Abstract

Laser Speckle Contrast Imaging (LSCI) has become a widely used technique to image cerebral blood flow in vivo. However, the quantitative accuracy of blood flow changes measured through the thin skull has not been investigated thoroughly. We recently developed a new Multi Exposure Speckle Imaging (MESI) technique to image blood flow while accounting for the effect of scattering from static tissue elements. In this paper we present the first in vivo demonstration of the MESI technique. The MESI technique was used to image the blood flow changes in a mouse cortex following photothrombotic occlusion of the middle cerebral artery. The Multi Exposure Speckle Imaging technique was found to accurately estimate flow changes due to ischemia in mice brains in vivo. These estimates of these flow changes were found to be unaffected by scattering from thinned skull.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Optics Communications 37(5), 326–330 (1981).
  2. A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” Journal of Cerebral Blood Flow & Metabolism 21, 195–201 (2001).
  3. B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” European Journal of Neuroscience 20(10), 2664–2670 (2004).
  4. T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).
  5. D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).
  6. B. Ruth, “Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method.” Medical Engineering and Physics 16(2), 105–11 (1994).
  7. B. Choi, N. Kang, and J. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvascular Research 68, 143–146 (2004).
  8. K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).
  9. J. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiological Measurement 22, R35–R66 (2001).
  10. D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” Journal of Biomedical Optics 15, 011,109 (2010).
  11. R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Review of Scientific Instruments 76, 093,110 (2005).
  12. A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Optics Express 16(3), 1975–1989 (2008).
  13. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Applied Optics 20(12), 2097–2107 (1981).
  14. C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” Journal of Cerebral Blood Flow & Metabolism 24(7), 744–755 (2004).
  15. H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow & Metabolism 26, 1018–1030 (2006).
  16. H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).
  17. S. Yuan, A. Devor, D. Boas, and A. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Applied Optics 44(10), 1823–1830 (2005).
  18. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Optics Letters 33(24), 2886–2888 (2008).
  19. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
  20. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Optics Letters 31(12), 1824–1826 (2006).
  21. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).
  22. P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).
  23. W. Tom, A. Ponticorvo, and A. Dunn, “Efficient Processing of Laser Speckle Contrast Images,” IEEE Transactions on Medical Imaging 27(12), 1728–1738 (2008).
  24. P. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” Journal of Optical Society of America A 16(7), 1651–1664 (1999).
  25. D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” Journal of Optical Society of America A 14(1), 192–215 (1997).
  26. B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Annals of neurology 17(5), 497–504 (1985).
  27. J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).
  28. C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, “In vivo cerebrovascular NIRS measurement,” Physics in Medicine and Biology 46, 2053–2065 (2001).
  29. T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, and S. Kasner, et al., “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17, 3884–3902 (2009).

2010 (1)

D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” Journal of Biomedical Optics 15, 011,109 (2010).

2009 (2)

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, and S. Kasner, et al., “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17, 3884–3902 (2009).

2008 (4)

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).

W. Tom, A. Ponticorvo, and A. Dunn, “Efficient Processing of Laser Speckle Contrast Images,” IEEE Transactions on Medical Imaging 27(12), 1728–1738 (2008).

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Optics Letters 33(24), 2886–2888 (2008).

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Optics Express 16(3), 1975–1989 (2008).

2007 (2)

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

2006 (3)

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow & Metabolism 26, 1018–1030 (2006).

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Optics Letters 31(12), 1824–1826 (2006).

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).

2005 (2)

S. Yuan, A. Devor, D. Boas, and A. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Applied Optics 44(10), 1823–1830 (2005).

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Review of Scientific Instruments 76, 093,110 (2005).

2004 (5)

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” Journal of Cerebral Blood Flow & Metabolism 24(7), 744–755 (2004).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” European Journal of Neuroscience 20(10), 2664–2670 (2004).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

B. Choi, N. Kang, and J. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvascular Research 68, 143–146 (2004).

2001 (3)

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” Journal of Cerebral Blood Flow & Metabolism 21, 195–201 (2001).

J. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiological Measurement 22, R35–R66 (2001).

