Abstract

In biomedical photoacoustic imaging the images are proportional to the absorbed optical energy density, and not the optical absorption, which makes it difficult to obtain a quantitatively accurate image showing the concentration of a particular absorbing chromophore from photoacoustic measurements alone. Here it is shown that the spatially varying concentration of a chromophore whose absorption becomes zero above a threshold light fluence can be estimated from photoacoustic images obtained at increasing illumination strengths. This technique provides an alternative to model-based multiwavelength approaches to quantitative photoacoustic imaging, and a new approach to photoacoustic molecular and functional imaging.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study,” Radiology 216, 279–283 (2000)
  2. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain”, Nature Biotech. 21(7), 803–806 (2003)
  3. E.Z. Zhang, J.G. Laufer, R.B. Pedley, and P.C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54, 1035–1046 (2009)
  4. L.V. Wang, ed., Photoacoustic Imaging and Spectroscopy, CRC Press, 2009.
  5. A.A. Oraevsky and L.V. Wang, eds., Photons Plus Ultrasound: Imaging and Sensing, Proc. SPIE 7564 (2010)
  6. B.T. Cox, S. R. Arridge, K. Köstli, and P.C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006)
  7. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23(4), 878–888 (2006)
  8. B.T. Cox, S. R. Arridge, and P.C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A,  26, 443–455 (2009)
  9. J.G. Laufer, B. T. Cox, E.Z. Zhang, and P.C. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010)
  10. L. Yao, Y. Sun, and H. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55, 1917–1934 (2010)
  11. G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” arXiv: 0910.2503v0911 [math.AP] (2009)
  12. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imag. 28(12), 1997–2006 (2009)
  13. B.T. Cox, J.G. Laufer, and P.C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)
  14. A. Marcano, N. Melikechi, and G. Verde, “Shift of the absorption spectrum of organic dyes due to saturation,” J. Chem. Phys. 113(14), 5830–5835 (2000)
  15. A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, “Cyanines during the 1990s: A review,” Chem. Rev. 100, 1973–2011 (2000)
  16. C. Eggeling, J. Widengren, R. Rigler, and C.A.M. Seidel, “Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis,” Anal. Chem. 70(13), 2651–2659 (1998)
  17. S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C.R.C. Wang, “The Shape Transition of Gold Nanorods,” Langmuir 15(3), 701–709 (1998)
  18. S. Link, C. Burda, B. Nikoobakht, and M.A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000)
  19. S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)
  20. J.L. Jiménez Pérez, R. Gutierrez Fuentes, J.F. Sanchez Ramirez, and A. Cruz-Orea, “Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy,” Eur. Phys. J. Special Topics 153, 159161 (2008)
  21. J. Alper and K. Hamad-Schifferli, ”Effect of Ligands on Thermal Dissipation from Gold Nanorods,” Langmuir 26(6), 37863789 (2010)
  22. B.T. Cox, “Quantitative Photoacoustic Tomography with Fluence-Dependent Absorbers,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BWG3.

2010 (4)

J.G. Laufer, B. T. Cox, E.Z. Zhang, and P.C. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010)

L. Yao, Y. Sun, and H. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55, 1917–1934 (2010)

A.A. Oraevsky and L.V. Wang, eds., Photons Plus Ultrasound: Imaging and Sensing, Proc. SPIE 7564 (2010)

J. Alper and K. Hamad-Schifferli, ”Effect of Ligands on Thermal Dissipation from Gold Nanorods,” Langmuir 26(6), 37863789 (2010)

2009 (4)

E.Z. Zhang, J.G. Laufer, R.B. Pedley, and P.C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54, 1035–1046 (2009)

B.T. Cox, S. R. Arridge, and P.C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A,  26, 443–455 (2009)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imag. 28(12), 1997–2006 (2009)

B.T. Cox, J.G. Laufer, and P.C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)

2008 (1)

J.L. Jiménez Pérez, R. Gutierrez Fuentes, J.F. Sanchez Ramirez, and A. Cruz-Orea, “Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy,” Eur. Phys. J. Special Topics 153, 159161 (2008)

2006 (2)

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain”, Nature Biotech. 21(7), 803–806 (2003)

2000 (4)

R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study,” Radiology 216, 279–283 (2000)

