Abstract

In biomedical photoacoustic imaging the images are proportional to the absorbed optical energy density, and not the optical absorption, which makes it difficult to obtain a quantitatively accurate image showing the concentration of a particular absorbing chromophore from photoacoustic measurements alone. Here it is shown that the spatially varying concentration of a chromophore whose absorption becomes zero above a threshold light fluence can be estimated from photoacoustic images obtained at increasing illumination strengths. This technique provides an alternative to model-based multiwavelength approaches to quantitative photoacoustic imaging, and a new approach to photoacoustic molecular and functional imaging.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).
  2. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).
  3. E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, "In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy," Phys. Med. Biol. 54, 1035-1046 (2009).
  4. L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy, (CRC Press, 2009).
  5. A. A. Oraevsky and L.V. Wang, eds., Photons Plus Ultrasound: Imaging and Sensing, Proc. SPIE 7564756401 (2010).
  6. B. T. Cox, S. R. Arridge, K. Köstli, and P. C. Beard, "Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method," Appl. Opt. 45, 1866-1875 (2006).
  7. H. Jiang, Z. Yuan and X. Gu, "Spatially varying optical and acoustic property reconstruction using finite-elementbased photoacoustic tomography," J. Opt. Soc. Am. A 23(4), 878-888 (2006).
  8. B. T. Cox, S. R. Arridge, and P. C. Beard, "Estimating chromophore distributions from multiwavelength photoacoustic images," J. Opt. Soc. Am. A 26, 443-455 (2009).
  9. J. G. Laufer, B. T. Cox, E. Z. Zhang, and P. C. Beard, "Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme," Appl. Opt. 49, 1219-1233 (2010).
  10. L. Yao, Y. Sun, and H. Jiang, "Transport-based quantitative photoacoustic tomography: simulations and experiments," Phys. Med. Biol. 55, 1917-1934 (2010).
  11. G. Bal and G. Uhlmann, "Inverse diffusion theory of photoacoustics," arXiv: 0910.2503v0911 [math.AP] (2009).
  12. A. Rosenthal, D. Razansky and and V. Ntziachristos, "Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation," IEEE Trans. Med. Imag. 28(12), 1997-2006 (2009).
  13. B. T. Cox, J. G. Laufer, and P. C. Beard, "The challenges for quantitative photoacoustic imaging," Proc. SPIE 7177, 717713 (2009).
  14. A. Marcano, N. Melikechi and G. Verde, "Shift of the absorption spectrum of organic dyes due to saturation," J. Chem. Phys. 113(14), 5830-5835 (2000).
  15. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, "Cyanines during the 1990s: A review," Chem. Rev. 100, 1973-2011 (2000).
  16. C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel, "Photobleaching of Fluorescent Dyes under Conditions used for Single-Molecule Detection: Evidence of Two-Step Photolysis," Anal. Chem. 70(13), 2651-2659 (1998).
  17. S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, "The Shape Transition of Gold Nanorods," Langmuir 15(3), 701-709 (1998).
  18. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses," J. Phys. Chem. B 104, 6152-6163 (2000),
  19. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
  20. J. L. Jiménez Pérez, R. Gutierrez Fuentes, J. F. Sanchez Ramirez, and A. Cruz-Orea, "Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy," Eur. Phys. J. Spc. Top. 153, 159161 (2008).
  21. J. Alper and K. Hamad-Schifferli, "Effect of Ligands on Thermal Dissipation from Gold Nanorods," Langmuir 26(6), 37863789 (2010).
  22. B. T. Cox,"Quantitative Photoacoustic Tomography with Fluence-Dependent Absorbers," in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BWG3.

2010 (4)

A. A. Oraevsky and L.V. Wang, eds., Photons Plus Ultrasound: Imaging and Sensing, Proc. SPIE 7564756401 (2010).

L. Yao, Y. Sun, and H. Jiang, "Transport-based quantitative photoacoustic tomography: simulations and experiments," Phys. Med. Biol. 55, 1917-1934 (2010).

J. Alper and K. Hamad-Schifferli, "Effect of Ligands on Thermal Dissipation from Gold Nanorods," Langmuir 26(6), 37863789 (2010).

J. G. Laufer, B. T. Cox, E. Z. Zhang, and P. C. Beard, "Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme," Appl. Opt. 49, 1219-1233 (2010).

