Abstract

Living cells are highly dynamic systems responding to a large variety of biochemical and mechanical stimuli over minutes, which are well controlled by e.g. optical tweezers. However, live cell investigation through fluorescence microscopy is usually limited not only by the spatial and temporal imaging resolution but also by fluorophore bleaching. Therefore, we designed a miniature light-sheet illumination system that is implemented in a conventional inverted microscope equipped with optical tweezers and interferometric tracking to capture 3D images of living macrophages at reduced bleaching. The horizontal light-sheet is generated with a 0.12 mm small cantilevered mirror placed at 45° to the detection axis. The objective launched illumination beam is reflected by the micro-mirror and illuminates the sample perpendicular to the detection axis. Lateral and axial scanning of both Gaussian and Bessel beams, together with an electrically tunable lens for fast focusing, enables rapid 3D image capture without moving the sample or the objective lens. Using scanned Bessel beams and line-confocal detection, an average axial resolution of 0.8 µm together with a 10-15 fold improved image contrast is achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

Zeyi Guan, Juhyun Lee, Hao Jiang, Siyan Dong, Nelson Jen, Tzung Hsiai, Chih-Ming Ho, and Peng Fei
Biomed. Opt. Express 7(1) 194-208 (2016)

Rapid 3D light-sheet microscopy with a tunable lens

Florian O. Fahrbach, Fabian F. Voigt, Benjamin Schmid, Fritjof Helmchen, and Jan Huisken
Opt. Express 21(18) 21010-21026 (2013)

Extended depth of field for single biomolecule optical imaging-force spectroscopy

Minhyeok Chang, Jungsic Oh, Yeonghoon Kim, Sungchul Hohng, and Jong-Bong Lee
Opt. Express 25(25) 32189-32197 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Jünger, P. V. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy,” Sci. Rep. 6(1), 30393 (2016).
    [Crossref] [PubMed]
  2. S. Diez, G. Gerisch, K. Anderson, A. Müller-Taubenberger, and T. Bretschneider, “Subsecond reorganization of the actin network in cell motility and chemotaxis,” Proc. Natl. Acad. Sci. U.S.A. 102(21), 7601–7606 (2005).
    [Crossref] [PubMed]
  3. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [Crossref] [PubMed]
  4. O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Adv. Opt. Photonics 10(1), 111–179 (2018).
    [Crossref]
  5. E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
    [Crossref] [PubMed]
  6. B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
    [Crossref] [PubMed]
  7. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [Crossref] [PubMed]
  8. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
    [Crossref]
  9. M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
    [Crossref] [PubMed]
  10. Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
    [Crossref] [PubMed]
  11. J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
    [Crossref] [PubMed]
  12. Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
    [Crossref] [PubMed]
  13. R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
    [Crossref] [PubMed]
  14. M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
    [Crossref] [PubMed]
  15. C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008).
    [Crossref] [PubMed]
  16. T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
    [Crossref] [PubMed]
  17. Z. Yang, P. Piksarv, D. E. K. Ferrier, F. J. Gunn-Moore, and K. Dholakia, “Macro-optical trapping for sample confinement in light sheet microscopy,” Biomed. Opt. Express 6(8), 2778–2785 (2015).
    [Crossref] [PubMed]
  18. K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P. F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
    [Crossref] [PubMed]
  19. F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
    [Crossref] [PubMed]
  20. H. Kress, E. H. K. Stelzer, D. Holzer, F. Buss, G. Griffiths, and A. Rohrbach, “Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11633–11638 (2007).
    [Crossref] [PubMed]
  21. F. Kohler and A. Rohrbach, “Surfing along filopodia - a particle transport revealed by molecular scale fluctuation analyses,” Biophys. J. 108(9), 2114–2125 (2015).
    [Crossref] [PubMed]
  22. M. Griesshammer and A. Rohrbach, “5D-Tracking of a nanorod in a focused laser beam--a theoretical concept,” Opt. Express 22(5), 6114–6132 (2014).
    [Crossref] [PubMed]
  23. H. Kress, E. H. K. Stelzer, G. Griffiths, and A. Rohrbach, “Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 061927 (2005).
    [Crossref] [PubMed]
  24. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
    [Crossref] [PubMed]
  25. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632 (2012).
    [Crossref] [PubMed]
  26. E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express 20(19), 21805–21814 (2012).
    [Crossref] [PubMed]
  27. T. Meinert, O. Tietz, K. J. Palme, and A. Rohrbach, “Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots,” Sci. Rep. 6(1), 30378 (2016).
    [Crossref] [PubMed]