S. Link, C. Burda, B. Nikoobakht, and M.A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000)

A. Marcano, N. Melikechi, and G. Verde, “Shift of the absorption spectrum of organic dyes due to saturation,” J. Chem. Phys. 113(14), 5830–5835 (2000)

A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, “Cyanines during the 1990s: A review,” Chem. Rev. 100, 1973–2011 (2000)

1998 (2)

C. Eggeling, J. Widengren, R. Rigler, and C.A.M. Seidel, “Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis,” Anal. Chem. 70(13), 2651–2659 (1998)

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C.R.C. Wang, “The Shape Transition of Gold Nanorods,” Langmuir 15(3), 701–709 (1998)

1993 (1)

S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

Alper, J.

J. Alper and K. Hamad-Schifferli, ”Effect of Ligands on Thermal Dissipation from Gold Nanorods,” Langmuir 26(6), 37863789 (2010)

Arridge, S. R.

Arridge, S.R.

S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

Bal, G.

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” arXiv: 0910.2503v0911 [math.AP] (2009)

Beard, P.C.

Behera, G.B.

A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, “Cyanines during the 1990s: A review,” Chem. Rev. 100, 1973–2011 (2000)

Behera, P.K.

A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, “Cyanines during the 1990s: A review,” Chem. Rev. 100, 1973–2011 (2000)

Behera, R.K.

A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, “Cyanines during the 1990s: A review,” Chem. Rev. 100, 1973–2011 (2000)

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M.A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000)

Chang, S.-S.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C.R.C. Wang, “The Shape Transition of Gold Nanorods,” Langmuir 15(3), 701–709 (1998)

Chen, C.-D.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C.R.C. Wang, “The Shape Transition of Gold Nanorods,” Langmuir 15(3), 701–709 (1998)

Cox, B. T.

Cox, B.T.

B.T. Cox, S. R. Arridge, and P.C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A,  26, 443–455 (2009)

B.T. Cox, J.G. Laufer, and P.C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)

B.T. Cox, S. R. Arridge, K. Köstli, and P.C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006)

B.T. Cox, “Quantitative Photoacoustic Tomography with Fluence-Dependent Absorbers,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BWG3.

Cruz-Orea, A.

J.L. Jiménez Pérez, R. Gutierrez Fuentes, J.F. Sanchez Ramirez, and A. Cruz-Orea, “Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy,” Eur. Phys. J. Special Topics 153, 159161 (2008)

Delpy, D.T.

S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

Eggeling, C.

C. Eggeling, J. Widengren, R. Rigler, and C.A.M. Seidel, “Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis,” Anal. Chem. 70(13), 2651–2659 (1998)

El-Sayed, M.A.

S. Link, C. Burda, B. Nikoobakht, and M.A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000)

Gu, X.

Gutierrez Fuentes, R.

J.L. Jiménez Pérez, R. Gutierrez Fuentes, J.F. Sanchez Ramirez, and A. Cruz-Orea, “Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy,” Eur. Phys. J. Special Topics 153, 159161 (2008)

Hamad-Schifferli, K.

J. Alper and K. Hamad-Schifferli, ”Effect of Ligands on Thermal Dissipation from Gold Nanorods,” Langmuir 26(6), 37863789 (2010)

Hiraoka, M.

S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

Jiang, H.

L. Yao, Y. Sun, and H. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55, 1917–1934 (2010)

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23(4), 878–888 (2006)

Jiménez Pérez, J.L.

J.L. Jiménez Pérez, R. Gutierrez Fuentes, J.F. Sanchez Ramirez, and A. Cruz-Orea, “Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy,” Eur. Phys. J. Special Topics 153, 159161 (2008)

Kiser, W.L.

R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study,” Radiology 216, 279–283 (2000)

Köstli, K.

Kruger, G.A.

R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study,” Radiology 216, 279–283 (2000)

Kruger, R.A.

R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study,” Radiology 216, 279–283 (2000)

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain”, Nature Biotech. 21(7), 803–806 (2003)

Lai, W.-C.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C.R.C. Wang, “The Shape Transition of Gold Nanorods,” Langmuir 15(3), 701–709 (1998)

Laufer, J.G.

