Abstract

The sensitivity of optical coherence tomography images to sample morphology is tested by two methods. The first method estimates the attenuation of the OCT signal from various regions of the probed tissue. The second method uses a box-counting algorithm to calculate the fractal dimensions in the regions of interest identified in the images. Although both the attenuation coefficient as well as the fractal dimension correlate very well with the anatomical features of the probed samples; the attenuation method provides a better sensitivity. Two types of samples are used in this study: segments of arteries collected from atherosclerosis–prone Watanabe rabbits (WHHL-MI) and healthy segments of porcine coronary arteries.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit),” Arterioscler. Thromb. Vasc. Biol. 23(7), 1239–1244 (2003).
    [CrossRef] [PubMed]
  2. C. Flueraru, H. Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach- Zehnder interferometer with application in optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 9(4), L5–L8 (2007).
    [CrossRef]
  3. Y. Mao, S. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46(23), 5887–5894 (2007).
    [CrossRef] [PubMed]
  4. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  5. D. Levitz, L. Thrane, M. Frosz, P. E. Andersen, C. B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
    [CrossRef] [PubMed]
  6. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [CrossRef]
  7. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005).
    [CrossRef] [PubMed]
  8. J. W. Goodman, Laser Speckle and Related Phenomena (Berlin Springer, 1984), Chap. 3 & 5.
  9. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976).
    [CrossRef]
  10. D. J. Faber, F. J. van der Meer, M. C. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
    [CrossRef] [PubMed]
  11. C. Flueraru, D. P. Popescu, Y. Mao, S. Chang, and M. G. Sowa, “Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue,” Phys. Med. Biol. 55(8), 2317–2331 (2010).
    [CrossRef] [PubMed]
  12. W. C. Kuo, M. W. Hsiung, J. J. Shyu, N. K. Chou, and P. N. Yang, “Assessment of arterial characteristics in human atherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography,” Opt. Express 16(11), 8117–8125 (2008).
    [CrossRef] [PubMed]
  13. S. S. Chen, J. M. Keller, and R. M. Crownover, “On the Calculation of Fractal Features from Images,” IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1087–1090 (1993).
    [CrossRef]
  14. A. I. Penn and M. H. Loew, “Estimating fractal dimension with fractal interpolation function models,” IEEE Trans. Med. Imaging 16(6), 930–937 (1997).
    [CrossRef] [PubMed]
  15. P. Kotowski, “Fractal dimension of metallic fracture surface,” Int. J. Fract. 141(1-2), 269–286 (2006).
    [CrossRef]

2010

C. Flueraru, D. P. Popescu, Y. Mao, S. Chang, and M. G. Sowa, “Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue,” Phys. Med. Biol. 55(8), 2317–2331 (2010).
[CrossRef] [PubMed]

2008

2007

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46(23), 5887–5894 (2007).
[CrossRef] [PubMed]

C. Flueraru, H. Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach- Zehnder interferometer with application in optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 9(4), L5–L8 (2007).
[CrossRef]

2006

P. Kotowski, “Fractal dimension of metallic fracture surface,” Int. J. Fract. 141(1-2), 269–286 (2006).
[CrossRef]

2005

2004

2003

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit),” Arterioscler. Thromb. Vasc. Biol. 23(7), 1239–1244 (2003).
[CrossRef] [PubMed]

1999

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

1997

A. I. Penn and M. H. Loew, “Estimating fractal dimension with fractal interpolation function models,” IEEE Trans. Med. Imaging 16(6), 930–937 (1997).
[CrossRef] [PubMed]

1993

S. S. Chen, J. M. Keller, and R. M. Crownover, “On the Calculation of Fractal Features from Images,” IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1087–1090 (1993).
[CrossRef]

1976

Aalders, M. C.

Andersen, C. B.

Andersen, P. E.

Andersson-Engels, S.

Bouma, B. E.

Bourquin, S.

Chang, S.

