Abstract

The adaptive optics scanning laser ophthalmoscope (AOSLO) was first developed in 2002 and since then the technology has been adopted in several laboratories around the world, for both clinical and psychophysical research. There have been a few major design implementations of the AOSLO. The first used on-axis tilted spherical mirrors in a planar arrangement, and the second minimized the build up of astigmatism present in the first design by using a non-planar arrangement. Other designs have avoided astigmatism by using custom-made toroidal mirrors or by using lenses on-axis, rather than mirrors. We present a new design implementation for an AOSLO that maintains a planar optical alignment without the build up astigmatism using compact, reconfigurable modules based on an Offner relay system. We additionally use an off-the-shelf digital oscilloscope for data capture and custom-written Python code for generating and analyzing the retinal images. This design results in a compact system that is simple to align and, being composed of modular relays, has the potential for additional components to be added. We show that this system maintains diffraction-limited image quality across the field of view and that cones are clearly resolved in the central retina. The modular relay design is generally applicable to any system requiring one or more components in the pupil conjugate plane. This is likely to be useful for any point-scanned system, such as a standard scanning laser ophthalmoscope or non-ophthalmic confocal imaging system.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking

R. Daniel Ferguson, Zhangyi Zhong, Daniel X. Hammer, Mircea Mujat, Ankit H. Patel, Cong Deng, Weiyao Zou, and Stephen A. Burns
J. Opt. Soc. Am. A 27(11) A265-A277 (2010)

In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors

Zhuolin Liu, Omer P. Kocaoglu, and Donald T. Miller
Biomed. Opt. Express 4(12) 3007-3030 (2013)

High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors

Diana C. Chen, Steven M. Jones, Dennis A. Silva, and Scot S. Olivier
J. Opt. Soc. Am. A 24(5) 1305-1312 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughs, and O. Pamerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980).
    [Crossref] [PubMed]
  2. R. H. Webb and G. W. Hughs, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28, 488–492 (1981).
    [Crossref] [PubMed]
  3. R. H. Webb, G. W. Hughs, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
    [Crossref] [PubMed]
  4. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref] [PubMed]
  5. S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
    [Crossref] [PubMed]
  6. J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging–clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
    [Crossref] [PubMed]
  7. T. Y. P. Chui, D. A. Van Nasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3, 2537–2549 (2012).
    [Crossref] [PubMed]
  8. D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
    [Crossref]
  9. D. Scoles, Y. N Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express 4(9), 1710–1723 (2013).
    [Crossref] [PubMed]
  10. E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
    [Crossref] [PubMed]
  11. W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
    [Crossref] [PubMed]
  12. J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
    [Crossref] [PubMed]
  13. Z. Zhong, G. Huang, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
    [Crossref] [PubMed]
  14. J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” Proceedings of the Image Registration Workshop, NASA (1997).
  15. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
    [Crossref]
  16. L. K. Young, A. K. Hauperich, T. J. Morris, C. D. Saunter, and H. E. Smithson, “Recording eye movements with a new AOSLO: simulation, measurement and evaluation,” J. Vis. 177, 34 (2017).
    [Crossref]
  17. A. Roorda, “Method and apparatus for using adaptive optics in a scanning laser ophthalmoscope,” US6890076 B2 (2005).
  18. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
    [Crossref] [PubMed]
  19. D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
    [Crossref] [PubMed]
  20. Z. Liu, O. P. Kocaoglu, and Donald T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4, 3007–3030 (2013).
    [Crossref]
  21. F. Felberer, J. S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20(16), 17297–17310 (2012).
    [Crossref] [PubMed]
  22. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express,  18(11), 11607–11621 (2010).
    [Crossref] [PubMed]
  23. D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. P. Chui, J. D. Akula, and A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A 29(12), 2598–2607 (2012).
    [Crossref]
  24. K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).
  25. M. Salas, W. Drexler, X. Levecq, B. Lamory, M. Ritter, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting,” Biomed. Opt. Express 7(5), 1783–1796 (2016).
    [Crossref] [PubMed]
  26. S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for Efficient Numerical Computation,” Comput. Sci. Eng. 13, 22–30 (2011).
    [Crossref]
  27. J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
    [Crossref]
  28. A. Offner, “New Concepts in Projection Mask Aligners,” Opt. Eng. 14(2), 142130 (1975).
    [Crossref]
  29. R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
    [Crossref]
  30. D.L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67(3), 370–375 (1977).
    [Crossref]
  31. M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5252, 513320 (2004).
  32. I. Iglesias and P. Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25, 1804–1806 (2000).
    [Crossref]
  33. J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401 (2004).
    [Crossref]
  34. D. Catlin and C. Dainty, “High-resolution imaging of the human retina with a Fourier deconvolution technique,” J. Opt. Soc. Am. A 19, 1515–1523 (2002).
    [Crossref]