2018 (1)

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Adv. Opt. Photonics 10(1), 111–179 (2018).
[Crossref]

2016 (3)

F. Jünger, P. V. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy,” Sci. Rep. 6(1), 30393 (2016).
[Crossref] [PubMed]

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

T. Meinert, O. Tietz, K. J. Palme, and A. Rohrbach, “Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots,” Sci. Rep. 6(1), 30378 (2016).
[Crossref] [PubMed]

2015 (6)

F. Kohler and A. Rohrbach, “Surfing along filopodia - a particle transport revealed by molecular scale fluctuation analyses,” Biophys. J. 108(9), 2114–2125 (2015).
[Crossref] [PubMed]

Z. Yang, P. Piksarv, D. E. K. Ferrier, F. J. Gunn-Moore, and K. Dholakia, “Macro-optical trapping for sample confinement in light sheet microscopy,” Biomed. Opt. Express 6(8), 2778–2785 (2015).
[Crossref] [PubMed]

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P. F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
[Crossref] [PubMed]

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

2014 (2)

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

M. Griesshammer and A. Rohrbach, “5D-Tracking of a nanorod in a focused laser beam--a theoretical concept,” Opt. Express 22(5), 6114–6132 (2014).
[Crossref] [PubMed]

2013 (3)

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
[Crossref] [PubMed]

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

2012 (2)

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632 (2012).
[Crossref] [PubMed]

E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express 20(19), 21805–21814 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

2010 (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

2008 (4)

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008).
[Crossref] [PubMed]

2007 (1)

H. Kress, E. H. K. Stelzer, D. Holzer, F. Buss, G. Griffiths, and A. Rohrbach, “Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11633–11638 (2007).
[Crossref] [PubMed]

2005 (2)

S. Diez, G. Gerisch, K. Anderson, A. Müller-Taubenberger, and T. Bretschneider, “Subsecond reorganization of the actin network in cell motility and chemotaxis,” Proc. Natl. Acad. Sci. U.S.A. 102(21), 7601–7606 (2005).
[Crossref] [PubMed]

H. Kress, E. H. K. Stelzer, G. Griffiths, and A. Rohrbach, “Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 061927 (2005).
[Crossref] [PubMed]

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Anderson, K.

S. Diez, G. Gerisch, K. Anderson, A. Müller-Taubenberger, and T. Bretschneider, “Subsecond reorganization of the actin network in cell motility and chemotaxis,” Proc. Natl. Acad. Sci. U.S.A. 102(21), 7601–7606 (2005).
[Crossref] [PubMed]

Andilla, J.

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Adv. Opt. Photonics 10(1), 111–179 (2018).
[Crossref]

Aravind, A.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Bambardekar, K.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P. F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Bao, Z.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Basu, S.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Bauer, M.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Baumgart, E.

Bembenek, J. N.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Betzig, E.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Blanc, O.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P. F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Böhme, R.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Bouchard, M. B.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Bretschneider, T.

S. Diez, G. Gerisch, K. Anderson, A. Müller-Taubenberger, and T. Bretschneider, “Subsecond reorganization of the actin network in cell motility and chemotaxis,” Proc. Natl. Acad. Sci. U.S.A. 102(21), 7601–7606 (2005).
[Crossref] [PubMed]

Bruno, R. M.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Bruns, S.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Bruns, T.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Buss, F.

H. Kress, E. H. K. Stelzer, D. Holzer, F. Buss, G. Griffiths, and A. Rohrbach, “Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11633–11638 (2007).
[Crossref] [PubMed]

Cang, H.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Chapman, A. R.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Chardès, C.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P. F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Chen, B. C.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Christensen, R.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Clément, R.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P. F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Colón-Ramos, D.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Davidson, M. W.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Dholakia, K.

Diez, S.

S. Diez, G. Gerisch, K. Anderson, A. Müller-Taubenberger, and T. Bretschneider, “Subsecond reorganization of the actin network in cell motility and chemotaxis,” Proc. Natl. Acad. Sci. U.S.A. 102(21), 7601–7606 (2005).
[Crossref] [PubMed]

Du, Z.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Dunsby, C.

Elkins, K.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

English, B. P.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Erhard, B.

F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
[Crossref] [PubMed]

Fahrbach, F. O.

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
[Crossref] [PubMed]

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632 (2012).
[Crossref] [PubMed]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Ferrier, D. E. K.

Fitzpatrick, J. A. J.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Fritz-Laylin, L.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Galland, R.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Gebhardt, J. C. M.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Gerisch, G.