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, “In vivo cerebrovascular NIRS measurement,” Physics in Medicine and Biology 46, 2053–2065 (2001).

2000 (1)

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).

1999 (1)

P. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” Journal of Optical Society of America A 16(7), 1651–1664 (1999).

1997 (1)

D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” Journal of Optical Society of America A 14(1), 192–215 (1997).

1994 (1)

B. Ruth, “Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method.” Medical Engineering and Physics 16(2), 105–11 (1994).

1985 (1)

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Annals of neurology 17(5), 497–504 (1985).

1981 (2)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Optics Communications 37(5), 326–330 (1981).

R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Applied Optics 20(12), 2097–2107 (1981).

Abe, H.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).

Atochin, D.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

Ayata, C.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow & Metabolism 26, 1018–1030 (2006).

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” Journal of Cerebral Blood Flow & Metabolism 24(7), 744–755 (2004).

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

Bacskai, B.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

Bandyopadhyay, R.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Review of Scientific Instruments 76, 093,110 (2005).

Boas, D.

D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” Journal of Biomedical Optics 15, 011,109 (2010).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow & Metabolism 26, 1018–1030 (2006).

S. Yuan, A. Devor, D. Boas, and A. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Applied Optics 44(10), 1823–1830 (2005).

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” Journal of Cerebral Blood Flow & Metabolism 24(7), 744–755 (2004).

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” Journal of Cerebral Blood Flow & Metabolism 21, 195–201 (2001).

D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” Journal of Optical Society of America A 14(1), 192–215 (1997).

Bolay, H.

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” Journal of Cerebral Blood Flow & Metabolism 21, 195–201 (2001).

Bonner, R.

R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Applied Optics 20(12), 2097–2107 (1981).

Borrelli, L.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

Briers, J.

J. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiological Measurement 22, R35–R66 (2001).

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Optics Communications 37(5), 326–330 (1981).

Buck, A.

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” European Journal of Neuroscience 20(10), 2664–2670 (2004).

Burger, C.

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” European Journal of Neuroscience 20(10), 2664–2670 (2004).

Burnett, M.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

Busto, R.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Annals of neurology 17(5), 497–504 (1985).

Calcinaghi, N.

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

Cheung, C.

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, “In vivo cerebrovascular NIRS measurement,” Physics in Medicine and Biology 46, 2053–2065 (2001).

Choe, R.

Choi, B.

B. Choi, N. Kang, and J. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvascular Research 68, 143–146 (2004).

Cucchiara, B.

Culver, J.

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, “In vivo cerebrovascular NIRS measurement,” Physics in Medicine and Biology 46, 2053–2065 (2001).

Detre, J.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

Devor, A.

S. Yuan, A. Devor, D. Boas, and A. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Applied Optics 44(10), 1823–1830 (2005).

Dietrich, W.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Annals of neurology 17(5), 497–504 (1985).

Dixon, P.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Review of Scientific Instruments 76, 093,110 (2005).

Duncan, D. D.

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Optics Letters 33(24), 2886–2888 (2008).

Dunn, A.

D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” Journal of Biomedical Optics 15, 011,109 (2010).

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Optics Express 16(3), 1975–1989 (2008).

W. Tom, A. Ponticorvo, and A. Dunn, “Efficient Processing of Laser Speckle Contrast Images,” IEEE Transactions on Medical Imaging 27(12), 1728–1738 (2008).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow & Metabolism 26, 1018–1030 (2006).

S. Yuan, A. Devor, D. Boas, and A. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Applied Optics 44(10), 1823–1830 (2005).

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” Journal of Cerebral Blood Flow & Metabolism 24(7), 744–755 (2004).

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” Journal of Cerebral Blood Flow & Metabolism 21, 195–201 (2001).

Durduran, T.

T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, and S. Kasner, et al., “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17, 3884–3902 (2009).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

Durian, D.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Review of Scientific Instruments 76, 093,110 (2005).

P. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” Journal of Optical Society of America A 16(7), 1651–1664 (1999).

Edlow, B.

