Abstract

Optical imaging is emerging as a non-invasive and non-ionizing method for breast cancer diagnosis. A hand-held optical imager has been developed with coregistration facilities towards flexible imaging of different tissue volumes and curvatures in near real-time. Herein, fluorescence-enhanced optical imaging experiments are performed to demonstrate deeper target detection under perfect and imperfect (100:1) uptake conditions in (liquid) tissue phantoms and in vitro. Upon summation of multiple scans (fluorescence intensity images), fluorescent targets are detected at greater depths than from single scan alone.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: a review,” Med. Eng. Phys. 31(5), 495–509 (2009).
    [CrossRef] [PubMed]
  2. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
    [CrossRef] [PubMed]
  3. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
    [CrossRef] [PubMed]
  4. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [CrossRef] [PubMed]
  5. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
    [CrossRef] [PubMed]
  6. B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77(6), 064301 (2006).
    [CrossRef]
  7. J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35(7), 3354–3363 (2008).
    [CrossRef] [PubMed]
  8. J. Ge, S. J. Erickson, and A. Godavarty, “Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies,” Appl. Opt. 48(33), 6408–6416 (2009).
    [CrossRef] [PubMed]
  9. S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: In vitro and in vivo fluorescence studies,” Transl Oncol 3(1), 16–22 (2010).
    [PubMed]
  10. S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81(2), 023702 (2010).
    [CrossRef] [PubMed]
  11. A. Godavarty, C. Zhang, M. J. Eppstein, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31(2), 183–190 (2004).
    [CrossRef] [PubMed]
  12. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
    [CrossRef] [PubMed]

2010 (2)

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: In vitro and in vivo fluorescence studies,” Transl Oncol 3(1), 16–22 (2010).
[PubMed]

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81(2), 023702 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35(7), 3354–3363 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77(6), 064301 (2006).
[CrossRef]

2005 (1)

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

2004 (2)

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[CrossRef] [PubMed]

A. Godavarty, C. Zhang, M. J. Eppstein, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31(2), 183–190 (2004).
[CrossRef] [PubMed]

2001 (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Arridge, S. R.

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Bevilacqua, F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Briest, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Cerussi, A. E.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Chance, B.

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77(6), 064301 (2006).
[CrossRef]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Chen, Y.

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77(6), 064301 (2006).
[CrossRef]

Choe, R.

Conant, E. F.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Corlu, A.

Czerniecki, B. J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Durduran, T.

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Eppstein, M. J.

A. Godavarty, C. Zhang, M. J. Eppstein, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31(2), 183–190 (2004).
[CrossRef] [PubMed]

Erickson, S. J.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81(2), 023702 (2010).
[CrossRef] [PubMed]

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: In vitro and in vivo fluorescence studies,” Transl Oncol 3(1), 16–22 (2010).
[PubMed]

J. Ge, S. J. Erickson, and A. Godavarty, “Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies,” Appl. Opt. 48(33), 6408–6416 (2009).
[CrossRef] [PubMed]

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: a review,” Med. Eng. Phys. 31(5), 495–509 (2009).
[CrossRef] [PubMed]

Ge, J.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81(2), 023702 (2010).
[CrossRef] [PubMed]

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: In vitro and in vivo fluorescence studies,” Transl Oncol 3(1), 16–22 (2010).
[PubMed]

J. Ge, S. J. Erickson, and A. Godavarty, “Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies,” Appl. Opt. 48(33), 6408–6416 (2009).
[CrossRef] [PubMed]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35(7), 3354–3363 (2008).
[CrossRef] [PubMed]

Godavarty, A.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81(2), 023702 (2010).
[CrossRef] [PubMed]

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: In vitro and in vivo fluorescence studies,” Transl Oncol 3(1), 16–22 (2010).
[PubMed]

J. Ge, S. J. Erickson, and A. Godavarty, “Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies,” Appl. Opt. 48(33), 6408–6416 (2009).
[CrossRef] [PubMed]

