001).
[PubMed]

Greenberg, C. S.

G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005).
[CrossRef] [PubMed]

Z. A. Haroon, J. M. Hettasch, T. S. Lai, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis,” FASEB J. 13(13), 1787–1795 (1999).
[PubMed]

Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999).
[PubMed]

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

C. S. Greenberg, P. J. Birckbichler, and R. H. Rice, “Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues,” FASEB J. 5(15), 3071–3077 (1991).
[PubMed]

D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988).
[CrossRef] [PubMed]

C. S. Greenberg, K. E. Achyuthan, M. J. Borowitz, and M. A. Shuman, “The transglutaminase in vascular cells and tissues could provide an alternate pathway for fibrin stabilization,” Blood 70(3), 702–709 (1987).
[PubMed]

Griffin, J. W.

J. W. Griffin, E. A. Tolley, R. E. Tooms, R. A. Reyes, and J. K. Clifft, “A comparison of photographic and transparency-based methods for measuring wound surface area,” Phys. Ther. 73(2), 117–122 (1993).
[PubMed]

Griffin, M.

D. Telci and M. Griffin, “Tissue transglutaminase (TG2)--a wound response enzyme,” Front. Biosci. 11(1), 867–882 (2006).
[CrossRef] [PubMed]

E. A. Verderio, T. S. Johnson, and M. Griffin, “Transglutaminases in wound healing and inflammation,” Prog. Exp. Tumor Res. 38, 89–114 (2005).
[CrossRef] [PubMed]

M. Griffin, R. Casadio, and C. M. Bergamini, “Transglutaminases: nature’s biological glues,” Biochem. J. 368(2), 377–396 (2002).
[CrossRef] [PubMed]

Griffiths, G.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Grogan, R.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Gurtner, G. C.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Hang, J.

E. A. Zemskov, A. Janiak, J. Hang, A. Waghray, and A. M. Belkin, “The role of tissue transglutaminase in cell-matrix interactions,” Front. Biosci. 11(1), 1057–1076 (2006).
[CrossRef] [PubMed]

Haroon, Z. A.

Z. A. Haroon, J. M. Hettasch, T. S. Lai, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis,” FASEB J. 13(13), 1787–1795 (1999).
[PubMed]

Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999).
[PubMed]

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Hettasch, J. M.

Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999).
[PubMed]

Z. A. Haroon, J. M. Hettasch, T. S. Lai, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis,” FASEB J. 13(13), 1787–1795 (1999).
[PubMed]

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Hitomi, K.

Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006).
[CrossRef] [PubMed]

Ho, N. H.

F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
[CrossRef] [PubMed]

Hoffmann, K.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Hosono, M.

Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006).
[CrossRef] [PubMed]

Houng, A. K.

F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
[CrossRef] [PubMed]

Iglehart, J. D.

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Jabri, B.

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

Jaffer, F. A.

F. A. Jaffer, D. E. Sosnovik, M. Nahrendorf, and R. Weissleder, “Molecular imaging of myocardial infarction,” J. Mol. Cell. Cardiol. 41(6), 921–933 (2006).
[CrossRef] [PubMed]

F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
[CrossRef] [PubMed]

Janiak, A.

E. A. Zemskov, A. Janiak, J. Hang, A. Waghray, and A. M. Belkin, “The role of tissue transglutaminase in cell-matrix interactions,” Front. Biosci. 11(1), 1057–1076 (2006).
[CrossRef] [PubMed]

Januszyk, M.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Jazayeri, L.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Jiang, J.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Johnson, T. S.

E. A. Verderio, T. S. Johnson, and M. Griffin, “Transglutaminases in wound healing and inflammation,” Prog. Exp. Tumor Res. 38, 89–114 (2005).
[CrossRef] [PubMed]

Jung, W. G.

A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Kao, B. S.

A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Keast, D. H.

D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004).
[CrossRef] [PubMed]

Khaodhiar, L.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Khosla, C.

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

Kisseleva, T.

T. Kisseleva and D. A. Brenner, “Mechanisms of fibrogenesis,” Exp. Biol. Med. (Maywood) 233(2), 109–122 (2008).
[CrossRef] [PubMed]

Kojima, S.

S. Kojima, K. Nara, and D. B. Rifkin, “Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells,” J. Cell Biol. 121(2), 439–448 (1993).
[CrossRef] [PubMed]

Kollman, J. M.

J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle, “Crystal structure of human fibrinogen,” Biochemistry 48(18), 3877–3886 (2009).
[CrossRef] [PubMed]

Lai, T. S.

G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005).
[CrossRef] [PubMed]

Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999).
[PubMed]

Z. A. Haroon, J. M. Hettasch, T. S. Lai, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis,” FASEB J. 13(13), 1787–1795 (1999).
[PubMed]

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Lanza, G. M.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Leaper, D. J.