Fercher, A.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Optics Communications 37(5), 326–330 (1981).

Frosch, M.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

Fukushima, A.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).

Funaki, H.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).

Funaki, S.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).

Furuya, D.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

Garcia-Alloza, M.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

Ginsberg, M.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Annals of neurology 17(5), 497–504 (1985).

Gittings, A.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Review of Scientific Instruments 76, 093,110 (2005).

Gopal, A.

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Optics Express 16(3), 1975–1989 (2008).

Greenberg, J.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, “In vivo cerebrovascular NIRS measurement,” Physics in Medicine and Biology 46, 2053–2065 (2001).

Greenberg, S.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

Gursoy-Ozdemir, Y.

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” Journal of Cerebral Blood Flow & Metabolism 24(7), 744–755 (2004).

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

Haiss, F.

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

Huang, P.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

Huang, Z.

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” Journal of Cerebral Blood Flow & Metabolism 24(7), 744–755 (2004).

Hyman, B.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

Jones, P.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow & Metabolism 26, 1018–1030 (2006).

Joo, S.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

Kang, N.

B. Choi, N. Kang, and J. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvascular Research 68, 143–146 (2004).

Kasner, S.

Kim, J.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

Kim, M.

Kim, S.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

Kim, T.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

Kim, Y.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

Kirkpatrick, S. J.

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Optics Letters 33(24), 2886–2888 (2008).

Krasik, T.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

Lee, J.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

Lemieux, P.

P. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” Journal of Optical Society of America A 16(7), 1651–1664 (1999).

Li, P.

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Optics Letters 31(12), 1824–1826 (2006).

Luo, Q.

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Optics Letters 31(12), 1824–1826 (2006).

Moon, K.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

Moskowitz, M.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow & Metabolism 26, 1018–1030 (2006).

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” Journal of Cerebral Blood Flow & Metabolism 24(7), 744–755 (2004).

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” Journal of Cerebral Blood Flow & Metabolism 21, 195–201 (2001).

Murciano, J.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

Muzykantov, V.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

Nakatsue, T.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).

Nelson, J.

B. Choi, N. Kang, and J. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvascular Research 68, 143–146 (2004).

Ni, S.

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Optics Letters 31(12), 1824–1826 (2006).

Noda, F.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

Nossal, R.

R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Applied Optics 20(12), 2097–2107 (1981).

ölker, A. V

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

Park, M.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

Parthasarathy, A.

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Optics Express 16(3), 1975–1989 (2008).

Ponticorvo, A.

W. Tom, A. Ponticorvo, and A. Dunn, “Efficient Processing of Laser Speckle Contrast Images,” IEEE Transactions on Medical Imaging 27(12), 1728–1738 (2008).

Putt, M.

Ruth, B.

B. Ruth, “Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method.” Medical Engineering and Physics 16(2), 105–11 (1994).

Scheffold, F.

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” European Journal of Neuroscience 20(10), 2664–2670 (2004).

Shah, Q.

Shin, H.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow & Metabolism 26, 1018–1030 (2006).

Shirakashi, M.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).

Suh, S.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Review of Scientific Instruments 76, 093,110 (2005).

Takahashi, K.

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, “In vivo cerebrovascular NIRS measurement,” Physics in Medicine and Biology 46, 2053–2065 (2001).

Tom, W.

W. Tom, A. Ponticorvo, and A. Dunn, “Efficient Processing of Laser Speckle Contrast Images,” IEEE Transactions on Medical Imaging 27(12), 1728–1738 (2008).

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Optics Express 16(3), 1975–1989 (2008).

Völker, A.

von Schulthess, G.

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” European Journal of Neuroscience 20(10), 2664–2670 (2004).

Wachtel, M.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Annals of neurology 17(5), 497–504 (1985).

Watson, B.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Annals of neurology 17(5), 497–504 (1985).

Weber, B.

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” European Journal of Neuroscience 20(10), 2664–2670 (2004).

Wells-Gray, E. M.

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Optics Letters 33(24), 2886–2888 (2008).

Wyss, M.

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” European Journal of Neuroscience 20(10), 2664–2670 (2004).

