Abstract

Application of photothermal Optical Coherence Tomography (OCT) to detect macrophages in ex vivo rabbit arteries which have engulfed nanoclusters of gold coated iron oxide (nanorose) is reported. Nanorose engulfed by macrophages associated with atherosclerotic lesions in rabbit arteries absorb incident laser (800nm) energy and cause optical pathlength (OP) variation which is measured using photothermal OCT. OP variation in polydimethyl siloxane tissue phantoms containing varying concentrations of nanorose match values predicted from nanoparticle and material properties. Measurement of OP variation in rabbit arteries in response to laser excitation provides an estimate of nanorose concentration in atherosclerotic lesions of 2.5x109 particles/ml. OP variation in atherosclerotic lesions containing macrophages taking up nanorose has a different magnitude and profile from that observed in control thoracic aorta without macrophages and is consistent with macrophage presence as identified with RAM-11 histology staining. Our results suggest that tissue regions with macrophages taking up nanorose can be detected using photothermal OCT.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
    [CrossRef] [PubMed]
  2. P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
    [CrossRef] [PubMed]
  3. M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond) 3(5), 703–717 (2008).
    [CrossRef] [PubMed]
  4. S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold Nanocages for Biomedical Applications,” Adv. Mater. 19(20), 3177–3184 (2007).
    [CrossRef] [PubMed]
  5. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
    [CrossRef] [PubMed]
  6. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
    [CrossRef] [PubMed]
  7. R. Weissleder, “Molecular imaging in cancer,” Science 312(5777), 1168–1171 (2006).
    [CrossRef] [PubMed]
  8. W. Jiang, B. Y. Kim, J. T. Rutka, and W. C. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
    [CrossRef] [PubMed]
  9. K. Carlson, M. Chidley, K.-B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005).
    [CrossRef] [PubMed]
  10. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
    [CrossRef]
  11. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  12. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  13. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  14. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [CrossRef] [PubMed]
  15. M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
    [CrossRef] [PubMed]
  16. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [CrossRef] [PubMed]
  17. A. L. Oldenburg, V. Crecea, S. A. Rinne, and S. A. Boppart, “Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues,” Opt. Express 16(15), 11525–11539 (2008).
    [PubMed]
  18. A. Oldenburg, F. Toublan, K. Suslick, A. Wei, and S. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).
    [CrossRef] [PubMed]
  19. J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
    [CrossRef] [PubMed]
  20. D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [CrossRef] [PubMed]
  21. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
    [CrossRef] [PubMed]
  22. C. Zhou, T.-H. Tsai, D. C. Adler, H.-C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35(5), 700–702 (2010).
    [CrossRef] [PubMed]
  23. J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
    [CrossRef] [PubMed]
  24. L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
    [CrossRef] [PubMed]
  25. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, “Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta,” Appl. Opt. 28(20), 4286–4292 (1989).
    [CrossRef] [PubMed]
  26. S. Prahl, “Mie Scattering Calculator”, http://omlc.ogi.edu/calc/mie_calc.html .
  27. F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
    [CrossRef] [PubMed]
  28. Aurolate, www.Aurolate.com .
  29. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  30. R. Kuranov, A. McElroy, N. Kemp, S. Baranov, J. Taber, and T. Milner, “Gas-cell Referenced Swept Source Phase Sensitive Optical Coherence Tomography,” Opt. Technol. Lett. (accepted).
  31. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
  32. J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
    [CrossRef] [PubMed]
  33. B. C. Wilson, M. S. Patterson, and S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46(5), 601–608 (1987).
    [CrossRef] [PubMed]
  34. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
    [CrossRef]
  35. M. Varma-Nair, J. P. Wesson, and B. Wunderlich, “The thermal properties of polysiloxanes poly(dimethyl siloxane) and poly(diethyl siloxane),” J. Therm. Anal. Calorim. 35(6), 1913–1939 (1989).
    [CrossRef]
  36. F. A. Duck, Physical properties of tissue: a comprehensive reference book (Academic Press, London New York 1990).

