Abstract

We applied the newly developed Fourier transform light scattering (FTLS) to study dynamic light scattering in single live cells, at a temporal scale of seconds to hours. The nanoscale cell fluctuations were measured with and without the active actin contribution. We found experimentally that the spatio-temporal signals rendered by FTLS reveal interesting cytoskeleton dynamics in glial cells (the predominant cell type in the nervous system). The active contribution of actin cytoskeleton was obtained by modulating its dynamic properties via Cytochalasin-D, a drug that inhibits actin polymerization/depolymerization.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
    [CrossRef] [PubMed]
  2. T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
    [CrossRef] [PubMed]
  3. J. A. Cooper and D. A. Schafer, “Control of actin assembly and disassembly at filament ends,” Curr. Opin. Cell Biol. 12(1), 97–103 (2000).
    [CrossRef] [PubMed]
  4. T. J. Mitchison and L. P. Cramer, “Actin-based cell motility and cell locomotion,” Cell 84(3), 371–379 (1996).
    [CrossRef] [PubMed]
  5. J. R. Kuhn and T. D. Pollard, “Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy,” Biophys. J. 88(2), 1387–1402 (2005).
    [CrossRef] [PubMed]
  6. T. D. Pollard, “The cytoskeleton, cellular motility and the reductionist agenda,” Nature 422(6933), 741–745 (2003).
    [CrossRef] [PubMed]
  7. K. J. Amann and T. D. Pollard, “Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 98(26), 15009–15013 (2001).
    [CrossRef] [PubMed]
  8. J. A. Theriot and T. J. Mitchison, “Actin microfilament dynamics in locomoting cells,” Nature 352(6331), 126–131 (1991).
    [CrossRef] [PubMed]
  9. J. A. Theriot, T. J. Mitchison, L. G. Tilney, and D. A. Portnoy, “The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization,” Nature 357(6375), 257–260 (1992).
    [CrossRef] [PubMed]
  10. D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
    [CrossRef] [PubMed]
  11. C. C. Wang, J. Y. Lin, H. C. Chen, and C. H. Lee, “Dynamics of cell membranes and the underlying cytoskeletons observed by noninterferometric widefield optical profilometry and fluorescence microscopy,” Opt. Lett. 31(19), 2873–2875 (2006).
    [CrossRef] [PubMed]
  12. N. Watanabe and T. J. Mitchison, “Single-molecule speckle analysis of actin filament turnover in lamellipodia,” Science 295(5557), 1083–1086 (2002).
    [CrossRef] [PubMed]
  13. T. G. Mason, K. Ganesan, J. H. vanZanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79(17), 3282–3285 (1997).
    [CrossRef]
  14. A. Caspi, R. Granek, and M. Elbaum, “Diffusion and directed motion in cellular transport,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011916 (2002).
    [CrossRef] [PubMed]
  15. L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
    [CrossRef] [PubMed]
  16. D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
    [CrossRef] [PubMed]
  17. H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
    [CrossRef] [PubMed]
  18. H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
    [CrossRef] [PubMed]
  19. A. Matus, “Actin-based plasticity in dendritic spines,” Science 290(5492), 754–758 (2000).
    [CrossRef] [PubMed]
  20. K. Zito, G. Knott, G. M. G. Shepherd, S. Shenolikar, and K. Svoboda, “Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton,” Neuron 44(2), 321–334 (2004).
    [CrossRef] [PubMed]
  21. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  22. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
    [CrossRef] [PubMed]
  23. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [CrossRef] [PubMed]
  24. G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
    [PubMed]
  25. J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
    [CrossRef] [PubMed]
  26. M. D. Flanagan and S. Lin, “Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin,” J. Biol. Chem. 255(3), 835–838 (1980).
    [PubMed]
  27. A. J. Levine and T. C. Lubensky, “One- and two-particle microrheology,” Phys. Rev. Lett. 85(8), 1774–1777 (2000).
    [CrossRef] [PubMed]
  28. A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, “Microrheology, stress fluctuations, and active behavior of living cells,” Phys. Rev. Lett. 91(19), 198101 (2003).
    [CrossRef] [PubMed]
  29. P. Dieterich, R. Klages, R. Preuss, and A. Schwab, “Anomalous dynamics of cell migration,” Proc. Natl. Acad. Sci. U.S.A. 105(2), 459–463 (2008).
    [CrossRef] [PubMed]
  30. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
    [CrossRef] [PubMed]
  31. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
    [CrossRef] [PubMed]
  32. T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation,” Biophys. J. 70(6), 2767–2773 (1996).
    [CrossRef] [PubMed]
  33. J. Dai, H. P. Ting-Beall, and M. P. Sheetz, “The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells,” J. Gen. Physiol. 110(1), 1–10 (1997).
    [CrossRef] [PubMed]