Yaoeda, K.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).

Yodh, A.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, “In vivo cerebrovascular NIRS measurement,” Physics in Medicine and Biology 46, 2053–2065 (2001).

D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” Journal of Optical Society of America A 14(1), 192–215 (1997).

Yu, G.

T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, and S. Kasner, et al., “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17, 3884–3902 (2009).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

Yuan, S.

S. Yuan, A. Devor, D. Boas, and A. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Applied Optics 44(10), 1823–1830 (2005).

Zakharov, P.

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).

Zeng, S.

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Optics Letters 31(12), 1824–1826 (2006).

Zhang, L.

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Optics Letters 31(12), 1824–1826 (2006).

Zhang, X.

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Optics Express 16(3), 1975–1989 (2008).

Zhou, C.

T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, and S. Kasner, et al., “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17, 3884–3902 (2009).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

Zunzunegui, C.

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

American Journal of Opthalmology (1)

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, “Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers,” American Journal of Opthalmology 130(5), 606–610 (2000).

Annals of neurology (1)

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Annals of neurology 17(5), 497–504 (1985).

Applied Optics (2)

R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Applied Optics 20(12), 2097–2107 (1981).

S. Yuan, A. Devor, D. Boas, and A. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Applied Optics 44(10), 1823–1830 (2005).

Brain (1)

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, “Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy,” Brain 130(9), 2310 (2007).

European Journal of Neuroscience (1)

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” European Journal of Neuroscience 20(10), 2664–2670 (2004).

IEEE Transactions on Medical Imaging (1)

W. Tom, A. Ponticorvo, and A. Dunn, “Efficient Processing of Laser Speckle Contrast Images,” IEEE Transactions on Medical Imaging 27(12), 1728–1738 (2008).

J. Opt. Soc. Am. A (1)

Journal of Biomedical Optics (1)

D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” Journal of Biomedical Optics 15, 011,109 (2010).

Journal of Cerebral Blood Flow & Metabolism (4)

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” Journal of Cerebral Blood Flow & Metabolism 24(7), 744–755 (2004).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow & Metabolism 26, 1018–1030 (2006).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518–525 (2004).

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” Journal of Cerebral Blood Flow & Metabolism 21, 195–201 (2001).

Journal of Optical Society of America A (2)

P. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” Journal of Optical Society of America A 16(7), 1651–1664 (1999).

D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” Journal of Optical Society of America A 14(1), 192–215 (1997).

Medical Engineering and Physics (1)

B. Ruth, “Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method.” Medical Engineering and Physics 16(2), 105–11 (1994).

Microvascular Research (1)

B. Choi, N. Kang, and J. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvascular Research 68, 143–146 (2004).

Opt. Express (2)

P. Zakharov, A. V ölker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13,904–13,917 (2009).

T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, and S. Kasner, et al., “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17, 3884–3902 (2009).

Opt. Lett. (1)

Optics Communications (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Optics Communications 37(5), 326–330 (1981).

Optics Express (1)

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Optics Express 16(3), 1975–1989 (2008).

Optics Letters (2)

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Optics Letters 33(24), 2886–2888 (2008).

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Optics Letters 31(12), 1824–1826 (2006).

Physics in Medicine and Biology (1)

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, “In vivo cerebrovascular NIRS measurement,” Physics in Medicine and Biology 46, 2053–2065 (2001).

Physiological Measurement (1)

J. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiological Measurement 22, R35–R66 (2001).

Review of Scientific Instruments (1)

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Review of Scientific Instruments 76, 093,110 (2005).

Stroke (1)

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, “Mouse Model of Microembolic Stroke and Reperfusion,” Stroke 35(9), 2177–2182 (2004).

Surgical neurology (1)

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, “Photochemically induced cerebral ischemia in a mouse model,” Surgical neurology 67(6), 620–625 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the Multi Exposure Speckle Imaging (MESI) instrument, adapted from our previous publication [12] (b) Representative speckle contrast images of mouse cortex obtained at various camera exposure durations using the MESI instrument

Fig. 2.
Fig. 2.