D. J. Leaper, “Angiography as an index of healing in experimental laparotomy wounds and colonic anastomoses,” Ann. R. Coll. Surg. Engl. 65(1), 20–23 (1983).
[PubMed]

Lew, R.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Li, X. D.

M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006).
[CrossRef] [PubMed]

Lima, C.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Lindberg, R. A.

Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999).
[PubMed]

Lyons, T. E.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Ma, H. Z.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Mackean, G. L.

D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004).
[CrossRef] [PubMed]

Maki, M.

Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006).
[CrossRef] [PubMed]

Margenthaler, J. A.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

Marks, J. R.

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Mazooz, G.

G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005).
[CrossRef] [PubMed]

Mehlman, T.

G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005).
[CrossRef] [PubMed]

Moodley, S.

M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003).
[CrossRef] [PubMed]

Moser, T. L.

D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988).
[CrossRef] [PubMed]

Moussa, G.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Nahrendorf, M.

F. A. Jaffer, D. E. Sosnovik, M. Nahrendorf, and R. Weissleder, “Molecular imaging of myocardial infarction,” J. Mol. Cell. Cardiol. 41(6), 921–933 (2006).
[CrossRef] [PubMed]

Nara, K.

S. Kojima, K. Nara, and D. B. Rifkin, “Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells,” J. Cell Biol. 121(2), 439–448 (1993).
[CrossRef] [PubMed]

Neeman, M.

G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005).
[CrossRef] [PubMed]

Nelson, J. S.

A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Olerud, J.

M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006).
[CrossRef] [PubMed]

Omary, B.

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

Pan, D. P.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Panasyuk, A. A.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Panasyuk, S. V.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Pandi, L.

J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle, “Crystal structure of human fibrinogen,” Biochemistry 48(18), 3877–3886 (2009).
[CrossRef] [PubMed]

Parker, C. J.

D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988).
[CrossRef] [PubMed]

Peters, K.

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Pippen, A. M. M.

D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988).
[CrossRef] [PubMed]

Pramanik, M.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Reed, G. L.

F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
[CrossRef] [PubMed]

Reyes, R. A.

J. W. Griffin, E. A. Tolley, R. E. Tooms, R. A. Reyes, and J. K. Clifft, “A comparison of photographic and transparency-based methods for measuring wound surface area,” Phys. Ther. 73(2), 117–122 (1993).
[PubMed]

Rice, R. H.

C. S. Greenberg, P. J. Birckbichler, and R. H. Rice, “Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues,” FASEB J. 5(15), 3071–3077 (1991).
[PubMed]

Rifkin, D. B.

S. Kojima, K. Nara, and D. B. Rifkin, “Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells,” J. Cell Biol. 121(2), 439–448 (1993).
[CrossRef] [PubMed]

Riley, M.

J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle, “Crystal structure of human fibrinogen,” Biochemistry 48(18), 3877–3886 (2009).
[CrossRef] [PubMed]

Roney, C. A.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Salcido, R.

R. Salcido, “The future of wound measurement,” Adv. Skin Wound Care 13(2), 54, 56 (2000).
[PubMed]

Sand, D.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Sand, M.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Sane, D. C.

D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988).
[CrossRef] [PubMed]

Sawaya, M. R.

J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle, “Crystal structure of human fibrinogen,” Biochemistry 48(18), 3877–3886 (2009).
[CrossRef] [PubMed]

Schomacker, K. T.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Scott, M. J.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Senger, D. R.

L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
[CrossRef] [PubMed]

Senpan, A.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Shi, Y.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Shuman, M. A.

C. S. Greenberg, K. E. Achyuthan, M. J. Borowitz, and M. A. Shuman, “The transglutaminase in vascular cells and tissues could provide an alternate pathway for fibrin stabilization,” Blood 70(3), 702–709 (1987).
[PubMed]

Siegel, M.

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

Singer, A. J.

A. J. Singer and R. A. F. Clark, “Mechanisms of disease - Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[CrossRef] [PubMed]

Song, K. H.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

Sosnovik, D. E.

F. A. Jaffer, D. E. Sosnovik, M. Nahrendorf, and R. Weissleder, “Molecular imaging of myocardial infarction,” J. Mol. Cell. Cardiol. 41(6), 921–933 (2006).
[CrossRef] [PubMed]

Stein, E. W.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[CrossRef] [PubMed]

Strnad, P.

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

Sugimura, Y.

Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006).
[CrossRef] [PubMed]

Summers, R. M.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Telci, D.

D. Telci and M. Griffin, “Tissue transglutaminase (TG2)--a wound response enzyme,” Front. Biosci. 11(1), 867–882 (2006).
[CrossRef] [PubMed]

Thangarajah, H.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Tolley, E. A.