C. Flueraru, D. P. Popescu, Y. Mao, S. Chang, and M. G. Sowa, “Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue,” Phys. Med. Biol. 55(8), 2317–2331 (2010).
[CrossRef] [PubMed]

C. Flueraru, H. Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach- Zehnder interferometer with application in optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 9(4), L5–L8 (2007).
[CrossRef]

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46(23), 5887–5894 (2007).
[CrossRef] [PubMed]

Chen, S. S.

S. S. Chen, J. M. Keller, and R. M. Crownover, “On the Calculation of Fractal Features from Images,” IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1087–1090 (1993).
[CrossRef]

Chou, N. K.

Crownover, R. M.

S. S. Chen, J. M. Keller, and R. M. Crownover, “On the Calculation of Fractal Features from Images,” IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1087–1090 (1993).
[CrossRef]

de Boer, J. F.

Faber, D. J.

Fan, J.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit),” Arterioscler. Thromb. Vasc. Biol. 23(7), 1239–1244 (2003).
[CrossRef] [PubMed]

Flueraru, C.

C. Flueraru, D. P. Popescu, Y. Mao, S. Chang, and M. G. Sowa, “Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue,” Phys. Med. Biol. 55(8), 2317–2331 (2010).
[CrossRef] [PubMed]

C. Flueraru, H. Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach- Zehnder interferometer with application in optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 9(4), L5–L8 (2007).
[CrossRef]

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46(23), 5887–5894 (2007).
[CrossRef] [PubMed]

Frosz, M.

Goodman, J. W.

Hansen, P.

Hsiung, M. W.

Iftimia, N.

Ito, T.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit),” Arterioscler. Thromb. Vasc. Biol. 23(7), 1239–1244 (2003).
[CrossRef] [PubMed]

Karamata, B.

Kawashima, S.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit),” Arterioscler. Thromb. Vasc. Biol. 23(7), 1239–1244 (2003).
[CrossRef] [PubMed]

Keller, J. M.

S. S. Chen, J. M. Keller, and R. M. Crownover, “On the Calculation of Fractal Features from Images,” IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1087–1090 (1993).
[CrossRef]

Kotowski, P.

P. Kotowski, “Fractal dimension of metallic fracture surface,” Int. J. Fract. 141(1-2), 269–286 (2006).
[CrossRef]

Kumazaki, H.

C. Flueraru, H. Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach- Zehnder interferometer with application in optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 9(4), L5–L8 (2007).
[CrossRef]

Kuo, W. C.

Lambelet, P.

Lasser, T.

Laubscher, M.

Leutenegger, M.

Levitz, D.

Loew, M. H.

A. I. Penn and M. H. Loew, “Estimating fractal dimension with fractal interpolation function models,” IEEE Trans. Med. Imaging 16(6), 930–937 (1997).
[CrossRef] [PubMed]

Mao, Y.

C. Flueraru, D. P. Popescu, Y. Mao, S. Chang, and M. G. Sowa, “Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue,” Phys. Med. Biol. 55(8), 2317–2331 (2010).
[CrossRef] [PubMed]

C. Flueraru, H. Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach- Zehnder interferometer with application in optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 9(4), L5–L8 (2007).
[CrossRef]

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46(23), 5887–5894 (2007).
[CrossRef] [PubMed]

Penn, A. I.

A. I. Penn and M. H. Loew, “Estimating fractal dimension with fractal interpolation function models,” IEEE Trans. Med. Imaging 16(6), 930–937 (1997).
[CrossRef] [PubMed]

Popescu, D. P.

C. Flueraru, D. P. Popescu, Y. Mao, S. Chang, and M. G. Sowa, “Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue,” Phys. Med. Biol. 55(8), 2317–2331 (2010).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Sherif, S.

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46(23), 5887–5894 (2007).
[CrossRef] [PubMed]

C. Flueraru, H. Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach- Zehnder interferometer with application in optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 9(4), L5–L8 (2007).
[CrossRef]

Shiomi, M.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit),” Arterioscler. Thromb. Vasc. Biol. 23(7), 1239–1244 (2003).
[CrossRef] [PubMed]

Shyu, J. J.

Sowa, M. G.

