Abstract

In this work we introduce a modified form of laser speckle imaging (LSI) referred to as affixed transmission speckle analysis (ATSA) that uses a single coherent light source to probe two physiological signals: one related to pulsatile vascular expansion (classically known as the photoplethysmographic (PPG) waveform) and one related to pulsatile vascular blood flow (named here the speckle plethysmographic (SPG) waveform). The PPG signal is determined by recording intensity fluctuations, and the SPG signal is determined via the LSI dynamic light scattering technique. These two co-registered signals are obtained by transilluminating a single digit (e.g. finger) which produces quasi-periodic waveforms derived from the cardiac cycle. Because PPG and SPG waveforms probe vascular expansion and flow, respectively, in cm-thick tissue, these complementary phenomena are offset in time and have rich dynamic features. We characterize the timing offset and harmonic content of the waveforms in 16 human subjects and demonstrate physiologic relevance for assessing microvascular flow and resistance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements

Cody E. Dunn, Ben Lertsakdadet, Christian Crouzet, Adrian Bahani, and Bernard Choi
Biomed. Opt. Express 9(9) 4306-4316 (2018)

Ambiguity of mapping the relative phase of blood pulsations

Victor Teplov, Ervin Nippolainen, Alexander A. Makarenko, Rashid Giniatullin, and Alexei A. Kamshilin
Biomed. Opt. Express 5(9) 3123-3139 (2014)