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: a review,” Med. Eng. Phys. 31(5), 495–509 (2009).
[CrossRef] [PubMed]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35(7), 3354–3363 (2008).
[CrossRef] [PubMed]

A. Godavarty, C. Zhang, M. J. Eppstein, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31(2), 183–190 (2004).
[CrossRef] [PubMed]

Holcombe, R. F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[CrossRef] [PubMed]

Hwang, E.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Jakubowski, D.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Orel, S. G.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Regalado, S.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81(2), 023702 (2010).
[CrossRef] [PubMed]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35(7), 3354–3363 (2008).
[CrossRef] [PubMed]

Rosen, M. A.

Sanchez, A.

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: In vitro and in vivo fluorescence studies,” Transl Oncol 3(1), 16–22 (2010).
[PubMed]

Schnall, M. D.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Schweiger, M.

Sevick-Muraca, E. M.

A. Godavarty, C. Zhang, M. J. Eppstein, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31(2), 183–190 (2004).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Wen, S.

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77(6), 064301 (2006).
[CrossRef]

Yodh, A. G.

Zhang, C.

A. Godavarty, C. Zhang, M. J. Eppstein, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31(2), 183–190 (2004).
[CrossRef] [PubMed]

Zhang, J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Zhao, Z.

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77(6), 064301 (2006).
[CrossRef]

Zhu, B.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81(2), 023702 (2010).
[CrossRef] [PubMed]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35(7), 3354–3363 (2008).
[CrossRef] [PubMed]

Acad. Radiol. (2)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12(8), 925–933 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Biomed. Opt. (2)

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Med. Eng. Phys. (1)

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: a review,” Med. Eng. Phys. 31(5), 495–509 (2009).
[CrossRef] [PubMed]

Med. Phys. (2)

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35(7), 3354–3363 (2008).
[CrossRef] [PubMed]

A. Godavarty, C. Zhang, M. J. Eppstein, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31(2), 183–190 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Rev. Sci. Instrum. (2)

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81(2), 023702 (2010).
[CrossRef] [PubMed]

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77(6), 064301 (2006).
[CrossRef]

Transl Oncol (1)

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: In vitro and in vivo fluorescence studies,” Transl Oncol 3(1), 16–22 (2010).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Instrumentation for the hand-held probe based optical imaging system.

Fig. 2
Fig. 2

Three-step coregistered imaging process. In Step #1, the source and detector locations are tracked in real-time with respect to the phantom. In Step #2, a raw image (of optical measurement) is collected and used to generate a 2D surface contour plot of the corresponding (here fluorescence intensity) data. In Step #3, the positional information is used to accurately coregister the image to the probe’s location on the discretized phantom mesh.

Fig. 3
Fig. 3

Experimental set-up for phantom studies. (A) A spherical target filled with 1 µM indocyanine green is enclosed within the cubical phantom to represent a tumor. (B) The phantom is composed of a 1% Liposyn solution to mimic the optical properties of human breast tissue.

Fig. 4
Fig. 4

Coregistered images from single scans (2D contour plots of fluorescence intensity data) at four probe positions for experimental case #12 (a 0.45 cm3 fluorescent target placed 3.0 cm deep, x-dimension in-vitro phantom under T:B = 1:0). In each image, the white dotted line represents the probe position with respect to the phantom and the black open circle represents the true target location.

Fig. 5
Fig. 5

Summated image of multiple scans shown in Fig. 4 (experimental case #12). The summed image represents summation of 8 single scans, where 2 scans were collected at each of the 4 probe positions shown in Fig. 4. The black open circle represents the true target location.

Fig. 6
Fig. 6

Summed images of multiple coregistered scans from the four best experimental cases listed in Table 1. The black open circle indicates the true target location for each case.

Tables (1)

Tables Icon

Table 1 Summary of experimental studies in which a target was detected in tissue phantoms and in vitro. The cases where the deepest target was detected for phantom or in vitro, and perfect or imperfect uptake are highlighted in red.

Metrics