S. Diez, G. Gerisch, K. Anderson, A. Müller-Taubenberger, and T. Bretschneider, “Subsecond reorganization of the actin network in cell motility and chemotaxis,” Proc. Natl. Acad. Sci. U.S.A. 102(21), 7601–7606 (2005).
[Crossref] [PubMed]

Ghitani, A.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Greger, K.

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Grenci, G.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Griesshammer, M.

Griffiths, G.

H. Kress, E. H. K. Stelzer, D. Holzer, F. Buss, G. Griffiths, and A. Rohrbach, “Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11633–11638 (2007).
[Crossref] [PubMed]

H. Kress, E. H. K. Stelzer, G. Griffiths, and A. Rohrbach, “Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 061927 (2005).
[Crossref] [PubMed]

Grill, S. W.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Grueber, W. B.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Gualda, E. J.

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Adv. Opt. Photonics 10(1), 111–179 (2018).
[Crossref]

Gunn-Moore, F. J.

Hammer, J. A.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Helmchen, F.

Hillman, E. M. C.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Holzer, D.

H. Kress, E. H. K. Stelzer, D. Holzer, F. Buss, G. Griffiths, and A. Rohrbach, “Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11633–11638 (2007).
[Crossref] [PubMed]

Hu, Y. S.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Huisken, J.

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Imamoto, N.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Janetopoulos, C.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Jünger, F.

F. Jünger, P. V. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy,” Sci. Rep. 6(1), 30393 (2016).
[Crossref] [PubMed]

F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
[Crossref] [PubMed]

Keller, P. J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Kiehart, D. P.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Kohler, F.

F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
[Crossref] [PubMed]

F. Kohler and A. Rohrbach, “Surfing along filopodia - a particle transport revealed by molecular scale fluctuation analyses,” Biophys. J. 108(9), 2114–2125 (2015).
[Crossref] [PubMed]

Kress, H.

H. Kress, E. H. K. Stelzer, D. Holzer, F. Buss, G. Griffiths, and A. Rohrbach, “Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11633–11638 (2007).
[Crossref] [PubMed]

H. Kress, E. H. K. Stelzer, G. Griffiths, and A. Rohrbach, “Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 061927 (2005).
[Crossref] [PubMed]

Kržic, U.

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Kubin, D.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Kubitscheck, U.

Lacefield, C.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Legant, W. R.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Lenne, P. F.

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P. F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

Li, Y.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Liu, Z.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Loza-Alvarez, P.

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Adv. Opt. Photonics 10(1), 111–179 (2018).
[Crossref]

Maniatis, T.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Mann, R. S.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Meinel, A.

F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
[Crossref] [PubMed]

Meinert, T.

T. Meinert, O. Tietz, K. J. Palme, and A. Rohrbach, “Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots,” Sci. Rep. 6(1), 30378 (2016).
[Crossref] [PubMed]

Mendes, C. S.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Meyer, H.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Meyer, T.

F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
[Crossref] [PubMed]

Milkie, D. E.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Mimori-Kiyosue, Y.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Mitchell, D. M.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Müller-Taubenberger, A.

S. Diez, G. Gerisch, K. Anderson, A. Müller-Taubenberger, and T. Bretschneider, “Subsecond reorganization of the actin network in cell motility and chemotaxis,” Proc. Natl. Acad. Sci. U.S.A. 102(21), 7601–7606 (2005).
[Crossref] [PubMed]

Mullins, R. D.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Nitschke, R.

F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
[Crossref] [PubMed]

Olarte, O. E.

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Adv. Opt. Photonics 10(1), 111–179 (2018).
[Crossref]

Olshausen, P. V.

F. Jünger, P. V. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy,” Sci. Rep. 6(1), 30393 (2016).
[Crossref] [PubMed]

Palme, K. J.

T. Meinert, O. Tietz, K. J. Palme, and A. Rohrbach, “Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots,” Sci. Rep. 6(1), 30378 (2016).
[Crossref] [PubMed]

Piksarv, P.

Reymann, A. C.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Reynaud, E. G.

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Ritter, A. T.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Rohrbach, A.