Quantifying tissue mechanical properties using photoplethysmography

Tony J. Akl, Mark A. Wilson, M. Nance Ericson, and Gerard L. Coté
Biomed. Opt. Express 5(7) 2362-2375 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
    [Crossref] [PubMed]
  2. K. H. Shelley, “Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,” Anesth. Analg. 105(6), S31–S36 (2007).
    [Crossref] [PubMed]
  3. A. B. Hertzman and W. C. Randall, “Regional differences in the basal and maximal rates of blood flow in the skin,” J. Appl. Physiol. 1(3), 234–241 (1948).
    [Crossref] [PubMed]
  4. C. C. Brown, D. B. Giddon, and E. D. Dean, “Techniques of plethysmography,” Psychophysiology 1(3), 253–266 (1965).
    [Crossref] [PubMed]
  5. J. G. Webster, Design of pulse oximeters (CRC Press, 1997).
  6. K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys. 18(5), 365–372 (1996).
    [Crossref] [PubMed]
  7. B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
    [Crossref] [PubMed]
  8. M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
    [Crossref] [PubMed]
  9. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
    [Crossref] [PubMed]
  10. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
    [Crossref]
  11. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [Crossref]
  12. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
    [Crossref] [PubMed]
  13. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
    [Crossref] [PubMed]
  14. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
    [Crossref] [PubMed]
  15. A. Humeau-Heurtier, E. Guerreschi, P. Abraham, and G. Mahé, “Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends,” IEEE Trans. Biomed. Eng. 60(3), 659–666 (2013).
    [Crossref] [PubMed]
  16. M. Ghijsen, B. Choi, A. J. Durkin, S. Gioux, and B. J. Tromberg, “Real-time wide-field metabolic imaging achieved through coherent spatial frequency domain imaging (cSFDI),” in SPIE Photonics West - Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XIV, (SPIE, 2016)
  17. M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
    [Crossref] [PubMed]
  18. S. M. White, S. C. George, and B. Choi, “Automated computation of functional vascular density using laser speckle imaging in a rodent window chamber model,” Microvasc. Res. 82(1), 92–95 (2011).
    [Crossref] [PubMed]
  19. C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
    [Crossref] [PubMed]
  20. C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
    [Crossref] [PubMed]
  21. M. A. Davis, L. Gagnon, D. A. Boas, and A. K. Dunn, “Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex,” Biomed. Opt. Express 7(3), 759–775 (2016).
    [Crossref] [PubMed]
  22. S. M. Daly and M. J. Leahy, “Advances in blood flow imaging,” Advanced Biophotonics: Tissue Optical Sectioning, 321 (2016).
  23. R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
    [Crossref]
  24. B. Kruijt, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, and D. J. Robinson, “Laser speckle imaging of dynamic changes in flow during photodynamic therapy,” Lasers Med. Sci. 21(4), 208–212 (2006).
    [Crossref] [PubMed]
  25. S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
    [Crossref] [PubMed]
  26. W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
    [Crossref] [PubMed]
  27. A. Ponticorvo, R. Rowland, M. Baldado, D. Burmeister, R. Christy, N. Bernal, and A. Durkin, “Assessing the predictive capability of optical imaging techniques, Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI), to the gold standard of clinical assessment in a controlled animal model,” in Photonics in Dermatology and Plastic Surgery 2018, (International Society for Optics and Photonics, 2018), 104670C.
  28. R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
    [Crossref] [PubMed]
  29. S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
    [Crossref] [PubMed]
  30. M. Gonzalez, N. Sevilla, J. Chue-Sang, and J. C. Ramella-Roman, “Quantitative analysis of a scar’s pliability, perfusion and metrology,” in Optical Elastography and Tissue Biomechanics IV, (International Society for Optics and Photonics, 2017), 100670R.
  31. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [Crossref] [PubMed]
  32. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
    [Crossref] [PubMed]
  33. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
    [Crossref] [PubMed]
  34. T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express 3(6), 1340–1349 (2012).
    [Crossref] [PubMed]
  35. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
    [Crossref] [PubMed]
  36. H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
    [Crossref] [PubMed]
  37. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
    [Crossref] [PubMed]
  38. C. Stoianovici, P. Wilder-Smith, and B. Choi, “Assessment of pulpal vitality using laser speckle imaging,” Lasers Surg. Med. 43(8), 833–837 (2011).
    [Crossref] [PubMed]
  39. O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
    [Crossref] [PubMed]
  40. B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
    [Crossref] [PubMed]
  41. K. Khaksari and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 076002 (2016).
    [Crossref] [PubMed]
  42. M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O’Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007).
    [Crossref]
  43. J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
    [Crossref] [PubMed]
  44. R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
    [Crossref] [PubMed]
  45. J. Zötterman, R. Mirdell, S. Horsten, S. Farnebo, and E. Tesselaar, “Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation,” PLoS One 12(3), e0174703 (2017).
    [Crossref] [PubMed]
  46. B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
    [Crossref] [PubMed]
  47. T. Dragojević, D. Bronzi, H. M. Varma, C. P. Valdes, C. Castellvi, F. Villa, A. Tosi, C. Justicia, F. Zappa, and T. Durduran, “High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera,” Biomed. Opt. Express 6(8), 2865–2876 (2015).
    [Crossref] [PubMed]
  48. S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
    [Crossref] [PubMed]
  49. L. S. Costanzo, Physiology Third ed. (Saunders, 2006), p. 490.
  50. W. B. Baker, A. B. Parthasarathy, D. R. Busch, R. C. Mesquita, J. H. Greenberg, and A. G. Yodh, “Modified Beer-Lambert law for blood flow,” Biomed. Opt. Express 5(11), 4053–4075 (2014).
    [Crossref] [PubMed]
  51. B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
    [Crossref]
  52. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
    [Crossref] [PubMed]
  53. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  54. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in Biomedical Optics (BiOS)2008, (International Society for Optics and Photonics, 2008), 687007.
  55. S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
    [Crossref] [PubMed]
  56. D. H. Thijssen, M. W. Bleeker, P. Smits, and M. T. Hopman, “Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography,” Clin. Sci. 108(2), 151–157 (2005).
    [Crossref] [PubMed]
  57. S. Verma, M. R. Buchanan, and T. J. Anderson, “Endothelial function testing as a biomarker of vascular disease,” Circulation 108(17), 2054–2059 (2003).
    [Crossref] [PubMed]
  58. M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
    [Crossref] [PubMed]
  59. D. E. Warburton, M. J. Haykowsky, H. A. Quinney, D. P. Humen, and K. K. Teo, “Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part II: Novel techniques and new advances,” Sports Med. 27(4), 241–260 (1999).
    [Crossref] [PubMed]
  60. A. Burton, “The range and variability of the blood flow in the human fingers and the vasomotor regulation of body temperature,” American Journal of Physiology–Legacy Content 127(3), 437–453 (1939).
    [Crossref]
  61. H. Barcroft and O. Edholm, “Temperature and blood flow in the human forearm,” J. Physiol. 104(4), 366–376 (1946).
    [Crossref]
  62. N. A. Lassen, J. Lindbjerg, and O. Munck, “Measurement of blood-flow through skeletal muscle by intramuscular injection of Xenon-133,” Lancet 283(7335), 686–689 (1964).
    [Crossref] [PubMed]
  63. R. Morecraft, W. F. Blair, T. D. Brown, and R. H. Gable, “Acute effects of smoking on digital artery blood flow in humans,” J. Hand Surg. Am. 19(1), 1–7 (1994).
    [Crossref] [PubMed]
  64. W. B. Murray and P. A. Foster, “The peripheral pulse wave: information overlooked,” J. Clin. Monit. 12(5), 365–377 (1996).
    [Crossref] [PubMed]
  65. G. Mardirossian and R. E. Schneider, “Limitations of pulse oximetry,” Anesth. Prog. 39(6), 194–196 (1992).
    [PubMed]
  66. M. J. Hayes and P. R. Smith, “A new method for pulse oximetry possessing inherent insensitivity to artifact,” IEEE Trans. Biomed. Eng. 48(4), 452–461 (2001).
    [Crossref] [PubMed]
  67. J. Allen and A. Murray, “Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites,” Physiol. Meas. 24(2), 297–307 (2003).
    [Crossref] [PubMed]
  68. E. Chung, G. Chen, B. Alexander, and M. Cannesson, “Non-invasive continuous blood pressure monitoring: a review of current applications,” Front. Med. 7(1), 91–101 (2013).
    [Crossref] [PubMed]