2009

2008

P. Dieterich, R. Klages, R. Preuss, and A. Schwab, “Anomalous dynamics of cell migration,” Proc. Natl. Acad. Sci. U.S.A. 105(2), 459–463 (2008).
[CrossRef] [PubMed]

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

2007

D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
[CrossRef] [PubMed]

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

2006

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
[CrossRef] [PubMed]

C. C. Wang, J. Y. Lin, H. C. Chen, and C. H. Lee, “Dynamics of cell membranes and the underlying cytoskeletons observed by noninterferometric widefield optical profilometry and fluorescence microscopy,” Opt. Lett. 31(19), 2873–2875 (2006).
[CrossRef] [PubMed]

2005

J. R. Kuhn and T. D. Pollard, “Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy,” Biophys. J. 88(2), 1387–1402 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

2004

K. Zito, G. Knott, G. M. G. Shepherd, S. Shenolikar, and K. Svoboda, “Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton,” Neuron 44(2), 321–334 (2004).
[CrossRef] [PubMed]

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[CrossRef] [PubMed]

2003

T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
[CrossRef] [PubMed]

T. D. Pollard, “The cytoskeleton, cellular motility and the reductionist agenda,” Nature 422(6933), 741–745 (2003).
[CrossRef] [PubMed]

A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, “Microrheology, stress fluctuations, and active behavior of living cells,” Phys. Rev. Lett. 91(19), 198101 (2003).
[CrossRef] [PubMed]

2002

N. Watanabe and T. J. Mitchison, “Single-molecule speckle analysis of actin filament turnover in lamellipodia,” Science 295(5557), 1083–1086 (2002).
[CrossRef] [PubMed]

A. Caspi, R. Granek, and M. Elbaum, “Diffusion and directed motion in cellular transport,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011916 (2002).
[CrossRef] [PubMed]

2001

K. J. Amann and T. D. Pollard, “Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 98(26), 15009–15013 (2001).
[CrossRef] [PubMed]

2000

J. A. Cooper and D. A. Schafer, “Control of actin assembly and disassembly at filament ends,” Curr. Opin. Cell Biol. 12(1), 97–103 (2000).
[CrossRef] [PubMed]

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

A. J. Levine and T. C. Lubensky, “One- and two-particle microrheology,” Phys. Rev. Lett. 85(8), 1774–1777 (2000).
[CrossRef] [PubMed]

A. Matus, “Actin-based plasticity in dendritic spines,” Science 290(5492), 754–758 (2000).
[CrossRef] [PubMed]

1997

J. Dai, H. P. Ting-Beall, and M. P. Sheetz, “The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells,” J. Gen. Physiol. 110(1), 1–10 (1997).
[CrossRef] [PubMed]

T. G. Mason, K. Ganesan, J. H. vanZanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79(17), 3282–3285 (1997).
[CrossRef]

1996

T. J. Mitchison and L. P. Cramer, “Actin-based cell motility and cell locomotion,” Cell 84(3), 371–379 (1996).
[CrossRef] [PubMed]

T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation,” Biophys. J. 70(6), 2767–2773 (1996).
[CrossRef] [PubMed]

1995

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

1992

J. A. Theriot, T. J. Mitchison, L. G. Tilney, and D. A. Portnoy, “The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization,” Nature 357(6375), 257–260 (1992).
[CrossRef] [PubMed]

1991

J. A. Theriot and T. J. Mitchison, “Actin microfilament dynamics in locomoting cells,” Nature 352(6331), 126–131 (1991).
[CrossRef] [PubMed]

1981

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

1980

M. D. Flanagan and S. Lin, “Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin,” J. Biol. Chem. 255(3), 835–838 (1980).
[PubMed]

Amann, K. J.