2010 (1)

2009 (2)

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

2008 (7)

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond) 3(5), 703–717 (2008).
[CrossRef] [PubMed]

W. Jiang, B. Y. Kim, J. T. Rutka, and W. C. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[CrossRef] [PubMed]

D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

A. L. Oldenburg, V. Crecea, S. A. Rinne, and S. A. Boppart, “Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues,” Opt. Express 16(15), 11525–11539 (2008).
[PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[CrossRef] [PubMed]

2007 (4)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold Nanocages for Biomedical Applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

2006 (5)

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

R. Weissleder, “Molecular imaging in cancer,” Science 312(5777), 1168–1171 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

2005 (4)

2003 (2)

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

1995 (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (2)

M. Varma-Nair, J. P. Wesson, and B. Wunderlich, “The thermal properties of polysiloxanes poly(dimethyl siloxane) and poly(diethyl siloxane),” J. Therm. Anal. Calorim. 35(6), 1913–1939 (1989).
[CrossRef]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, “Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta,” Appl. Opt. 28(20), 4286–4292 (1989).
[CrossRef] [PubMed]

1987 (1)

B. C. Wilson, M. S. Patterson, and S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46(5), 601–608 (1987).
[CrossRef] [PubMed]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Aaron, J.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Adle-Biassette, H.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Adler, D. C.

Akkin, T.

Asmis, R.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Au, L.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold Nanocages for Biomedical Applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[CrossRef] [PubMed]

Baranov, S.

R. Kuranov, A. McElroy, N. Kemp, S. Baranov, J. Taber, and T. Milner, “Gas-cell Referenced Swept Source Phase Sensitive Optical Coherence Tomography,” Opt. Technol. Lett. (accepted).

Boppart, S.

Boppart, S. A.

Bouma, B.

Bugrova, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Carlson, K.

Cense, B.

Chan, W. C.

W. Jiang, B. Y. Kim, J. T. Rutka, and W. C. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[CrossRef] [PubMed]

Chandrasekar, B.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, J.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold Nanocages for Biomedical Applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[CrossRef] [PubMed]

Cheruku, K. K.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Chidley, M.

Chillon, S.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Cho, S. H.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Choma, M. A.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

Choyke, P. L.

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond) 3(5), 703–717 (2008).
[CrossRef] [PubMed]

Clarke, G. D.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Coghlan, L.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Cohen, D. W.

Collier, T.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Connolly, J. L.

Crecea, V.

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

de Boer, J.

de Boer, J. F.

Deorukhkar, A.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Descour, M.

Diagaradjane, P.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Ellerbee, A. K.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

Elliott, A. M.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Zaiat, S.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Feld, M. S.

Feldman, L. J.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Feldman, M. D.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Fercher, A.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Flock, S. T.

B. C. Wilson, M. S. Patterson, and S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46(5), 601–608 (1987).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Follen, M.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

K. Carlson, M. Chidley, K.-B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gillenwater, A.

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Hazle, J. D.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Henin, D.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Hitzenberger, C.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Houlihan, F. M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, S.-W.

Huber, R.

Hyafil, F.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Iftimia, N.

Ingram, D. R.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

Jacob, M.-P.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Jacques, S. L.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Jenkins, J. T.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Jiang, W.

W. Jiang, B. Y. Kim, J. T. Rutka, and W. C. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[CrossRef] [PubMed]

Johnston, K. P.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Joo, C.

José-Yacamán, M.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Kamp, G.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Kang, H. W.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Keijzer, M.

Kemp, N.

R. Kuranov, A. McElroy, N. Kemp, S. Baranov, J. Taber, and T. Milner, “Gas-cell Referenced Swept Source Phase Sensitive Optical Coherence Tomography,” Opt. Technol. Lett. (accepted).

Khlebtsov, B.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Kim, B. Y.

W. Jiang, B. Y. Kim, J. T. Rutka, and W. C. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[CrossRef] [PubMed]

Kim, J.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[CrossRef] [PubMed]

Kirillin, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Kobayashi, H.

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond) 3(5), 703–717 (2008).
[CrossRef] [PubMed]

Kolodner, P.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Krishnan, S.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Kumar, S.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Kunnavakkam, M. V.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Kuranov, R.

R. Kuranov, A. McElroy, N. Kemp, S. Baranov, J. Taber, and T. Milner, “Gas-cell Referenced Swept Source Phase Sensitive Optical Coherence Tomography,” Opt. Technol. Lett. (accepted).

Laissy, J.-P.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Larson, T. A.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Lee, H.-C.

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Letourneur, D.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Li, X.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold Nanocages for Biomedical Applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[CrossRef] [PubMed]

Liddle, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Longmire, M.