2017 (3)

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

L. K. Young, A. K. Hauperich, T. J. Morris, C. D. Saunter, and H. E. Smithson, “Recording eye movements with a new AOSLO: simulation, measurement and evaluation,” J. Vis. 177, 34 (2017).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

2016 (1)

2014 (3)

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
[Crossref]

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

2013 (3)

2012 (4)

2011 (3)

2010 (1)

2005 (2)

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[Crossref]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[Crossref] [PubMed]

2004 (2)

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5252, 513320 (2004).

J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401 (2004).
[Crossref]

2002 (2)

2000 (1)

1987 (1)

1981 (1)

R. H. Webb and G. W. Hughs, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28, 488–492 (1981).
[Crossref] [PubMed]

1980 (1)

1977 (1)

1975 (1)

A. Offner, “New Concepts in Projection Mask Aligners,” Opt. Eng. 14(2), 142130 (1975).
[Crossref]

1965 (1)

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Akula, J. D.

Artal, P.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

I. Iglesias and P. Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25, 1804–1806 (2000).
[Crossref]

Atchison, D. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Burns, S. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Z. Zhong, G. Huang, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

T. Y. P. Chui, D. A. Van Nasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3, 2537–2549 (2012).
[Crossref] [PubMed]

Campbell, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Campbell, M. C. W.

Carroll, J.

D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
[Crossref]

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging–clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Carroll, Joseph

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Catlin, D.

Cense, B.

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Chen, D.

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Choi, S. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Christou, J. C.

Chui, T. Y. P.

Chung, M. M.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Colbert, S. C.

S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for Efficient Numerical Computation,” Comput. Sci. Eng. 13, 22–30 (2011).
[Crossref]

Curio, C. A.

D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
[Crossref]

Dainty, C.

Delori, F. C.

Doble, N.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Donnelly, W.

Drexler, W.

Dubis, A. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Dubra, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
[Crossref]

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging–clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

D. Scoles, Y. N Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express 4(9), 1710–1723 (2013).
[Crossref] [PubMed]

A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
[Crossref] [PubMed]

Duncan, J. L.

Elsner, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Estribeau, M.

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5252, 513320 (2004).

Felberer, F.

Ferguson, R. D.

Fischer, W.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Fishman, G. A.

D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
[Crossref]

Fried, D.L.

Fulton, A. B.

Granger, C. E.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Hafner, J.

Hammer, D. X.

Hampson, K. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Harmening, W. M.

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

Hauperich, A. K.

L. K. Young, A. K. Hauperich, T. J. Morris, C. D. Saunter, and H. E. Smithson, “Recording eye movements with a new AOSLO: simulation, measurement and evaluation,” J. Vis. 177, 34 (2017).
[Crossref]

Herbert, T. J.

Hitzenberger, C. K.

Huang, G.

Z. Zhong, G. Huang, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

Hughs, G. W.

Hunter, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Hunter, J. J.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

Iftimia, N.

Iglesias, I.

Jones, S. M.

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Jonnal, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Kawakami, T.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Kay, D. B.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging–clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Kocaoglu, O. P.

Kroisamer, J. S.

Lamory, B.

Langlo, C. S.

D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
[Crossref]

Latchney, L. R.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Legras, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Levecq, X.

Liu, Z.

Lombardo, M.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging–clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Lue, N.

Lundstrom, L.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Magnan, P.

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5252, 513320 (2004).

Marcos, S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Martin, J. A.

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[Crossref] [PubMed]

Mead, R.

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Merigan, W. H.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Merino, D.

Metha, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Miller, D. T.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Miller, Donald T.

Morris, T. J.