F. Jünger, P. V. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy,” Sci. Rep. 6(1), 30393 (2016).
[Crossref] [PubMed]

T. Meinert, O. Tietz, K. J. Palme, and A. Rohrbach, “Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots,” Sci. Rep. 6(1), 30378 (2016).
[Crossref] [PubMed]

F. Kohler and A. Rohrbach, “Surfing along filopodia - a particle transport revealed by molecular scale fluctuation analyses,” Biophys. J. 108(9), 2114–2125 (2015).
[Crossref] [PubMed]

F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
[Crossref] [PubMed]

M. Griesshammer and A. Rohrbach, “5D-Tracking of a nanorod in a focused laser beam--a theoretical concept,” Opt. Express 22(5), 6114–6132 (2014).
[Crossref] [PubMed]

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632 (2012).
[Crossref] [PubMed]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

H. Kress, E. H. K. Stelzer, D. Holzer, F. Buss, G. Griffiths, and A. Rohrbach, “Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11633–11638 (2007).
[Crossref] [PubMed]

H. Kress, E. H. K. Stelzer, G. Griffiths, and A. Rohrbach, “Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 061927 (2005).
[Crossref] [PubMed]

Romero, D. P.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Rondeau, G.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Roy, R.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Sakata-Sogawa, K.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Santella, A.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Schmid, B.

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Schneckenburger, H.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Seydoux, G.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Shao, L.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Shroff, H.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Sibarita, J. B.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

H. Kress, E. H. K. Stelzer, D. Holzer, F. Buss, G. Griffiths, and A. Rohrbach, “Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11633–11638 (2007).
[Crossref] [PubMed]

H. Kress, E. H. K. Stelzer, G. Griffiths, and A. Rohrbach, “Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 061927 (2005).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Studer, V.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Suter, D. M.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Tietz, O.

T. Meinert, O. Tietz, K. J. Palme, and A. Rohrbach, “Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots,” Sci. Rep. 6(1), 30378 (2016).
[Crossref] [PubMed]

Tokunaga, M.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Tse, K.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Tulu, U. S.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Verma, I. M.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Viasnoff, V.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Voigt, F. F.

Voleti, V.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Wang, J. T.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Wang, K.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Wu, X. S.

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Xie, X. S.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Yang, Z.

Zhao, Z. W.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Zhu, Q.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Adv. Opt. Photonics 10(1), 111–179 (2018).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (2)

F. Kohler and A. Rohrbach, “Surfing along filopodia - a particle transport revealed by molecular scale fluctuation analyses,” Biophys. J. 108(9), 2114–2125 (2015).
[Crossref] [PubMed]

F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, and A. Rohrbach, “Measuring local viscosities near membranes of living cells with photonic force microscopy,” Biophys. J. 109(5), 869–882 (2015).
[Crossref] [PubMed]

HFSP J. (1)

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

J. Microsc. (1)

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632 (2012).
[Crossref] [PubMed]

Nat. Methods (3)

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Opt. Express (4)

Opt. Nanoscopy (1)

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. J. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

H. Kress, E. H. K. Stelzer, G. Griffiths, and A. Rohrbach, “Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 061927 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

K. Bambardekar, R. Clément, O. Blanc, C. Chardès, and P. F. Lenne, “Direct laser manipulation reveals the mechanics of cell contacts in vivo,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1416–1421 (2015).
[Crossref] [PubMed]

H. Kress, E. H. K. Stelzer, D. Holzer, F. Buss, G. Griffiths, and A. Rohrbach, “Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11633–11638 (2007).
[Crossref] [PubMed]

S. Diez, G. Gerisch, K. Anderson, A. Müller-Taubenberger, and T. Bretschneider, “Subsecond reorganization of the actin network in cell motility and chemotaxis,” Proc. Natl. Acad. Sci. U.S.A. 102(21), 7601–7606 (2005).
[Crossref] [PubMed]

Sci. Rep. (2)

F. Jünger, P. V. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy,” Sci. Rep. 6(1), 30393 (2016).
[Crossref] [PubMed]

T. Meinert, O. Tietz, K. J. Palme, and A. Rohrbach, “Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots,” Sci. Rep. 6(1), 30378 (2016).
[Crossref] [PubMed]