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond) 3(5), 703–717 (2008).
[CrossRef] [PubMed]

Louedec, L.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Lu, X.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold Nanocages for Biomedical Applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[CrossRef] [PubMed]

Ma, L. L.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Mazighi, M.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

McElroy, A.

R. Kuranov, A. McElroy, N. Kemp, S. Baranov, J. Taber, and T. Milner, “Gas-cell Referenced Swept Source Phase Sensitive Optical Coherence Tomography,” Opt. Technol. Lett. (accepted).

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Milner, T.

R. Kuranov, A. McElroy, N. Kemp, S. Baranov, J. Taber, and T. Milner, “Gas-cell Referenced Swept Source Phase Sensitive Optical Coherence Tomography,” Opt. Technol. Lett. (accepted).

Milner, T. E.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[CrossRef] [PubMed]

Mondelblatt, A.

Nalamasu, O.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Nitin, N.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Oh, J.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[CrossRef] [PubMed]

Oldenburg, A.

Oldenburg, A. L.

Paramita, V.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Paranjape, A. S.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Park, B. H.

Park, H. C.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Park, S. Y.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Patterson, M. S.

B. C. Wilson, M. S. Patterson, and S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46(5), 601–608 (1987).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Richards-Kortum, R.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

K. Carlson, M. Chidley, K.-B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

Rinne, S. A.

Rogers, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Rutka, J. T.

W. Jiang, B. Y. Kim, J. T. Rutka, and W. C. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[CrossRef] [PubMed]

Sanghi, P.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Schlax, M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwartz, J.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Shentu, S.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Shetty, A.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Shirmanova, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Sirotkina, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Skala, M. C.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Skrabalak, S. E.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold Nanocages for Biomedical Applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[CrossRef] [PubMed]

Sokolov, K.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Stafford, R. J.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sung, K.-B.

Suslick, K.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Taber, J.

R. Kuranov, A. McElroy, N. Kemp, S. Baranov, J. Taber, and T. Milner, “Gas-cell Referenced Swept Source Phase Sensitive Optical Coherence Tomography,” Opt. Technol. Lett. (accepted).

Tam, J. M.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Tam, J. O.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Tchétché, D.

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

Tearney, G.

Toublan, F.

Travis, K.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Tsai, T.-H.

Tunnell, J. W.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Vakoc, B.

Varma-Nair, M.

M. Varma-Nair, J. P. Wesson, and B. Wunderlich, “The thermal properties of polysiloxanes poly(dimethyl siloxane) and poly(diethyl siloxane),” J. Therm. Anal. Calorim. 35(6), 1913–1939 (1989).
[CrossRef]

Villard, J. W.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Wang, J. C.

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

Wang, T.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Wang, Y.

Wax, A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Wei, A.

Weissleder, R.

R. Weissleder, “Molecular imaging in cancer,” Science 312(5777), 1168–1171 (2006).
[CrossRef] [PubMed]

Wesson, J. P.

M. Varma-Nair, J. P. Wesson, and B. Wunderlich, “The thermal properties of polysiloxanes poly(dimethyl siloxane) and poly(diethyl siloxane),” J. Therm. Anal. Calorim. 35(6), 1913–1939 (1989).
[CrossRef]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Wilson, B. C.

B. C. Wilson, M. S. Patterson, and S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46(5), 601–608 (1987).
[CrossRef] [PubMed]

Wunderlich, B.

M. Varma-Nair, J. P. Wesson, and B. Wunderlich, “The thermal properties of polysiloxanes poly(dimethyl siloxane) and poly(diethyl siloxane),” J. Therm. Anal. Calorim. 35(6), 1913–1939 (1989).
[CrossRef]

Xia, Y.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold Nanocages for Biomedical Applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[CrossRef] [PubMed]

Yazdanfar, S.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

Yun, S.

Zagaynova, E.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Zhou, C.