K. J. Amann and T. D. Pollard, “Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 98(26), 15009–15013 (2001).
[CrossRef] [PubMed]

Antonelli, E.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Badizadegan, K.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Baird, B.

T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation,” Biophys. J. 70(6), 2767–2773 (1996).
[CrossRef] [PubMed]

Baronio, P.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Bassotti, G.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Best-Popescu, C. A.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Boppart, S. A.

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
[CrossRef] [PubMed]

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Borisy, G. G.

T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
[CrossRef] [PubMed]

Brust-Mascher, I.

T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation,” Biophys. J. 70(6), 2767–2773 (1996).
[CrossRef] [PubMed]

Butler, J. P.

L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
[CrossRef] [PubMed]

Casella, J. F.

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

Caspi, A.

A. Caspi, R. Granek, and M. Elbaum, “Diffusion and directed motion in cellular transport,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011916 (2002).
[CrossRef] [PubMed]

Cathomas, G.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Chen, D. T. N.

D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
[CrossRef] [PubMed]

Chen, H. C.

Clerici, C.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Cooper, J. A.

J. A. Cooper and D. A. Schafer, “Control of actin assembly and disassembly at filament ends,” Curr. Opin. Cell Biol. 12(1), 97–103 (2000).
[CrossRef] [PubMed]

Cramer, L. P.

T. J. Mitchison and L. P. Cramer, “Actin-based cell motility and cell locomotion,” Cell 84(3), 371–379 (1996).
[CrossRef] [PubMed]

Crocker, J. C.

A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, “Microrheology, stress fluctuations, and active behavior of living cells,” Phys. Rev. Lett. 91(19), 198101 (2003).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

Dai, J.

J. Dai, H. P. Ting-Beall, and M. P. Sheetz, “The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells,” J. Gen. Physiol. 110(1), 1–10 (1997).
[CrossRef] [PubMed]

Dasari, R. R.

Davies, A.

A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, “Microrheology, stress fluctuations, and active behavior of living cells,” Phys. Rev. Lett. 91(19), 198101 (2003).
[CrossRef] [PubMed]

Deng, L. H.

L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
[CrossRef] [PubMed]

Dieterich, P.

P. Dieterich, R. Klages, R. Preuss, and A. Schwab, “Anomalous dynamics of cell migration,” Proc. Natl. Acad. Sci. U.S.A. 105(2), 459–463 (2008).
[CrossRef] [PubMed]

Ding, H.

Ding, H. F.

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Elbaum, M.

A. Caspi, R. Granek, and M. Elbaum, “Diffusion and directed motion in cellular transport,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011916 (2002).
[CrossRef] [PubMed]

Feder, T. J.

T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation,” Biophys. J. 70(6), 2767–2773 (1996).
[CrossRef] [PubMed]

Feld, M. S.

Fink, R. H. A.

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

Fisogni, S.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Flanagan, M. D.

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

M. D. Flanagan and S. Lin, “Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin,” J. Biol. Chem. 255(3), 835–838 (1980).
[PubMed]

Fredberg, J. J.

L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
[CrossRef] [PubMed]

Ganesan, K.

T. G. Mason, K. Ganesan, J. H. vanZanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79(17), 3282–3285 (1997).
[CrossRef]

Gardel, M. L.

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[CrossRef] [PubMed]

Gisler, T.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

Goda, K.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Götz, C.

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

Goulian, M.

D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
[CrossRef] [PubMed]

Granek, R.

A. Caspi, R. Granek, and M. Elbaum, “Diffusion and directed motion in cellular transport,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011916 (2002).
[CrossRef] [PubMed]

Haussecker, H.

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

Hoffman, B. D.

A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, “Microrheology, stress fluctuations, and active behavior of living cells,” Phys. Rev. Lett. 91(19), 198101 (2003).
[CrossRef] [PubMed]

Hough, L. A.

D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
[CrossRef] [PubMed]

Ikeda, T.

Islam, M. F.

D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
[CrossRef] [PubMed]

Jähne, B.

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

Kaplan, P. D.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

Klages, R.

P. Dieterich, R. Klages, R. Preuss, and A. Schwab, “Anomalous dynamics of cell migration,” Proc. Natl. Acad. Sci. U.S.A. 105(2), 459–463 (2008).
[CrossRef] [PubMed]

Knott, G.