Science (3)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scheme for light-sheet generation inside the sample above the coverslip. (a) A small mirror is positioned at 45° to the detection axis using a precision cantilever holder. A narrow illumination beam, deflected by the mirror, illuminates the sample perpendicular to the detection axis. (b) The design of the mirror and the holder enables 3D imaging simultaneous to optical trapping and tracking.
Fig. 2
Fig. 2 Optics scheme of light-sheet generation and scanning. A laser beam is expanded (BE) and hits an axicon (NA = 0.3). Lenses L1 (f = 50 mm) and L2 (f = 100 mm) form a Bessel beam in front of the scan mirror (SM). The distance between lens L2 and the scan mirror is around 120 mm for a horizontal beam shift zoff ≈200 µm. The lens L3 and the tube lens (TL) conjugate the SM on to the back focal plane (BFP) of the objective lens (OL). The scan mirror tilts the beam at the BFP, such that the illumination beam is shifted at the sample plane. The 45° micro mirror placed at this position reflects the beam perpendicular to the detection. Beam scanning in x-direction results in light-sheet illumination of a 2D sample plane. The inset figure shows how different planes of the sample are illuminated by tilting the scan mirror in z-direction. The 45° mirror translates ∆z to ∆y, thus enabling the scanning in vertical y-direction. Planes P1 and P5 are conjugate to the sample plane P3. Plane P2 is conjugate to P4, the thinnest part of the light-sheet. On the detection side, the electrically tunable lens (ETL) at the conjugated BFP controls the refocusing of the objective. The dark and light green lines represent 2 different optical paths/planes, which are focused by the ETL onto the camera. The refocusing of the ETL is synchronized with the beam scanning in y-direction to acquire 3D image stacks
Fig. 3
Fig. 3 (a) The mirror holder contains a fixed and a removable part. The fixed base is secured tightly to the microscope and contains v-groves at 120° to each other. The removable part is designed considering the space constraints of the optical tweezer setup and contains various screws for mirror alignment. 3 ball ended screws of the removable part allow to position the micro mirror precisely (precision < 20 µm) after initial adjustments. V-groves ensure a precision placement for a good repeatability and reduced calibration time. (b) 2 types of Silicon mirrors are produced. Type 1 is a silicon wafer (thickness 525 µm) diced in rectangular shape with the width of 120 µm. The aluminum is evaporated on the mirror side for increased reflectance. The mirror is then bonded to the mirror holder using a polymer based adhesive. The type 2 mirror has more steps including photolithography, reactive ion etching (RIE) and KOH (Potassium hydroxide) etching. Due to anisotropic etching of silicon by KOH, type 2 mirror has a bigger base which facilitates the bonding of the mirror to the holder.
Fig. 4
Fig. 4 Comparison of light-sheet illumination with Gaussian beam scanning and widefield epi-fluorescence. (a) Side view of images from 190 nm beads show significant improvement in the image quality for light-sheet illumination. Cirles indicate the reduced background in the light-sheet images compared to the epifluorescent image (see arrows). Improved sectioning can be seen also in the top view (image (d)) where the defocussed beads remain invisible in light-sheet images. (b) The modulation transfer functions (MTF) of the corresponding side view images show a spectrum broadening in axial direction for light-sheet illumination. (c) The normalized linescans from figure (a) also show reduced background for images with light-sheet illumination. (d) light sheet images suppress the out-of-focus beads efficiently (indicated by circles), which remain visible in wide-field illumination (indicated by the arrows).
Fig. 5
Fig. 5 (a) 3D section of primary macrophages grown on matrigel. (b) Top view images through primary macrophage, separated by 1.2 µm. (c) A section through cell spheroids containing mammalian cancer cells (cell line T47D).
Fig. 6
Fig. 6 (a) Maximum projection of images of fluorescent beads (diameter = 190 nm) freely diffusing in water excited by a static Bessel beam. The image shows the thin, long and propagation-stable central maximum and the surrounding ring system of the Bessel beam. (b) and (c) xy-cross-section of the static beads imaged with line-confocal detection and non-confocal detection. (d) Line scans of the beads in (b) and (c) show improvement in axial full-width half-maximum (FWHM) with line confocal detection compared to non-confocal detection.
Fig. 7
Fig. 7 (a) and (b) Lateral and axial PSF widths (FWHM) along the propagation direction (z) for line-confocal and non-confocal detection. (c) The averaged modulation transfer functions (MTFs) show a frequency spectrum (logarithmic scale), which is broadened in ky-direction for line-confocal detection compared to non-confocal detection. (d) Horizontal line scans (in brown) and vertical (in blue) line scans through the MTF.
Fig. 8
Fig. 8 J774 mouse macrophages grown on Matrigel were illuminated with Bessel beams and imaged in line confocal mode. (a) Side view and top views of deconvolved images at different heights. (b) 3D sections of deconvolved images. (c) Maximum projection of unprocessed images. (d) Maximum projection of deconvolved images.
Fig. 9
Fig. 9 Comparison of unprocessed xy-cross-sections from 3D images of different J774 mouse macrophages recorded with our miniature Bessel beam light-sheet setup, with conventional Epi-fluorescence and with commercial Confocal Spinning disc microscopy.

Metrics