L. K. Young, A. K. Hauperich, T. J. Morris, C. D. Saunter, and H. E. Smithson, “Recording eye movements with a new AOSLO: simulation, measurement and evaluation,” J. Vis. 177, 34 (2017).
[Crossref]

Mujat, M.

Mulligan, J. B.

J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” Proceedings of the Image Registration Workshop, NASA (1997).

Nelder, J. A.

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Nozato, K.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

Offner, A.

A. Offner, “New Concepts in Projection Mask Aligners,” Opt. Eng. 14(2), 142130 (1975).
[Crossref]

Olivier, S. S.

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Palczewska, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Pamerantzeff, O.

Paques, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Patel, A.

Patel, A. H.

Petrig, B. L.

Z. Zhong, G. Huang, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

Pircher, M.

Plumb, E.

Prager, S.

Queener, H.

Rha, J.

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Ritter, M.

Romero-Borja, F.

Roorda, A.

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[Crossref] [PubMed]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[Crossref] [PubMed]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[Crossref]

J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401 (2004).
[Crossref]

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

A. Roorda, “Method and apparatus for using adaptive optics in a scanning laser ophthalmoscope,” US6890076 B2 (2005).

Rossi, E.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Rossi, E. A.

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

Saito, K.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

Salas, M.

Saunter, C. D.

L. K. Young, A. K. Hauperich, T. J. Morris, C. D. Saunter, and H. E. Smithson, “Recording eye movements with a new AOSLO: simulation, measurement and evaluation,” J. Vis. 177, 34 (2017).
[Crossref]

Schallek, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

Schwarz, C.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Scoles, D.

D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
[Crossref]

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging–clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

D. Scoles, Y. N Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express 4(9), 1710–1723 (2013).
[Crossref] [PubMed]

Sharma, R.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Sincich, L. C.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

Smithson, H. E.

L. K. Young, A. K. Hauperich, T. J. Morris, C. D. Saunter, and H. E. Smithson, “Recording eye movements with a new AOSLO: simulation, measurement and evaluation,” J. Vis. 177, 34 (2017).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Song, H.

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

Stevenson, S. B.

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[Crossref]

Sulai, Y.

Sulai, Y. N

D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
[Crossref]

D. Scoles, Y. N Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express 4(9), 1710–1723 (2013).
[Crossref] [PubMed]

Suzuki, K.

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

Tiruveedhula, P.

Tuten, W. S.

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

van der Walt, S.

S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for Efficient Numerical Computation,” Comput. Sci. Eng. 13, 22–30 (2011).
[Crossref]

Van Nasdale, D. A.

Varoquaux, G.

S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for Efficient Numerical Computation,” Comput. Sci. Eng. 13, 22–30 (2011).
[Crossref]

Walters, S.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Webb, R. H.

Werner, J. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Williams, D. R.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401 (2004).
[Crossref]

Yang, Q.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Yoon, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Young, L. K.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

L. K. Young, A. K. Hauperich, T. J. Morris, C. D. Saunter, and H. E. Smithson, “Recording eye movements with a new AOSLO: simulation, measurement and evaluation,” J. Vis. 177, 34 (2017).
[Crossref]

Zawadzki, R. J.

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Zhang, J.

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Zhang, Y.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Zhong, Z.

Z. Zhong, G. Huang, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (6)

Comput. J. (1)

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Comput. Sci. Eng. (1)

S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for Efficient Numerical Computation,” Comput. Sci. Eng. 13, 22–30 (2011).
[Crossref]

Curr. Eye Res. (1)

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging–clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

R. H. Webb and G. W. Hughs, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28, 488–492 (1981).
[Crossref] [PubMed]

Invest. Ophthalmic. Vis. Sci. (1)

D. Scoles, Y. N Sulai, C. S. Langlo, G. A. Fishman, C. A. Curio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmic. Vis. Sci. 55(7), 4244–4251 (2014).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

K. Saito, K. Nozato, K. Suzuki, A. Roorda, A. Dubra, H. Song, J. J. Hunter, D. R. Williams, and E. A. Rossi, “Rods and cones imaged with a commercial adaptive optics scanning light ophthalmoscope (AOSLO) prototype,” Invest. Ophthalmol. Vis. Sci. 55(13), 1594 (2014).