K. Zito, G. Knott, G. M. G. Shepherd, S. Shenolikar, and K. Svoboda, “Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton,” Neuron 44(2), 321–334 (2004).
[CrossRef] [PubMed]

Kuhn, J. R.

J. R. Kuhn and T. D. Pollard, “Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy,” Biophys. J. 88(2), 1387–1402 (2005).
[CrossRef] [PubMed]

Kuo, S. C.

T. G. Mason, K. Ganesan, J. H. vanZanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79(17), 3282–3285 (1997).
[CrossRef]

Laposata, M.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Lau, A. W. C.

D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
[CrossRef] [PubMed]

A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, “Microrheology, stress fluctuations, and active behavior of living cells,” Phys. Rev. Lett. 91(19), 198101 (2003).
[CrossRef] [PubMed]

Lee, C. H.

Levine, A. J.

A. J. Levine and T. C. Lubensky, “One- and two-particle microrheology,” Phys. Rev. Lett. 85(8), 1774–1777 (2000).
[CrossRef] [PubMed]

Lin, J. Y.

Lin, S.

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

M. D. Flanagan and S. Lin, “Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin,” J. Biol. Chem. 255(3), 835–838 (1980).
[PubMed]

Lubensky, T. C.

D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
[CrossRef] [PubMed]

A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, “Microrheology, stress fluctuations, and active behavior of living cells,” Phys. Rev. Lett. 91(19), 198101 (2003).
[CrossRef] [PubMed]

A. J. Levine and T. C. Lubensky, “One- and two-particle microrheology,” Phys. Rev. Lett. 85(8), 1774–1777 (2000).
[CrossRef] [PubMed]

MacKintosh, F. C.

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[CrossRef] [PubMed]

Mahadevan, L.

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[CrossRef] [PubMed]

Manley, S.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Mann, S.

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

Mason, T. G.

T. G. Mason, K. Ganesan, J. H. vanZanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79(17), 3282–3285 (1997).
[CrossRef]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

Matsudaira, P.

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[CrossRef] [PubMed]

Matus, A.

A. Matus, “Actin-based plasticity in dendritic spines,” Science 290(5492), 754–758 (2000).
[CrossRef] [PubMed]

Maurer, C. A.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Millet, E.

L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
[CrossRef] [PubMed]

Mitchison, T. J.

N. Watanabe and T. J. Mitchison, “Single-molecule speckle analysis of actin filament turnover in lamellipodia,” Science 295(5557), 1083–1086 (2002).
[CrossRef] [PubMed]

T. J. Mitchison and L. P. Cramer, “Actin-based cell motility and cell locomotion,” Cell 84(3), 371–379 (1996).
[CrossRef] [PubMed]

J. A. Theriot, T. J. Mitchison, L. G. Tilney, and D. A. Portnoy, “The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization,” Nature 357(6375), 257–260 (1992).
[CrossRef] [PubMed]

J. A. Theriot and T. J. Mitchison, “Actin microfilament dynamics in locomoting cells,” Nature 352(6331), 126–131 (1991).
[CrossRef] [PubMed]

Morgan, K. G.

L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
[CrossRef] [PubMed]

Nguyen, F.

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
[CrossRef] [PubMed]

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Pollard, T. D.

J. R. Kuhn and T. D. Pollard, “Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy,” Biophys. J. 88(2), 1387–1402 (2005).
[CrossRef] [PubMed]

T. D. Pollard, “The cytoskeleton, cellular motility and the reductionist agenda,” Nature 422(6933), 741–745 (2003).
[CrossRef] [PubMed]

T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
[CrossRef] [PubMed]

K. J. Amann and T. D. Pollard, “Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 98(26), 15009–15013 (2001).
[CrossRef] [PubMed]

Popescu, G.

Portnoy, D. A.

J. A. Theriot, T. J. Mitchison, L. G. Tilney, and D. A. Portnoy, “The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization,” Nature 357(6375), 257–260 (1992).
[CrossRef] [PubMed]

Preuss, R.

P. Dieterich, R. Klages, R. Preuss, and A. Schwab, “Anomalous dynamics of cell migration,” Proc. Natl. Acad. Sci. U.S.A. 105(2), 459–463 (2008).
[CrossRef] [PubMed]

Rossi, E.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Schafer, D. A.