2009 (4)

B. T. Cox, S. R. Arridge, and P. C. Beard, "Estimating chromophore distributions from multiwavelength photoacoustic images," J. Opt. Soc. Am. A 26, 443-455 (2009).

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, "In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy," Phys. Med. Biol. 54, 1035-1046 (2009).

A. Rosenthal, D. Razansky and and V. Ntziachristos, "Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation," IEEE Trans. Med. Imag. 28(12), 1997-2006 (2009).

B. T. Cox, J. G. Laufer, and P. C. Beard, "The challenges for quantitative photoacoustic imaging," Proc. SPIE 7177, 717713 (2009).

2008 (1)

J. L. Jiménez Pérez, R. Gutierrez Fuentes, J. F. Sanchez Ramirez, and A. Cruz-Orea, "Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy," Eur. Phys. J. Spc. Top. 153, 159161 (2008).

2006 (2)

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).

2000 (4)

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses," J. Phys. Chem. B 104, 6152-6163 (2000),

A. Marcano, N. Melikechi and G. Verde, "Shift of the absorption spectrum of organic dyes due to saturation," J. Chem. Phys. 113(14), 5830-5835 (2000).

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, "Cyanines during the 1990s: A review," Chem. Rev. 100, 1973-2011 (2000).

1998 (2)

C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel, "Photobleaching of Fluorescent Dyes under Conditions used for Single-Molecule Detection: Evidence of Two-Step Photolysis," Anal. Chem. 70(13), 2651-2659 (1998).

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, "The Shape Transition of Gold Nanorods," Langmuir 15(3), 701-709 (1998).

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).

Alper, J.

J. Alper and K. Hamad-Schifferli, "Effect of Ligands on Thermal Dissipation from Gold Nanorods," Langmuir 26(6), 37863789 (2010).

Arridge, S. R.

Beard, P. C.

Behera, G. B.

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, "Cyanines during the 1990s: A review," Chem. Rev. 100, 1973-2011 (2000).

Behera, P. K.

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, "Cyanines during the 1990s: A review," Chem. Rev. 100, 1973-2011 (2000).

Behera, R. K.

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, "Cyanines during the 1990s: A review," Chem. Rev. 100, 1973-2011 (2000).

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses," J. Phys. Chem. B 104, 6152-6163 (2000),

Chang, S.-S.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, "The Shape Transition of Gold Nanorods," Langmuir 15(3), 701-709 (1998).

Chen, C.-D.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, "The Shape Transition of Gold Nanorods," Langmuir 15(3), 701-709 (1998).

Cox, B. T.

Cruz-Orea, A.

J. L. Jiménez Pérez, R. Gutierrez Fuentes, J. F. Sanchez Ramirez, and A. Cruz-Orea, "Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy," Eur. Phys. J. Spc. Top. 153, 159161 (2008).

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).

Eggeling, C.

C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel, "Photobleaching of Fluorescent Dyes under Conditions used for Single-Molecule Detection: Evidence of Two-Step Photolysis," Anal. Chem. 70(13), 2651-2659 (1998).

El-Sayed, M. A.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses," J. Phys. Chem. B 104, 6152-6163 (2000),

Gu, X.

Gutierrez Fuentes, R.

J. L. Jiménez Pérez, R. Gutierrez Fuentes, J. F. Sanchez Ramirez, and A. Cruz-Orea, "Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy," Eur. Phys. J. Spc. Top. 153, 159161 (2008).

Hamad-Schifferli, K.

J. Alper and K. Hamad-Schifferli, "Effect of Ligands on Thermal Dissipation from Gold Nanorods," Langmuir 26(6), 37863789 (2010).

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).

Jiang, H.

L. Yao, Y. Sun, and H. Jiang, "Transport-based quantitative photoacoustic tomography: simulations and experiments," Phys. Med. Biol. 55, 1917-1934 (2010).

H. Jiang, Z. Yuan and X. Gu, "Spatially varying optical and acoustic property reconstruction using finite-elementbased photoacoustic tomography," J. Opt. Soc. Am. A 23(4), 878-888 (2006).

Jiménez Pérez, J. L.

J. L. Jiménez Pérez, R. Gutierrez Fuentes, J. F. Sanchez Ramirez, and A. Cruz-Orea, "Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy," Eur. Phys. J. Spc. Top. 153, 159161 (2008).

Kiser, W. L.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).

Köstli, K.

Kruger, G. A.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).

Kruger, R. A.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).

Lai, W.-C.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, "The Shape Transition of Gold Nanorods," Langmuir 15(3), 701-709 (1998).