ACS Nano (1)

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold Nanocages for Biomedical Applications,” Adv. Mater. 19(20), 3177–3184 (2007).
[CrossRef] [PubMed]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Arterioscler. Thromb. Vasc. Biol. (1)

F. Hyafil, J.-P. Laissy, M. Mazighi, D. Tchétché, L. Louedec, H. Adle-Biassette, S. Chillon, D. Henin, M.-P. Jacob, D. Letourneur, and L. J. Feldman, “Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration,” Arterioscler. Thromb. Vasc. Biol. 26(1), 176–181 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

J. Therm. Anal. Calorim. (1)

M. Varma-Nair, J. P. Wesson, and B. Wunderlich, “The thermal properties of polysiloxanes poly(dimethyl siloxane) and poly(diethyl siloxane),” J. Therm. Anal. Calorim. 35(6), 1913–1939 (1989).
[CrossRef]

Lasers Surg. Med. (2)

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Nano Lett. (3)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, “Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy,” Nano Lett. 8(5), 1492–1500 (2008).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Nanomedicine (Lond) (1)

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond) 3(5), 703–717 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

W. Jiang, B. Y. Kim, J. T. Rutka, and W. C. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Opt. Technol. Lett. (1)

R. Kuranov, A. McElroy, N. Kemp, S. Baranov, J. Taber, and T. Milner, “Gas-cell Referenced Swept Source Phase Sensitive Optical Coherence Tomography,” Opt. Technol. Lett. (accepted).

Photochem. Photobiol. (1)

B. C. Wilson, M. S. Patterson, and S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46(5), 601–608 (1987).
[CrossRef] [PubMed]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

R. Weissleder, “Molecular imaging in cancer,” Science 312(5777), 1168–1171 (2006).
[CrossRef] [PubMed]

Other (4)

M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).

Aurolate, www.Aurolate.com .

S. Prahl, “Mie Scattering Calculator”, http://omlc.ogi.edu/calc/mie_calc.html .

F. A. Duck, Physical properties of tissue: a comprehensive reference book (Academic Press, London New York 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a). Diagram of photothermal OCT experimental setup. (b) Identification of “hot spot” in recorded infrared image

Fig. 2
Fig. 2

OP variation (δ (z = 0,t)) of the air-phantom interface of control (black) and nanorose (grey) tissue phantom (6.3 x109 nanoroses/ml) measured by photothermal OCT in response to intensity-modulated (fl = 50 Hz) laser (800nm) excitation.

Fig. 3
Fig. 3

OPMA (δ(z = 0,fl)) of the air-phantom interface vs. nanorose concentration computed from photothermal OCT M-mode images in response to intensity-modulated (f l = 50 Hz) laser (800nm) excitation ( × ). Solid line is linear least squares fit.

Fig. 4
Fig. 4

Depth resolved OPMA (δ(z,fl )) vs. optical depth (z) in tissue phantoms with variable nanorose concentration in response to intensity-modulated (fl = 50 Hz) laser (800nm) excitation (◆-6.4 x109 nanoroses/ml; × - 3.2 x109 nanoroses/ml; ■-3.2 x108 nanoroses/ml)

Fig. 5
Fig. 5

OP (δ(z = 0,t)) variation at the surface (z = 0) in macrophage-rich and control rabbit aorta specimens.

Fig. 6
Fig. 6

Replicate OPMA (nm) and optical depth (microns) measurements in three rabbits measured in each of two anatomical locations [A: Abdomen (injured), T: Thorax (control)] at up to six different depths. Animals are identified by color (blue, green, orange) and replicates by symbol (triangle, dot).

Fig. 7
Fig. 7

Microscopy images of macrophage-rich and control sections. Macrophage-rich abdominal (left column) and control thoracic aorta (right column); Brightfield RAM-11 stained (top Row) and darkfield (bottom row) unstained microscopy images. Scale bar = 50 microns.

Fig. 8
Fig. 8

Phantom and scatterer

Tables (1)

Tables Icon

Table 1 OPMA per unit depth (calculated and measured) for different concentrations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ ( z = l 0 , f l ) =   α ( 1 + υ ) 3 ( 1 υ ) Z 1 Z 2 Δ T l f ( z ) d z
Δ T l f ( z ) =   σ N ϕ ( z ) 2 ρ C f l + μ P D M S ϕ ( z ) 2 ρ C f l
δ ( z = l 0 , f l ) =   α ( 1 + υ ) σ ϕ l 0 6 ( 1 υ ) ρ C f l N +   α ( 1 + υ ) μ P D M S ϕ l 0 6 ( 1 υ ) ρ C f l l
d δ d N  =  α σ ϕ l 0 2 ρ C f l l  
δ ( z , f l ) =   [ ( n 0 1 )   α l 0 +   l 0   δ n δ T     z   ( n o α   + δ n δ T ) ] Δ T
δ ( z   = l 0 , f l ) =   l 0 α Δ T

Metrics