J. A. Cooper and D. A. Schafer, “Control of actin assembly and disassembly at filament ends,” Curr. Opin. Cell Biol. 12(1), 97–103 (2000).
[CrossRef] [PubMed]

Schwab, A.

P. Dieterich, R. Klages, R. Preuss, and A. Schwab, “Anomalous dynamics of cell migration,” Proc. Natl. Acad. Sci. U.S.A. 105(2), 459–463 (2008).
[CrossRef] [PubMed]

Sheetz, M. P.

J. Dai, H. P. Ting-Beall, and M. P. Sheetz, “The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells,” J. Gen. Physiol. 110(1), 1–10 (1997).
[CrossRef] [PubMed]

Shenolikar, S.

K. Zito, G. Knott, G. M. G. Shepherd, S. Shenolikar, and K. Svoboda, “Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton,” Neuron 44(2), 321–334 (2004).
[CrossRef] [PubMed]

Shepherd, G. M. G.

K. Zito, G. Knott, G. M. G. Shepherd, S. Shenolikar, and K. Svoboda, “Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton,” Neuron 44(2), 321–334 (2004).
[CrossRef] [PubMed]

Shin, J. H.

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[CrossRef] [PubMed]

Slattery, J. P.

T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation,” Biophys. J. 70(6), 2767–2773 (1996).
[CrossRef] [PubMed]

Steubing, R.

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

Svoboda, K.

K. Zito, G. Knott, G. M. G. Shepherd, S. Shenolikar, and K. Svoboda, “Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton,” Neuron 44(2), 321–334 (2004).
[CrossRef] [PubMed]

Theriot, J. A.

J. A. Theriot, T. J. Mitchison, L. G. Tilney, and D. A. Portnoy, “The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization,” Nature 357(6375), 257–260 (1992).
[CrossRef] [PubMed]

J. A. Theriot and T. J. Mitchison, “Actin microfilament dynamics in locomoting cells,” Nature 352(6331), 126–131 (1991).
[CrossRef] [PubMed]

Tilney, L. G.

J. A. Theriot, T. J. Mitchison, L. G. Tilney, and D. A. Portnoy, “The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization,” Nature 357(6375), 257–260 (1992).
[CrossRef] [PubMed]

Ting-Beall, H. P.

J. Dai, H. P. Ting-Beall, and M. P. Sheetz, “The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells,” J. Gen. Physiol. 110(1), 1–10 (1997).
[CrossRef] [PubMed]

Trepat, X.

L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
[CrossRef] [PubMed]

Uttenweiler, D.

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

Valentine, M. T.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

vanZanten, J. H.

T. G. Mason, K. Ganesan, J. H. vanZanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79(17), 3282–3285 (1997).
[CrossRef]

Veigel, C.

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

Villanacci, V.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Wang, C. C.

Wang, Z.

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Watanabe, N.

N. Watanabe and T. J. Mitchison, “Single-molecule speckle analysis of actin filament turnover in lamellipodia,” Science 295(5557), 1083–1086 (2002).
[CrossRef] [PubMed]

Webb, W. W.

T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation,” Biophys. J. 70(6), 2767–2773 (1996).
[CrossRef] [PubMed]

Weeks, E. R.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

Weitz, D. A.

L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
[CrossRef] [PubMed]

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

Wirtz, D.

T. G. Mason, K. Ganesan, J. H. vanZanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79(17), 3282–3285 (1997).
[CrossRef]

Yodh, A. G.

D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

Zito, K.

K. Zito, G. Knott, G. M. G. Shepherd, S. Shenolikar, and K. Svoboda, “Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton,” Neuron 44(2), 321–334 (2004).
[CrossRef] [PubMed]

Biophys. J.

J. R. Kuhn and T. D. Pollard, “Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy,” Biophys. J. 88(2), 1387–1402 (2005).
[CrossRef] [PubMed]

D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000).
[CrossRef] [PubMed]

T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation,” Biophys. J. 70(6), 2767–2773 (1996).
[CrossRef] [PubMed]

Cell

T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003).
[CrossRef] [PubMed]

T. J. Mitchison and L. P. Cramer, “Actin-based cell motility and cell locomotion,” Cell 84(3), 371–379 (1996).
[CrossRef] [PubMed]

Curr. Opin. Cell Biol.