C. Flueraru, D. P. Popescu, Y. Mao, S. Chang, and M. G. Sowa, “Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue,” Phys. Med. Biol. 55(8), 2317–2331 (2010).
[CrossRef] [PubMed]

Swartling, J.

Tearney, G. J.

Thrane, L.

Valanciunaite, J.

van der Meer, F. J.

van Leeuwen, T. G.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Yamada, S.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit),” Arterioscler. Thromb. Vasc. Biol. 23(7), 1239–1244 (2003).
[CrossRef] [PubMed]

Yang, P. N.

Yun, S. H.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Appl. Opt.

Arterioscler. Thromb. Vasc. Biol.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit),” Arterioscler. Thromb. Vasc. Biol. 23(7), 1239–1244 (2003).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

A. I. Penn and M. H. Loew, “Estimating fractal dimension with fractal interpolation function models,” IEEE Trans. Med. Imaging 16(6), 930–937 (1997).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell.

S. S. Chen, J. M. Keller, and R. M. Crownover, “On the Calculation of Fractal Features from Images,” IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1087–1090 (1993).
[CrossRef]

Int. J. Fract.

P. Kotowski, “Fractal dimension of metallic fracture surface,” Int. J. Fract. 141(1-2), 269–286 (2006).
[CrossRef]

J. Biomed. Opt.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

C. Flueraru, H. Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach- Zehnder interferometer with application in optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 9(4), L5–L8 (2007).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Express

Phys. Med. Biol.

C. Flueraru, D. P. Popescu, Y. Mao, S. Chang, and M. G. Sowa, “Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue,” Phys. Med. Biol. 55(8), 2317–2331 (2010).
[CrossRef] [PubMed]

Other

J. W. Goodman, Laser Speckle and Related Phenomena (Berlin Springer, 1984), Chap. 3 & 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

An OCT image of a segment of an asymptomatic porcine artery. Starting from the top, the intima, media and adventitia layers can be distinguished in this image. There are a total of 900 A-scans composing the image. The image size is 1.5 (depth) x 3 mm2. The arrow indicates the position of the 150-th A-scan, which is used as an example in Fig. 2. The straight line observed above the sample surface in the OCT image marks the air/isotonic saline interface.

Fig. 2
Fig. 2

An example of an A-scan, i.e. the reflectivity profile versus depth. The A-scan profile is noisy and does not allow for a reliable estimation of its attenuation with depth. The arrows mark the portion of the A-scan section selected in Fig. 4.

Fig. 3
Fig. 3

Compounded profile corresponding to the OCT image from Fig. 1. Numerical fits corresponding to different layers are also shown.

Fig. 4
Fig. 4

The portion from the A-scan shown in Fig. 2 which is contained within the arrows. The number of measurement points (pixels) is limited to 64 corresponding to a depth of about 275 μm. The box size shown in this example is 20 and a number of ten boxes containing signal (non-empty) can be counted. This partition corresponds to one point in Fig. 5 describing the fractal dimension calculation.

Fig. 5
Fig. 5

The slope of the linear fit in log-log scale of number of boxes versus box size is the fractal dimension. The slope was calculated over six points corresponding to six box sizes from 2 to 64 pixels. The minimum box sizes was 8.6 μm, which corresponded to the axial (spatial) resolution of the OCT image while the maximum box size was defined by the optical width of the chosen ROI, 275 μm.

Fig. 6
Fig. 6

An OCT image of a portion of WHHM-LI rabbit artery. The image size is 2 (depth) mm x 3 mm (width) or 300 x 900 pixels. The rectangular contours indicate examples of two ROIs extending across the whole width of the image, 900 pixels. Each ROI has a depth of 64 pixels (275 μm).

Fig. 7
Fig. 7

(a) The histogram of the fractal dimensions calculated for the region contained within the rectangle from Fig. 6 (region A). The histogram is fitted with a Gaussian profile. (b) Histogram of the fractal dimension calculated for the ROI obtained after a 64-pixel displacement as indicated in Fig. 6 (region B). This histogram is fitted with a Gaussian profile narrower than the one from Fig. 7a indicating that within this ROI are less OCT signal texture types.

Metrics