Laufer, J. G.

J. G. Laufer, B. T. Cox, E. Z. Zhang, and P. C. Beard, "Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme," Appl. Opt. 49, 1219-1233 (2010).

B. T. Cox, J. G. Laufer, and P. C. Beard, "The challenges for quantitative photoacoustic imaging," Proc. SPIE 7177, 717713 (2009).

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, "In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy," Phys. Med. Biol. 54, 1035-1046 (2009).

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses," J. Phys. Chem. B 104, 6152-6163 (2000),

Marcano, A.

A. Marcano, N. Melikechi and G. Verde, "Shift of the absorption spectrum of organic dyes due to saturation," J. Chem. Phys. 113(14), 5830-5835 (2000).

Melikechi, N.

A. Marcano, N. Melikechi and G. Verde, "Shift of the absorption spectrum of organic dyes due to saturation," J. Chem. Phys. 113(14), 5830-5835 (2000).

Miller, K. D.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).

Mishra, A.

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, "Cyanines during the 1990s: A review," Chem. Rev. 100, 1973-2011 (2000).

Mishra, B. K.

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, "Cyanines during the 1990s: A review," Chem. Rev. 100, 1973-2011 (2000).

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses," J. Phys. Chem. B 104, 6152-6163 (2000),

Oraevsky, A. A.

A. A. Oraevsky and L.V. Wang, eds., Photons Plus Ultrasound: Imaging and Sensing, Proc. SPIE 7564756401 (2010).

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).

Pedley, R. B.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, "In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy," Phys. Med. Biol. 54, 1035-1046 (2009).

Reinecke, D. R.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).

Reynolds, H. E.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).

Rigler, R.

C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel, "Photobleaching of Fluorescent Dyes under Conditions used for Single-Molecule Detection: Evidence of Two-Step Photolysis," Anal. Chem. 70(13), 2651-2659 (1998).

Rosenthal, A.

A. Rosenthal, D. Razansky and and V. Ntziachristos, "Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation," IEEE Trans. Med. Imag. 28(12), 1997-2006 (2009).

Sanchez Ramirez, J. F.

J. L. Jiménez Pérez, R. Gutierrez Fuentes, J. F. Sanchez Ramirez, and A. Cruz-Orea, "Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy," Eur. Phys. J. Spc. Top. 153, 159161 (2008).

Schweiger, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).

Seidel, C. A. M.

C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel, "Photobleaching of Fluorescent Dyes under Conditions used for Single-Molecule Detection: Evidence of Two-Step Photolysis," Anal. Chem. 70(13), 2651-2659 (1998).

Shih, C.-W.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, "The Shape Transition of Gold Nanorods," Langmuir 15(3), 701-709 (1998).

Stocia, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).

Sun, Y.

L. Yao, Y. Sun, and H. Jiang, "Transport-based quantitative photoacoustic tomography: simulations and experiments," Phys. Med. Biol. 55, 1917-1934 (2010).

Verde, G.

A. Marcano, N. Melikechi and G. Verde, "Shift of the absorption spectrum of organic dyes due to saturation," J. Chem. Phys. 113(14), 5830-5835 (2000).

Wang, C. R. C.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, "The Shape Transition of Gold Nanorods," Langmuir 15(3), 701-709 (1998).

Wang, L. V.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).

Wang, L.V.

A. A. Oraevsky and L.V. Wang, eds., Photons Plus Ultrasound: Imaging and Sensing, Proc. SPIE 7564756401 (2010).

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).

Widengren, J.

C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel, "Photobleaching of Fluorescent Dyes under Conditions used for Single-Molecule Detection: Evidence of Two-Step Photolysis," Anal. Chem. 70(13), 2651-2659 (1998).

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).

Yao, L.

L. Yao, Y. Sun, and H. Jiang, "Transport-based quantitative photoacoustic tomography: simulations and experiments," Phys. Med. Biol. 55, 1917-1934 (2010).

Yuan, Z.

Zhang, E. Z.

J. G. Laufer, B. T. Cox, E. Z. Zhang, and P. C. Beard, "Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme," Appl. Opt. 49, 1219-1233 (2010).

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, "In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy," Phys. Med. Biol. 54, 1035-1046 (2009).

Anal. Chem. (1)

C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel, "Photobleaching of Fluorescent Dyes under Conditions used for Single-Molecule Detection: Evidence of Two-Step Photolysis," Anal. Chem. 70(13), 2651-2659 (1998).

