Abstract

Laser Speckle Contrast Imaging (LSCI) has become a widely used technique to image cerebral blood flow in vivo. However, the quantitative accuracy of blood flow changes measured through the thin skull has not been investigated thoroughly. We recently developed a new Multi Exposure Speckle Imaging (MESI) technique to image blood flow while accounting for the effect of scattering from static tissue elements. In this paper we present the first in vivo demonstration of the MESI technique. The MESI technique was used to image the blood flow changes in a mouse cortex following photothrombotic occlusion of the middle cerebral artery. The Multi Exposure Speckle Imaging technique was found to accurately estimate flow changes due to ischemia in mice brains in vivo. These estimates of these flow changes were found to be unaffected by scattering from thinned skull.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fercher and J. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37(5), 326-330 (1981).
  2. A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic Imaging of Cerebral Blood Flow using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
  3. B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).
  4. T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
  5. D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).
  6. B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method." Med. Eng. Phys. 16(2), 105-11 (1994).
  7. B. Choi, N. Kang, and J. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model," Microvasc. Res. 68, 143-146 (2004).
  8. K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).
  9. J. Briers, "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging," Physiol. Meas. 22, R35-R66 (2001).
  10. D. Boas and A. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15, 011,109 (2010).
  11. R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, "Speckle-visibility spectroscopy: A tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093,110 (2005).Q1
  12. A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, "Robust flow measurement with multi-exposure speckle imaging," Opt. Express 16(3), 1975-1989 (2008).
  13. R. Bonner and R. Nossal, "Model for laser Doppler measurements of blood flow in tissue," Appl. Opt. 20(12), 2097-2107 (1981).
  14. C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).
  15. H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, "Vasoconstrictive neurovascular coupling during focal ischemic depolarizations," J. Cereb. Blood Flow Metab. 26, 1018-1030 (2006).
  16. H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).
  17. S. Yuan, A. Devor, D. Boas, and A. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44(10), 1823-1830 (2005).
  18. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, "Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging," Opt. Lett. 33(24), 2886-2888 (2008).
  19. D. D. Duncan and S. J. Kirkpatrick, "Can laser speckle flowmetry be made a quantitative tool?" J. Opt. Soc. Am. A 25(8), 2088-2094 (2008).
  20. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, "Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging," Opt. Lett. 31(12), 1824-1826 (2006).
  21. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, "Quantitative modeling of laser speckle imaging," Opt. Lett. 31(23), 3465-3467 (2006).
  22. P. Zakharov, A. Volker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, "Dynamic laser speckle imaging of cerebral blood flow," Opt. Express 17, 13904-13917 (2009).
  23. W. Tom, A. Ponticorvo, and A. Dunn, "Efficient Processing of Laser Speckle Contrast Images," IEEE Trans. Med. Imaging 27(12), 1728-1738 (2008).
  24. P. Lemieux and D. Durian, "Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions," J. Opt. Soc. Am. A 16(7), 1651-1664 (1999).
  25. D. Boas and A. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," Journal of Optical Society of America A 14(1), 192-215 (1997).
  26. B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17(5), 497-504 (1985).
  27. J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).
  28. C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, "In vivo cerebrovascular NIRS measurement," Phys. Med. Biol. 46, 2053-2065 (2001).
  29. T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, S. Kasner,  et al., "Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients," Opt. Express 17, 3884-3902 (2009).

2010 (1)

D. Boas and A. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15, 011,109 (2010).

2009 (2)

2008 (4)

2007 (2)

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

2006 (3)

2005 (2)

S. Yuan, A. Devor, D. Boas, and A. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44(10), 1823-1830 (2005).

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, "Speckle-visibility spectroscopy: A tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093,110 (2005).Q1

2004 (5)

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

B. Choi, N. Kang, and J. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model," Microvasc. Res. 68, 143-146 (2004).

2001 (3)

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic Imaging of Cerebral Blood Flow using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).

J. Briers, "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging," Physiol. Meas. 22, R35-R66 (2001).

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, "In vivo cerebrovascular NIRS measurement," Phys. Med. Biol. 46, 2053-2065 (2001).

2000 (1)

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).

1999 (1)

1997 (1)

D. Boas and A. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," Journal of Optical Society of America A 14(1), 192-215 (1997).

1994 (1)

B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method." Med. Eng. Phys. 16(2), 105-11 (1994).

1985 (1)

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17(5), 497-504 (1985).

1981 (2)

A. Fercher and J. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37(5), 326-330 (1981).

R. Bonner and R. Nossal, "Model for laser Doppler measurements of blood flow in tissue," Appl. Opt. 20(12), 2097-2107 (1981).

Abe, H.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).