J. A. Cooper and D. A. Schafer, “Control of actin assembly and disassembly at filament ends,” Curr. Opin. Cell Biol. 12(1), 97–103 (2000).
[CrossRef] [PubMed]

J. Biol. Chem.

M. D. Flanagan and S. Lin, “Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin,” J. Biol. Chem. 255(3), 835–838 (1980).
[PubMed]

J. Gen. Physiol.

J. Dai, H. P. Ting-Beall, and M. P. Sheetz, “The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells,” J. Gen. Physiol. 110(1), 1–10 (1997).
[CrossRef] [PubMed]

Nat. Mater.

L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006).
[CrossRef] [PubMed]

Nature

T. D. Pollard, “The cytoskeleton, cellular motility and the reductionist agenda,” Nature 422(6933), 741–745 (2003).
[CrossRef] [PubMed]

J. A. Theriot and T. J. Mitchison, “Actin microfilament dynamics in locomoting cells,” Nature 352(6331), 126–131 (1991).
[CrossRef] [PubMed]

J. A. Theriot, T. J. Mitchison, L. G. Tilney, and D. A. Portnoy, “The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization,” Nature 357(6375), 257–260 (1992).
[CrossRef] [PubMed]

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

Neuron

K. Zito, G. Knott, G. M. G. Shepherd, S. Shenolikar, and K. Svoboda, “Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton,” Neuron 44(2), 321–334 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

A. Caspi, R. Granek, and M. Elbaum, “Diffusion and directed motion in cellular transport,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011916 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

T. G. Mason, K. Ganesan, J. H. vanZanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79(17), 3282–3285 (1997).
[CrossRef]

D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007).
[CrossRef] [PubMed]

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

A. J. Levine and T. C. Lubensky, “One- and two-particle microrheology,” Phys. Rev. Lett. 85(8), 1774–1777 (2000).
[CrossRef] [PubMed]

A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, “Microrheology, stress fluctuations, and active behavior of living cells,” Phys. Rev. Lett. 91(19), 198101 (2003).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

P. Dieterich, R. Klages, R. Preuss, and A. Schwab, “Anomalous dynamics of cell migration,” Proc. Natl. Acad. Sci. U.S.A. 105(2), 459–463 (2008).
[CrossRef] [PubMed]

K. J. Amann and T. D. Pollard, “Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 98(26), 15009–15013 (2001).
[CrossRef] [PubMed]

Science

M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004).
[CrossRef] [PubMed]

A. Matus, “Actin-based plasticity in dendritic spines,” Science 290(5492), 754–758 (2000).
[CrossRef] [PubMed]

N. Watanabe and T. J. Mitchison, “Single-molecule speckle analysis of actin filament turnover in lamellipodia,” Science 295(5557), 1083–1086 (2002).
[CrossRef] [PubMed]

World J. Gastroenterol.

G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Tracking beads attached to the cell membrane: a)-b) bead trajectories before cyto-D treatment and c)-d) after drug treatment. e) Corresponding mean square displacement of the tracked beads before (red) and after (blue) treatment. The fitting with a power law function over two different time windows is indicated. The inset shows a quantitative phase image of a EGC with 1μm beads attached to the membrane.

Fig. 2
Fig. 2

a-b) Quantitative phase images of glial cell before and after Cyto-D treatment. c) Histogram of the path-length displacements of a glial cell before and after drug treatment, as indicated. The blue dash line indicates the fit with a Gaussian function and brown dash line shows the background fluctuation.

Fig. 3
Fig. 3

a) Spatially-averaged power spectrum of glial cells before and after drug treatment, as indicated. Error bars show the standard deviation (same for all the followed figures) and dash lines show the fit with Lorentzian equations. b) Temporally-averaged power spectrum before and after drug treatment. The inset shows the ratio of the two spectra.

Fig. 4
Fig. 4

a-b) Temporal power spectra of glial cells before and after drug treatment at two different spatial frequencies, as indicated. Dash lines show fits with Lorentzian equations for the power spectra after drug treatment; c-d) Spatial power spectra at two different frequencies, as indicated. The error bars indicate the standard deviation associated 3 different measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U ˜ ( q , t ) = U ( r , t ) e i q r d 2 r
M S D ( Δ t ) = [ x ( t + Δ t ) x ( t ) ] 2 + [ y ( t + Δ t ) y ( t ) ] 2 ,

Metrics