Appl. Opt. (2)

Chem. Rev. (1)

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, "Cyanines during the 1990s: A review," Chem. Rev. 100, 1973-2011 (2000).

Eur. Phys. J. Spc. Top. (1)

J. L. Jiménez Pérez, R. Gutierrez Fuentes, J. F. Sanchez Ramirez, and A. Cruz-Orea, "Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy," Eur. Phys. J. Spc. Top. 153, 159161 (2008).

IEEE Trans. Med. Imag. (1)

A. Rosenthal, D. Razansky and and V. Ntziachristos, "Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation," IEEE Trans. Med. Imag. 28(12), 1997-2006 (2009).

J. Chem. Phys. (1)

A. Marcano, N. Melikechi and G. Verde, "Shift of the absorption spectrum of organic dyes due to saturation," J. Chem. Phys. 113(14), 5830-5835 (2000).

J. Opt. Soc. Am. A (2)

J. Phys. Chem. B (1)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses," J. Phys. Chem. B 104, 6152-6163 (2000),

Langmuir (2)

J. Alper and K. Hamad-Schifferli, "Effect of Ligands on Thermal Dissipation from Gold Nanorods," Langmuir 26(6), 37863789 (2010).

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, "The Shape Transition of Gold Nanorods," Langmuir 15(3), 701-709 (1998).

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).

Nature Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).

Phys. Med. Biol. (2)

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, "In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy," Phys. Med. Biol. 54, 1035-1046 (2009).

L. Yao, Y. Sun, and H. Jiang, "Transport-based quantitative photoacoustic tomography: simulations and experiments," Phys. Med. Biol. 55, 1917-1934 (2010).

Proc. SPIE (2)

B. T. Cox, J. G. Laufer, and P. C. Beard, "The challenges for quantitative photoacoustic imaging," Proc. SPIE 7177, 717713 (2009).

A. A. Oraevsky and L.V. Wang, eds., Photons Plus Ultrasound: Imaging and Sensing, Proc. SPIE 7564756401 (2010).

Radiology (1)

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).

Other (3)

L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy, (CRC Press, 2009).

G. Bal and G. Uhlmann, "Inverse diffusion theory of photoacoustics," arXiv: 0910.2503v0911 [math.AP] (2009).

B. T. Cox,"Quantitative Photoacoustic Tomography with Fluence-Dependent Absorbers," in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BWG3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The photoacoustic image amplitude at the central point (7.5mm,7.5mm), shown by the solid line, and at the point (3.75mm,3.75mm), shown by the dotted line. In the former case, the nonlinear chromophore is present and image amplitude falls abruptly after step 22 at which the local fluence reaches the threshold value ϕth . At the latter point the only absorption present is due to (linear) background absorbers, so the image amplitude increases in proportion to the incident light intensity.

Fig. 2.
Fig. 2.

A: The true values of the concentration of the nonlinear chromophore (arranged so that they lie between 0 and 1). The image size is 15 mm × 15 mm. B: The estimate of the concentration obtained using Eq. (4).

Fig. 3.
Fig. 3.

Profiles through Figs. 2A and 2B showing the true concentration (dashed line) and its estimate using Eq. (4) (solid line), showing that the concentration of a chromophore whose absorption switches off at some known fluence threshold may be estimated from multiple photoacoustic images obtained at increasing illumination strengths.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

μ a ( x ) = μ a 0 ( x ) + C ( x ) α 0 U ( ϕ t h ϕ ( x ) ) .
h 0 ( x ) = ( μ a 0 ( x ) + C ( x ) α 0 ) ϕ 0 ( x ) .
h n ( x ) = { ( μ a 0 ( x ) + C ( x ) α 0 ) ϕ n ( x ) for x A n , ( μ a 0 ( x ) ϕ n ( x ) for x B n or C n .
ϕ n ( x ) { k ϕ n 1 ( x ) + δ ϕ for x B n , k ϕ n 1 ( x ) elsewhere .
k h n 1 ( x ) h n ( x ) { C ( x ) α 0 k ϕ n 1 ( x ) for x B n , 0 elsewhere .
C ( x ) { ( k h n 1 ( x ) h n ( x ) ) / ( α 0 ϕ t h ) for x B n , 0 elsewhere .
C ( x ) n ( k h n 1 ( x ) h n ( x ) ) / ( α 0 ϕ t h )

Metrics