(a) Speckle contrast image (5ms exposure duration) illustrating the partial craniotomy model. The regions within the closed loops (Regions 1, 3 and 5) are in the craniotomy. Regions outside the closed loops (Regions 2, 4 and 6) are in the thin skull region. Speckle Contrast images of a branch of the MCA, illustrating ischemic stroke induced using photo thrombosis (b) Before stroke (c) After stroke

Fig. 3.
Fig. 3.

(a) Speckle contrast image (5ms exposure) illustrating regions of different flow (b) Time integrated speckle variance curves with decay rates corresponding to flow rates. The data points have been fit to Equation 1

Fig. 4.
Fig. 4.

(a) Illustration of partial craniotomy model. The regions enclosed by the closed loops (regions 1,3 & 5) are located in the craniotomy. Regions outside of the closed loops (regions 2,4 & 6) are located in the thinned (but intact) skull. (b) Time integrated speckle variance curves illustrating the influence of static scattering due to the presence of the thinned skull. A decrease in the value of ρ indicates an increase in the amount of static scattering. Regions 2 and 4 show distinct offset at large exposure durations. This offset it due to increased ν s over the thinned skull

Fig. 5.
Fig. 5.

Relative blood flow change caused due to the ischemic stroke in the branch of the MCA (Region 1 in Figure 4a). (a) Time course of relative blood flow change in Region 1 as estimated using the MESI technique. The flow estimates in first 10 minutes were considered as baseline. The reduction in blood flow due to the stroke, is estimated to be ~ 100%, which indicates that blood supply to the artery has been completely shut off. (b) MESI curves illustrating the change in the shape of the curve as blood flow decreases. The MESI curve obtained after the stroke is found to be similar in shape to that obtained after the animal was sacrificed. This is a qualitative validation of ~ 100% decrease in blood flow in the artery

Fig. 6.
Fig. 6.

MESI technique can predict consistent blood flow changes across the thin skull — craniotomy boundary. (a) Relative blood flow changes estimated using the MESI technique in 3 pairs of regions across the boundary (Figure 4a). The change in blood flow is found to be similar for each pair of regions. (b) Relative blood flow changes estimated using the LSCI technique (at 5ms exposure) in 3 pairs of regions across the boundary (Figure 4a). The change in blood flow is not similar for each pair of regions. This difference is especially prominent over the vessel (Regions 1 and 2)

Fig. 7.
Fig. 7.

Full field relative correlation time maps obtained using the (a) MESI technique (b) LSCI technique (5ms exposure). Three corresponding regions marked in the figures illustrate the superior performance of the MESI technique. The boundary (corresponding to the boundary between the thin skull and the craniotomy) indicated by the red arrow is clearly visible in (b), but not in (a). There is a clear change gradient in the region indicated by the star in (b), but this gradient is invisible in (a). The vessel circled is more visible in (a) compared to (b). Relative correlation time estimates obtained using the MESI technique are not affected by the presence of thinned skull. Hence, similar estimates of blood flow changes are obtained across the boundary between the thin skull and craniotomy regions, leading to the absence of any gradients in blood flow change in (a)

Fig. 8.
Fig. 8.

Comparison of the percentage reduction in blood flow obtained in regions 1 and 2 (Figure 4a) using the MESI technique using two different speckle expressions (Lorentzian: Equation 1 and Gaussian: Equation 2) and multiple single exposure LSCI estimates. MESI estimates are found to be more consistent in estimating blood flow decreases across the boundary between the thin skull and the craniotomy. There is significant difference between the two models in estimating blood flow decrease

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K ( T , τ c ) = { β ρ 2 e 2 x 1 + 2 x 2 x 2 + 4 βρ ( 1 ρ ) e x 1 + x x 2 + ν ne + ν noise } 1 / 2 ,
K ( T , τ c ) = { β ρ 2 e 2 x 2 1 + 2 π x erf ( 2 x ) 2 x 2
+ 2 βρ ( 1 ρ ) e x 2 1 + π x erf ( x ) x 2 + ν ne + ν noise } 1 / 2 ,

Metrics