J. W. Griffin, E. A. Tolley, R. E. Tooms, R. A. Reyes, and J. K. Clifft, “A comparison of photographic and transparency-based methods for measuring wound surface area,” Phys. Ther. 73(2), 117–122 (1993).
[PubMed]

Tooms, R. E.

J. W. Griffin, E. A. Tolley, R. E. Tooms, R. A. Reyes, and J. K. Clifft, “A comparison of photographic and transparency-based methods for measuring wound surface area,” Phys. Ther. 73(2), 117–122 (1993).
[PubMed]

Tromberg, B. J.

A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Tung, C. H.

F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
[CrossRef] [PubMed]

Underwood, R. A.

M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006).
[CrossRef] [PubMed]

Usui, M. L.

M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006).
[CrossRef] [PubMed]

van de Water, L.

L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
[CrossRef] [PubMed]

Verderio, E. A.

E. A. Verderio, T. S. Johnson, and M. Griffin, “Transglutaminases in wound healing and inflammation,” Prog. Exp. Tumor Res. 38, 89–114 (2005).
[CrossRef] [PubMed]

Verjee, L.

M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003).
[CrossRef] [PubMed]

Verling, W.

M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003).
[CrossRef] [PubMed]

Veves, A.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Vial, I. N.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Vo, T.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Wada, F.

Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006).
[CrossRef] [PubMed]

Waghray, A.

E. A. Zemskov, A. Janiak, J. Hang, A. Waghray, and A. M. Belkin, “The role of tissue transglutaminase in cell-matrix interactions,” Front. Biosci. 11(1), 1057–1076 (2006).
[CrossRef] [PubMed]

Wang, L. V.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35(12), 5758–5767 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[CrossRef] [PubMed]

Watts, R.

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

Weinman, J.

M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003).
[CrossRef] [PubMed]

Weissleder, R.

F. A. Jaffer, D. E. Sosnovik, M. Nahrendorf, and R. Weissleder, “Molecular imaging of myocardial infarction,” J. Mol. Cell. Cardiol. 41(6), 921–933 (2006).
[CrossRef] [PubMed]

F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
[CrossRef] [PubMed]

Wickline, S. A.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Wierwille, J.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Wilson, P.

M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003).
[CrossRef] [PubMed]

Wykrzykowska, J. J.

F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
[CrossRef] [PubMed]

Xu, B. Y.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Yang, X. M.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Yao, D.

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Yeh, A. T.

A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Yeo, K. T.

L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
[CrossRef] [PubMed]

Yeo, T. K.

L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
[CrossRef] [PubMed]

Yoshimura, T.

Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006).
[CrossRef] [PubMed]

Yuan, S. A.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Zemskov, E. A.

E. A. Zemskov, A. Janiak, J. Hang, A. Waghray, and A. M. Belkin, “The role of tissue transglutaminase in cell-matrix interactions,” Front. Biosci. 11(1), 1057–1076 (2006).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[CrossRef] [PubMed]

Zhang, H. Y.

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Adv. Skin Wound Care (1)

R. Salcido, “The future of wound measurement,” Adv. Skin Wound Care 13(2), 54, 56 (2000).
[PubMed]

Angew. Chem. Int. Ed. Engl. (1)

D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
[CrossRef] [PubMed]

Ann. R. Coll. Surg. Engl. (1)

D. J. Leaper, “Angiography as an index of healing in experimental laparotomy wounds and colonic anastomoses,” Ann. R. Coll. Surg. Engl. 65(1), 20–23 (1983).
[PubMed]

Biochem. Biophys. Res. Commun. (1)

D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988).
[CrossRef] [PubMed]

Biochem. J. (1)

M. Griffin, R. Casadio, and C. M. Bergamini, “Transglutaminases: nature’s biological glues,” Biochem. J. 368(2), 377–396 (2002).
[CrossRef] [PubMed]

Biochemistry (1)

J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle, “Crystal structure of human fibrinogen,” Biochemistry 48(18), 3877–3886 (2009).
[CrossRef] [PubMed]

Blood (1)

C. S. Greenberg, K. E. Achyuthan, M. J. Borowitz, and M. A. Shuman, “The transglutaminase in vascular cells and tissues could provide an alternate pathway for fibrin stabilization,” Blood 70(3), 702–709 (1987).
[PubMed]

Cancer Res. (1)

G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005).
[CrossRef] [PubMed]

Circulation (1)

F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004).
[CrossRef] [PubMed]

Diabetes Care (1)

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007).
[CrossRef] [PubMed]

Exp. Biol. Med. (Maywood) (1)

T. Kisseleva and D. A. Brenner, “Mechanisms of fibrogenesis,” Exp. Biol. Med. (Maywood) 233(2), 109–122 (2008).
[CrossRef] [PubMed]

FASEB J. (2)