J. Neurosci. (1)

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Vis. (2)

Z. Zhong, G. Huang, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

L. K. Young, A. K. Hauperich, T. J. Morris, C. D. Saunter, and H. E. Smithson, “Recording eye movements with a new AOSLO: simulation, measurement and evaluation,” J. Vis. 177, 34 (2017).
[Crossref]

Ophthalmology (1)

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[Crossref] [PubMed]

Opt. Eng. (1)

A. Offner, “New Concepts in Projection Mask Aligners,” Opt. Eng. 14(2), 142130 (1975).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

PNAS (1)

E. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” PNAS 114(3), 586–591 (2017).
[Crossref] [PubMed]

Proc. SPIE (2)

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[Crossref]

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5252, 513320 (2004).

Vis. Res. (1)

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, Joseph Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Other (3)

A. Roorda, “Method and apparatus for using adaptive optics in a scanning laser ophthalmoscope,” US6890076 B2 (2005).

J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” Proceedings of the Image Registration Workshop, NASA (1997).

R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, “Two Deformable Mirror Adaptive Optics System for in vivo Retinal Imaging with Optical Coherence Tomography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WC2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 System optical layout showing the five functional modules within the AOSLO system. The source module (Sec. 2.1.1) relays the superluminescent diode (Fibre) via an 8% reflection from BS1 to the AOSLO module (Sec. 2.1.2), where the scanning and wavefront compensation takes place. The scanned, wavefront-compensated light is delivered to the eye via the periscope module (Sec. 2.1.3) and light returning from the eye passes back through the AOSLO module. BS1 transmits 92% of the returned light into the next two modules, of which 8% is reflected into the WFS module (Sec. 2.1.4), where the wavefront is sensed. The remaining 92% of the light is transmitted by BS1 is to the photodiode module, where the light is detected. Light propagation direction within modules is indicated by the colored arrows.
Fig. 2
Fig. 2 (a) The fraction of transmitted flux at the pupil compared to flux after the source aperture with offset of the eye pupil from the center of the Gaussian intensity profile for 6, 7 and 8 mm diameter eye pupils. The change in gradient at large pupil offsets for 7 and 8 mm diameter pupils corresponds to the pupil moving outside the 9.4 mm diameter illuminated area of the eye. (b) Modeled on-axis fractional enclosed energy for the 5 µm diameter source fiber projected onto the retina for eye pupil diameters of 6 to 8 mm at 850 nm.
Fig. 3
Fig. 3 (a) Schematic of the light path through a spherical relay showing the pupil diameter, dp, and the offset distance from the optical axis of the spherical mirror, O. (b) The Strehl ratio of a re-imaged 850 nm point source using a 200 mm focal length spherical relay varying the pupil diameter and offset distance. The blue area indicates the region that is physically impossible since the off-axis distance cannot be less than half of the diameter of the pupil.
Fig. 4
Fig. 4 The mirror configuration in the plane of the scanning mirrors from input unscanned PSF to the output scanned focal plane. Beam diameters at all intermediate planes are shown in yellow and a plan view of the optical path through scanning mirrors is shown on the right.
Fig. 5
Fig. 5 Ray-trace through scanning relay (left) and at the retina of the model eye (right) showing PSF every degree over the ±2 deg scanning mirror range compared to the diffraction-limited Airy diameter at 850 nm (black circles). Common aberrations present at the retina have been compensated using the DM. The −2 deg horizontal scan angle is the field point closest to the slow scanning (horizontal) mirror.
Fig. 6
Fig. 6 The PSF at the pinhole generated with (a) a flat (zero voltage) DM and (b) the optimum mirror shape determined by maximizing the PSF sharpness. The red circle indicates the Airy diameter for light of wavelength 850 nm for a 7 mm pupil diameter at the eye. The improvement in (c) the PSF and (b) the improvement throughput (encircled energy) are shown and the optimized PSF is compared to that expected from the Zemax model (diffraction-limited).
Fig. 7