Atochin, D.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

Ayata, C.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, "Vasoconstrictive neurovascular coupling during focal ischemic depolarizations," J. Cereb. Blood Flow Metab. 26, 1018-1030 (2006).

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

Bacskai, B.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

Bandyopadhyay, R.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, "Speckle-visibility spectroscopy: A tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093,110 (2005).Q1

Boas, D.

D. Boas and A. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15, 011,109 (2010).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, "Vasoconstrictive neurovascular coupling during focal ischemic depolarizations," J. Cereb. Blood Flow Metab. 26, 1018-1030 (2006).

S. Yuan, A. Devor, D. Boas, and A. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44(10), 1823-1830 (2005).

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic Imaging of Cerebral Blood Flow using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).

D. Boas and A. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," Journal of Optical Society of America A 14(1), 192-215 (1997).

Bolay, H.

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic Imaging of Cerebral Blood Flow using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).

Bonner, R.

Borrelli, L.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

Briers, J.

J. Briers, "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging," Physiol. Meas. 22, R35-R66 (2001).

A. Fercher and J. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37(5), 326-330 (1981).

Buck, A.

P. Zakharov, A. Volker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, "Dynamic laser speckle imaging of cerebral blood flow," Opt. Express 17, 13904-13917 (2009).

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, "Quantitative modeling of laser speckle imaging," Opt. Lett. 31(23), 3465-3467 (2006).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).

Burger, C.

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).

Burnett, M.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

Busto, R.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17(5), 497-504 (1985).

Calcinaghi, N.

Cheung, C.

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, "In vivo cerebrovascular NIRS measurement," Phys. Med. Biol. 46, 2053-2065 (2001).

Choe, R.

Choi, B.

B. Choi, N. Kang, and J. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model," Microvasc. Res. 68, 143-146 (2004).

Cucchiara, B.

Culver, J.

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, "In vivo cerebrovascular NIRS measurement," Phys. Med. Biol. 46, 2053-2065 (2001).

Detre, J.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

Devor, A.

Dietrich, W.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17(5), 497-504 (1985).

Dixon, P.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, "Speckle-visibility spectroscopy: A tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093,110 (2005).Q1

Duncan, D. D.

Dunn, A.

D. Boas and A. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15, 011,109 (2010).

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, "Robust flow measurement with multi-exposure speckle imaging," Opt. Express 16(3), 1975-1989 (2008).

W. Tom, A. Ponticorvo, and A. Dunn, "Efficient Processing of Laser Speckle Contrast Images," IEEE Trans. Med. Imaging 27(12), 1728-1738 (2008).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, "Vasoconstrictive neurovascular coupling during focal ischemic depolarizations," J. Cereb. Blood Flow Metab. 26, 1018-1030 (2006).

S. Yuan, A. Devor, D. Boas, and A. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44(10), 1823-1830 (2005).

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic Imaging of Cerebral Blood Flow using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).

Durduran, T.

T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, S. Kasner,  et al., "Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients," Opt. Express 17, 3884-3902 (2009).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

Durian, D.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, "Speckle-visibility spectroscopy: A tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093,110 (2005).Q1

P. Lemieux and D. Durian, "Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions," J. Opt. Soc. Am. A 16(7), 1651-1664 (1999).

Edlow, B.

Fercher, A.

A. Fercher and J. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37(5), 326-330 (1981).

Frosch, M.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

Fukushima, A.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).

Funaki, H.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).

Funaki, S.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).

Furuya, D.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

Garcia-Alloza, M.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

Ginsberg, M.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17(5), 497-504 (1985).

Gittings, A.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, "Speckle-visibility spectroscopy: A tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093,110 (2005).Q1

Gopal, A.

Greenberg, J.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, "In vivo cerebrovascular NIRS measurement," Phys. Med. Biol. 46, 2053-2065 (2001).

Greenberg, S.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

Gursoy-Ozdemir, Y.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).

Haiss, F.

Huang, P.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

Huang, Z.

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).

Hyman, B.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

Jones, P.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, "Vasoconstrictive neurovascular coupling during focal ischemic depolarizations," J. Cereb. Blood Flow Metab. 26, 1018-1030 (2006).

Joo, S.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

Kang, N.

B. Choi, N. Kang, and J. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model," Microvasc. Res. 68, 143-146 (2004).

Kasner, S.

Kim, J.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

Kim, M.

Kim, S.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

Kim, T.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

Kim, Y.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

Kirkpatrick, S. J.

Krasik, T.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

Lee, J.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

Lemieux, P.

Li, P.

Luo, Q.

Moon, K.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

Moskowitz, M.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, "Vasoconstrictive neurovascular coupling during focal ischemic depolarizations," J. Cereb. Blood Flow Metab. 26, 1018-1030 (2006).