C. S. Greenberg, P. J. Birckbichler, and R. H. Rice, “Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues,” FASEB J. 5(15), 3071–3077 (1991).
[PubMed]

Z. A. Haroon, J. M. Hettasch, T. S. Lai, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis,” FASEB J. 13(13), 1787–1795 (1999).
[PubMed]

Front. Biosci. (2)

D. Telci and M. Griffin, “Tissue transglutaminase (TG2)--a wound response enzyme,” Front. Biosci. 11(1), 867–882 (2006).
[CrossRef] [PubMed]

E. A. Zemskov, A. Janiak, J. Hang, A. Waghray, and A. M. Belkin, “The role of tissue transglutaminase in cell-matrix interactions,” Front. Biosci. 11(1), 1057–1076 (2006).
[CrossRef] [PubMed]

Gastroenterology (1)

M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008).
[CrossRef]

J. Biol. Chem. (1)

Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[CrossRef] [PubMed]

A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006).
[CrossRef] [PubMed]

J. Cell Biol. (1)

S. Kojima, K. Nara, and D. B. Rifkin, “Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells,” J. Cell Biol. 121(2), 439–448 (1993).
[CrossRef] [PubMed]

J. Dermatol. Sci. (1)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

J. Exp. Med. (1)

L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992).
[CrossRef] [PubMed]

J. Leukoc. Biol. (1)

R. Gillitzer and M. Goebeler, “Chemokines in cutaneous wound healing,” J. Leukoc. Biol. 69(4), 513–521 (2001).
[PubMed]

J. Mol. Cell. Cardiol. (1)

F. A. Jaffer, D. E. Sosnovik, M. Nahrendorf, and R. Weissleder, “Molecular imaging of myocardial infarction,” J. Mol. Cell. Cardiol. 41(6), 921–933 (2006).
[CrossRef] [PubMed]

Lab. Invest. (2)

J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996).
[PubMed]

Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999).
[PubMed]

Med. Phys. (1)

L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35(12), 5758–5767 (2008).
[CrossRef] [PubMed]

N. Engl. J. Med. (1)

A. J. Singer and R. A. F. Clark, “Mechanisms of disease - Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Phys. Ther. (1)

J. W. Griffin, E. A. Tolley, R. E. Tooms, R. A. Reyes, and J. K. Clifft, “A comparison of photographic and transparency-based methods for measuring wound surface area,” Phys. Ther. 73(2), 117–122 (1993).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009).
[CrossRef] [PubMed]

Prog. Exp. Tumor Res. (1)

E. A. Verderio, T. S. Johnson, and M. Griffin, “Transglutaminases in wound healing and inflammation,” Prog. Exp. Tumor Res. 38, 89–114 (2005).
[CrossRef] [PubMed]

Skin Res. Technol. (1)

M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003).
[CrossRef] [PubMed]

Wound Repair Regen. (1)

D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of imaging system.

Fig. 2
Fig. 2

SDS-PAGE gel images showing Coomassie blue staining (left panel) and NIR fluorescence (right panel) for the same gel. Lanes 1 and 6 are protein MW standards. Lane 2 is unlabeled hFg only. Three major bands (from top to bottom) represent α (63.5 kDa), β (56 kDa), and γ (47 kDa) chains, respectively. Lanes 3–5 and 7–9 are protein with NIR labels (3–5: hFG and 7–9: BSA) Lanes 3 and 7 have no TG2. Lanes 4 and 8 are incubated with TG2. Lanes 5 and 9 are incubated with both TG2 and EDTA. EDTA inhibits the cross-linking reaction of TG2.

Fig. 3
Fig. 3

Wound images. (a) Typical “white light” and NIR fluorescence images. The images in (b) and (c) are the expanded time-lapse images of wound sites, showing hFg label and BSA label respectively. The Day 0 image was taken within 5 min of contrast injection. Day 1 was taken 24 hrs after injection, Day 2, 48 hours after injection, and so forth.

Fig. 4
Fig. 4

(a) Plot of fluorescence intensity vs. time. The intensities were integrated from the wound individually. 8-12 wounds were inspected. The error bars describe the standard deviations of the intensity distribution. Solid lines represent the fluorescence changes for administration of the labels 1 hr after wound creation. Dashed lines are for administration of the labels 24 hrs after wound creation. Black and red: hFg. Blue and green: BSA. (b) and (c) are “Day 1” image (24 hrs after label administration) of the wound, for which the labels were injected into rat 24 hrs after wound creation. (b) is for hFg label. (c) is for BSA label.

Fig. 5
Fig. 5

“Day 2” images of wounds taken from giving hFg labels within 1hr (a) and 24 hrs (b) after wounding. (c) Tissue section of wound site.

Tables (1)

Tables Icon

Table 1 Abbreviations

Metrics