J.G. Laufer, B. T. Cox, E.Z. Zhang, and P.C. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010)

E.Z. Zhang, J.G. Laufer, R.B. Pedley, and P.C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54, 1035–1046 (2009)

B.T. Cox, J.G. Laufer, and P.C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M.A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000)

Marcano, A.

A. Marcano, N. Melikechi, and G. Verde, “Shift of the absorption spectrum of organic dyes due to saturation,” J. Chem. Phys. 113(14), 5830–5835 (2000)

Melikechi, N.

A. Marcano, N. Melikechi, and G. Verde, “Shift of the absorption spectrum of organic dyes due to saturation,” J. Chem. Phys. 113(14), 5830–5835 (2000)

Miller, K.D.

R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study,” Radiology 216, 279–283 (2000)

Mishra, A.

A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, “Cyanines during the 1990s: A review,” Chem. Rev. 100, 1973–2011 (2000)

Mishra, B.K.

A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, “Cyanines during the 1990s: A review,” Chem. Rev. 100, 1973–2011 (2000)

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M.A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000)

Ntziachristos, V.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imag. 28(12), 1997–2006 (2009)

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain”, Nature Biotech. 21(7), 803–806 (2003)

Pedley, R.B.

E.Z. Zhang, J.G. Laufer, R.B. Pedley, and P.C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54, 1035–1046 (2009)

Razansky, D.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imag. 28(12), 1997–2006 (2009)

Reinecke, D.R.

R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study,” Radiology 216, 279–283 (2000)

Reynolds, H.E.

R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study,” Radiology 216, 279–283 (2000)

Rigler, R.

C. Eggeling, J. Widengren, R. Rigler, and C.A.M. Seidel, “Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis,” Anal. Chem. 70(13), 2651–2659 (1998)

Rosenthal, A.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imag. 28(12), 1997–2006 (2009)

Sanchez Ramirez, J.F.

J.L. Jiménez Pérez, R. Gutierrez Fuentes, J.F. Sanchez Ramirez, and A. Cruz-Orea, “Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy,” Eur. Phys. J. Special Topics 153, 159161 (2008)

Schweiger, M.

S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

Seidel, C.A.M.

C. Eggeling, J. Widengren, R. Rigler, and C.A.M. Seidel, “Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis,” Anal. Chem. 70(13), 2651–2659 (1998)

Shih, C.-W.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C.R.C. Wang, “The Shape Transition of Gold Nanorods,” Langmuir 15(3), 701–709 (1998)

Stocia, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain”, Nature Biotech. 21(7), 803–806 (2003)

Sun, Y.

L. Yao, Y. Sun, and H. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55, 1917–1934 (2010)

Uhlmann, G.

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” arXiv: 0910.2503v0911 [math.AP] (2009)

Verde, G.

A. Marcano, N. Melikechi, and G. Verde, “Shift of the absorption spectrum of organic dyes due to saturation,” J. Chem. Phys. 113(14), 5830–5835 (2000)

Wang, C.R.C.

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C.R.C. Wang, “The Shape Transition of Gold Nanorods,” Langmuir 15(3), 701–709 (1998)

Wang, L. V.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain”, Nature Biotech. 21(7), 803–806 (2003)

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain”, Nature Biotech. 21(7), 803–806 (2003)

Widengren, J.

C. Eggeling, J. Widengren, R. Rigler, and C.A.M. Seidel, “Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis,” Anal. Chem. 70(13), 2651–2659 (1998)

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain”, Nature Biotech. 21(7), 803–806 (2003)

Yao, L.

L. Yao, Y. Sun, and H. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55, 1917–1934 (2010)

Yuan, Z.

Zhang, E.Z.