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic Imaging of Cerebral Blood Flow using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).

Murciano, J.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

Muzykantov, V.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

Nakatsue, T.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).

Nelson, J.

B. Choi, N. Kang, and J. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model," Microvasc. Res. 68, 143-146 (2004).

Ni, S.

Noda, F.

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

Nossal, R.

Park, M.

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

Parthasarathy, A.

Ponticorvo, A.

W. Tom, A. Ponticorvo, and A. Dunn, "Efficient Processing of Laser Speckle Contrast Images," IEEE Trans. Med. Imaging 27(12), 1728-1738 (2008).

Putt, M.

Ruth, B.

B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method." Med. Eng. Phys. 16(2), 105-11 (1994).

Scheffold, F.

P. Zakharov, A. Volker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, "Dynamic laser speckle imaging of cerebral blood flow," Opt. Express 17, 13904-13917 (2009).

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, "Quantitative modeling of laser speckle imaging," Opt. Lett. 31(23), 3465-3467 (2006).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).

Shah, Q.

Shin, H.

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, "Vasoconstrictive neurovascular coupling during focal ischemic depolarizations," J. Cereb. Blood Flow Metab. 26, 1018-1030 (2006).

Shirakashi, M.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).

Suh, S.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, "Speckle-visibility spectroscopy: A tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093,110 (2005).Q1

Takahashi, K.

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, "In vivo cerebrovascular NIRS measurement," Phys. Med. Biol. 46, 2053-2065 (2001).

Tom, W.

W. Tom, A. Ponticorvo, and A. Dunn, "Efficient Processing of Laser Speckle Contrast Images," IEEE Trans. Med. Imaging 27(12), 1728-1738 (2008).

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, "Robust flow measurement with multi-exposure speckle imaging," Opt. Express 16(3), 1975-1989 (2008).

Volker, A.

Völker, A.

von Schulthess, G.

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).

Wachtel, M.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17(5), 497-504 (1985).

Watson, B.

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17(5), 497-504 (1985).

Weber, B.

P. Zakharov, A. Volker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, "Dynamic laser speckle imaging of cerebral blood flow," Opt. Express 17, 13904-13917 (2009).

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, "Quantitative modeling of laser speckle imaging," Opt. Lett. 31(23), 3465-3467 (2006).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).

Wells-Gray, E. M.

Wyss, M.

P. Zakharov, A. Volker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, "Dynamic laser speckle imaging of cerebral blood flow," Opt. Express 17, 13904-13917 (2009).

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).

Yaoeda, K.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).

Yodh, A.

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, "In vivo cerebrovascular NIRS measurement," Phys. Med. Biol. 46, 2053-2065 (2001).

D. Boas and A. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," Journal of Optical Society of America A 14(1), 192-215 (1997).

Yu, G.

T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, S. Kasner,  et al., "Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients," Opt. Express 17, 3884-3902 (2009).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

Yuan, S.

Zakharov, P.

Zeng, S.

Zhang, L.

Zhang, X.

Zhou, C.

T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, S. Kasner,  et al., "Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients," Opt. Express 17, 3884-3902 (2009).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

Zunzunegui, C.

Am. J. Opthalmol. (1)

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).

Ann. Neurol. (1)

B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17(5), 497-504 (1985).

Appl. Opt. (2)

Brain (1)

H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).

Eur. J. Neurosci. (1)

B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).

IEEE Trans. Med. Imaging (1)

W. Tom, A. Ponticorvo, and A. Dunn, "Efficient Processing of Laser Speckle Contrast Images," IEEE Trans. Med. Imaging 27(12), 1728-1738 (2008).

J. Biomed. Opt. (1)

D. Boas and A. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15, 011,109 (2010).

J. Cereb. Blood Flow Metab. (4)

C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).

H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, "Vasoconstrictive neurovascular coupling during focal ischemic depolarizations," J. Cereb. Blood Flow Metab. 26, 1018-1030 (2006).

T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).

A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic Imaging of Cerebral Blood Flow using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).

J. Opt. Soc. Am. A (2)

Journal of Optical Society of America A (1)

D. Boas and A. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," Journal of Optical Society of America A 14(1), 192-215 (1997).

Med. Eng. Phys. (1)

B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method." Med. Eng. Phys. 16(2), 105-11 (1994).

Microvasc. Res. (1)

B. Choi, N. Kang, and J. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model," Microvasc. Res. 68, 143-146 (2004).

Opt. Commun. (1)

A. Fercher and J. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37(5), 326-330 (1981).

Opt. Express (3)

Opt. Lett. (3)

Phys. Med. Biol. (1)

C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, "In vivo cerebrovascular NIRS measurement," Phys. Med. Biol. 46, 2053-2065 (2001).