Fig. 7 The system aberrations present at the eye pupil, which have been measured using a model eye by comparing the wavefront for a flat (zero-voltage) DM to that when the DM vector has been optimized to maximize the throughput at the confocal pinhole. The dominant aberrations are tip ( Z 1 1 = 0.18 μ m rms ) , tilt ( Z 1 1 = 0.18 μ m rms ) and focus ( Z 2 0 = 0.022 μ m ) . Manual compensation for tip and tilt can be achieved by fine-tuning the lateral position of the confocal pinhole. Focus can be compensated manually by fine-tuning the axial position of the confocal pinhole and the focus in the source module. Tip and tilt are not included in the bar chart. The total rms wavefront error excluding tip, tilt and focus is 0.013 µm.
Fig. 8
Fig. 8 (a) The reduction in noise on a single frame with oversampling, with (filled symbols) and without (open symbols) the additional voltage amplifier. (b) The improvement in SNR with oversampling with (filled symbols) and without (open symbols) voltage amplifier. Error bars represent the standard error of the mean of 30 frames. Single, forward scan frames are represented by circles and the averages of single forward and reverse scan frames are represented by squares. Oversampling by a factor of 4 and averaging the forward and reverse scan frames gives a improvement in SNR of 2.5 in normal imaging conditions (with the voltage amplifier).
Fig. 9
Fig. 9 Images near the foveal center of six normal healthy control participants, as described in Table 2. The approximate location of the foveal center is indicated by ’F’.
Fig. 10
Fig. 10 Images from participant C01 (cyclopleged). (a) A 1.6° × 1.0° full frame image of the fovea (approximate location of the foveal center indicated by ’F’). On the left are (top) a 12 arcmin × 12 arcmin patch of the full frame, indicated by the white box, and (bottom) a cross-section through the centers of the two cones to the right of the 2.25 µm scale bar. The 2.25 µm scale bar indicates 1 Airy radius for a 6.9 mm pupil. The center positions of the cones are indicated in the cross-section by the black vertical lines. A 1 Airy radius distance from one cone to its neighbor is indicated by the red vertical line, which overlaps with the center of the neighbor indicating that they are resolved at the diffraction limit. (b) An image of the retinal nerve fiber layer at approximately 5° eccentricity captured by using a trial lens to adjust the focal distance. (c) A montage (generated using Microsoft ICE) of the cone mosaic from the foveal center to 5° eccentricity.
Fig. 11
Fig. 11 The Zernike coefficient amplitudes (rms µm) calculated by fitting the wavefront with the first 5 radial orders. Data are shown before and after the AO loop was closed, measured over a 6 mm pupil in a participant C01. Natural pupil dilation was used in a dark room and the participant freely accommodated to the focal plane of the AOSLO. The total rms wavefront error reduced from 0.05 µm to 0.01µm. Error bars represent the standard error of the mean of 10 measurements.
Fig. 12
Fig. 12 Image of the center of the fovea of a control participant (C01, natural pupil dilation) showing (a) the original image obtained by motion-correction and averaging and (b) the result of deconvolving that image using information from the WFS. An improvement in the contrast between neighboring cones is evident and will aid image-segmentation. Eccentricities in degrees are marked in white. The images are shown on a log scale for clarity.
Fig. 13
Fig. 13 The increase in inter-cone contrast with deconvolution of the image using information from the WFS. The contrast is calculated as the difference in intensity between the dimmest point between a randomly-selected cone and its neighbor, and the centre of that neighboring cone. For each randomly-selected cone the contrast was calculated for each of its six nearest neighbours and averaged. The measurements were made on the images obtained from participant C01 (natural pupil dilation). The average improvement was a factor of 1.4 and the error bars represent the standard error of the mean of the inter-cone contrast measurements of 20 randomly selected cones. We note that cones within the central 0.5° are not well resolved.

Tables (2)

Tables Icon

Table 1 Optical element alignment and manufacturing errors used within the tolerance analysis.

Tables Icon

Table 2 Participant information including spherical (Sph.) and cylindrical (Cyl.) refractive errors, Axial length (AL) measurements obtained with a Zeiss IOL Master, the natural pupil diameter (PD) during imaging estimated from the WFS data (mean and standard error of 30 measurements) and the power measured at the cornea. An axial length was not obtained for participant HXY. C01 was re-imaged with cycloplegia (*).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d = f 2 O 2
θ = arctan ( O / f )
ϵ = I ( x , y ) 2 ( I ( x , y ) ) 2 ,

Metrics