J.G. Laufer, B. T. Cox, E.Z. Zhang, and P.C. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010)

E.Z. Zhang, J.G. Laufer, R.B. Pedley, and P.C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54, 1035–1046 (2009)

Anal. Chem. (1)

C. Eggeling, J. Widengren, R. Rigler, and C.A.M. Seidel, “Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis,” Anal. Chem. 70(13), 2651–2659 (1998)

Appl. Opt. (2)

Chem. Rev. (1)

A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, “Cyanines during the 1990s: A review,” Chem. Rev. 100, 1973–2011 (2000)

Eur. Phys. J. Special Topics (1)

J.L. Jiménez Pérez, R. Gutierrez Fuentes, J.F. Sanchez Ramirez, and A. Cruz-Orea, “Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy,” Eur. Phys. J. Special Topics 153, 159161 (2008)

IEEE Trans. Med. Imag. (1)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation,” IEEE Trans. Med. Imag. 28(12), 1997–2006 (2009)

J. Chem. Phys. (1)

A. Marcano, N. Melikechi, and G. Verde, “Shift of the absorption spectrum of organic dyes due to saturation,” J. Chem. Phys. 113(14), 5830–5835 (2000)

J. Opt. Soc. Am. A (2)

J. Phys. Chem. B (1)

S. Link, C. Burda, B. Nikoobakht, and M.A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000)

Langmuir (2)

J. Alper and K. Hamad-Schifferli, ”Effect of Ligands on Thermal Dissipation from Gold Nanorods,” Langmuir 26(6), 37863789 (2010)

S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C.R.C. Wang, “The Shape Transition of Gold Nanorods,” Langmuir 15(3), 701–709 (1998)

Med. Phys. (1)

S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

Nature Biotech. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain”, Nature Biotech. 21(7), 803–806 (2003)

Phys. Med. Biol. (2)

E.Z. Zhang, J.G. Laufer, R.B. Pedley, and P.C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54, 1035–1046 (2009)

L. Yao, Y. Sun, and H. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55, 1917–1934 (2010)

Proc. SPIE (2)

B.T. Cox, J.G. Laufer, and P.C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)

A.A. Oraevsky and L.V. Wang, eds., Photons Plus Ultrasound: Imaging and Sensing, Proc. SPIE 7564 (2010)

Radiology (1)

R.A. Kruger, K.D. Miller, H.E. Reynolds, W.L. Kiser, D.R. Reinecke, and G.A. Kruger, “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study,” Radiology 216, 279–283 (2000)

Other (3)

L.V. Wang, ed., Photoacoustic Imaging and Spectroscopy, CRC Press, 2009.

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” arXiv: 0910.2503v0911 [math.AP] (2009)

B.T. Cox, “Quantitative Photoacoustic Tomography with Fluence-Dependent Absorbers,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BWG3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The photoacoustic image amplitude at the central point (7.5mm,7.5mm), shown by the solid line, and at the point (3.75mm,3.75mm), shown by the dotted line. In the former case, the nonlinear chromophore is present and image amplitude falls abruptly after step 22 at which the local fluence reaches the threshold value ϕth . At the latter point the only absorption present is due to (linear) background absorbers, so the image amplitude increases in proportion to the incident light intensity.

Fig. 2.
Fig. 2.

A: The true values of the concentration of the nonlinear chromophore (arranged so that they lie between 0 and 1). The image size is 15 mm × 15 mm. B: The estimate of the concentration obtained using Eq. (4).

Fig. 3.
Fig. 3.

Profiles through Figs. 2A and 2B showing the true concentration (dashed line) and its estimate using Eq. (4) (solid line), showing that the concentration of a chromophore whose absorption switches off at some known fluence threshold may be estimated from multiple photoacoustic images obtained at increasing illumination strengths.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

μ a ( x ) = μ a 0 ( x ) + C ( x ) α 0 U ( ϕ t h ϕ ( x ) ) .
h 0 ( x ) = ( μ a 0 ( x ) + C ( x ) α 0 ) ϕ 0 ( x ) .
h n ( x ) = { ( μ a 0 ( x ) + C ( x ) α 0 ) ϕ n ( x ) for x A n , ( μ a 0 ( x ) ϕ n ( x ) for x B n or C n .
ϕ n ( x ) { k ϕ n 1 ( x ) + δ ϕ for x B n , k ϕ n 1 ( x ) elsewhere .
k h n 1 ( x ) h n ( x ) { C ( x ) α 0 k ϕ n 1 ( x ) for x B n , 0 elsewhere .
C ( x ) { ( k h n 1 ( x ) h n ( x ) ) / ( α 0 ϕ t h ) for x B n , 0 elsewhere .
C ( x ) n ( k h n 1 ( x ) h n ( x ) ) / ( α 0 ϕ t h )

Metrics