Physiol. Meas. (1)

J. Briers, "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging," Physiol. Meas. 22, R35-R66 (2001).

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, "Speckle-visibility spectroscopy: A tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093,110 (2005).Q1

Stroke (1)

D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).

Surg. Neurol. (1)

J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the Multi Exposure Speckle Imaging (MESI) instrument, adapted from our previous publication [12] (b) Representative speckle contrast images of mouse cortex obtained at various camera exposure durations using the MESI instrument

Fig. 2.
Fig. 2.

(a) Speckle contrast image (5ms exposure duration) illustrating the partial craniotomy model. The regions within the closed loops (Regions 1, 3 and 5) are in the craniotomy. Regions outside the closed loops (Regions 2, 4 and 6) are in the thin skull region. Speckle Contrast images of a branch of the MCA, illustrating ischemic stroke induced using photo thrombosis (b) Before stroke (c) After stroke

Fig. 3.
Fig. 3.

(a) Speckle contrast image (5ms exposure) illustrating regions of different flow (b) Time integrated speckle variance curves with decay rates corresponding to flow rates. The data points have been fit to Equation 1

Fig. 4.
Fig. 4.

(a) Illustration of partial craniotomy model. The regions enclosed by the closed loops (regions 1,3 & 5) are located in the craniotomy. Regions outside of the closed loops (regions 2,4 & 6) are located in the thinned (but intact) skull. (b) Time integrated speckle variance curves illustrating the influence of static scattering due to the presence of the thinned skull. A decrease in the value of ρ indicates an increase in the amount of static scattering. Regions 2 and 4 show distinct offset at large exposure durations. This offset it due to increased ν s over the thinned skull

Fig. 5.
Fig. 5.

Relative blood flow change caused due to the ischemic stroke in the branch of the MCA (Region 1 in Figure 4a). (a) Time course of relative blood flow change in Region 1 as estimated using the MESI technique. The flow estimates in first 10 minutes were considered as baseline. The reduction in blood flow due to the stroke, is estimated to be ~ 100%, which indicates that blood supply to the artery has been completely shut off. (b) MESI curves illustrating the change in the shape of the curve as blood flow decreases. The MESI curve obtained after the stroke is found to be similar in shape to that obtained after the animal was sacrificed. This is a qualitative validation of ~ 100% decrease in blood flow in the artery

Fig. 6.
Fig. 6.

MESI technique can predict consistent blood flow changes across the thin skull — craniotomy boundary. (a) Relative blood flow changes estimated using the MESI technique in 3 pairs of regions across the boundary (Figure 4a). The change in blood flow is found to be similar for each pair of regions. (b) Relative blood flow changes estimated using the LSCI technique (at 5ms exposure) in 3 pairs of regions across the boundary (Figure 4a). The change in blood flow is not similar for each pair of regions. This difference is especially prominent over the vessel (Regions 1 and 2)

Fig. 7.
Fig. 7.

Full field relative correlation time maps obtained using the (a) MESI technique (b) LSCI technique (5ms exposure). Three corresponding regions marked in the figures illustrate the superior performance of the MESI technique. The boundary (corresponding to the boundary between the thin skull and the craniotomy) indicated by the red arrow is clearly visible in (b), but not in (a). There is a clear change gradient in the region indicated by the star in (b), but this gradient is invisible in (a). The vessel circled is more visible in (a) compared to (b). Relative correlation time estimates obtained using the MESI technique are not affected by the presence of thinned skull. Hence, similar estimates of blood flow changes are obtained across the boundary between the thin skull and craniotomy regions, leading to the absence of any gradients in blood flow change in (a)

Fig. 8.
Fig. 8.

Comparison of the percentage reduction in blood flow obtained in regions 1 and 2 (Figure 4a) using the MESI technique using two different speckle expressions (Lorentzian: Equation 1 and Gaussian: Equation 2) and multiple single exposure LSCI estimates. MESI estimates are found to be more consistent in estimating blood flow decreases across the boundary between the thin skull and the craniotomy. There is significant difference between the two models in estimating blood flow decrease

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K ( T , τ c ) = { β ρ 2 e 2 x 1 + 2 x 2 x 2 + 4 βρ ( 1 ρ ) e x 1 + x x 2 + ν ne + ν noise } 1 / 2 ,
K ( T , τ c ) = { β ρ 2 e 2 x 2 1 + 2 π x erf ( 2 x ) 2 x 2
+ 2 βρ ( 1 ρ ) e x 2 1 + π x erf ( x ) x 2 + ν ne + ν noise } 1 / 2 ,

Metrics