2018 (2)

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

2017 (4)

S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
[Crossref] [PubMed]

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

J. Zötterman, R. Mirdell, S. Horsten, S. Farnebo, and E. Tesselaar, “Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation,” PLoS One 12(3), e0174703 (2017).
[Crossref] [PubMed]

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

2016 (4)

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

M. A. Davis, L. Gagnon, D. A. Boas, and A. K. Dunn, “Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex,” Biomed. Opt. Express 7(3), 759–775 (2016).
[Crossref] [PubMed]

K. Khaksari and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 076002 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

2013 (4)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

E. Chung, G. Chen, B. Alexander, and M. Cannesson, “Non-invasive continuous blood pressure monitoring: a review of current applications,” Front. Med. 7(1), 91–101 (2013).
[Crossref] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

A. Humeau-Heurtier, E. Guerreschi, P. Abraham, and G. Mahé, “Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends,” IEEE Trans. Biomed. Eng. 60(3), 659–666 (2013).
[Crossref] [PubMed]

2012 (5)

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[Crossref] [PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express 3(6), 1340–1349 (2012).
[Crossref] [PubMed]

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref]

2009 (1)

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (3)

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

K. H. Shelley, “Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,” Anesth. Analg. 105(6), S31–S36 (2007).
[Crossref] [PubMed]

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O’Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007).
[Crossref]

2006 (1)

B. Kruijt, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, and D. J. Robinson, “Laser speckle imaging of dynamic changes in flow during photodynamic therapy,” Lasers Med. Sci. 21(4), 208–212 (2006).
[Crossref] [PubMed]

2005 (2)

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

D. H. Thijssen, M. W. Bleeker, P. Smits, and M. T. Hopman, “Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography,” Clin. Sci. 108(2), 151–157 (2005).
[Crossref] [PubMed]

2004 (2)

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[Crossref] [PubMed]

2003 (2)

S. Verma, M. R. Buchanan, and T. J. Anderson, “Endothelial function testing as a biomarker of vascular disease,” Circulation 108(17), 2054–2059 (2003).
[Crossref] [PubMed]

J. Allen and A. Murray, “Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites,” Physiol. Meas. 24(2), 297–307 (2003).
[Crossref] [PubMed]

2001 (4)

M. J. Hayes and P. R. Smith, “A new method for pulse oximetry possessing inherent insensitivity to artifact,” IEEE Trans. Biomed. Eng. 48(4), 452–461 (2001).
[Crossref] [PubMed]

S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
[Crossref] [PubMed]

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

1999 (2)

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref] [PubMed]

D. E. Warburton, M. J. Haykowsky, H. A. Quinney, D. P. Humen, and K. K. Teo, “Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part II: Novel techniques and new advances,” Sports Med. 27(4), 241–260 (1999).
[Crossref] [PubMed]

1998 (1)

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

1996 (2)

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys. 18(5), 365–372 (1996).
[Crossref] [PubMed]

W. B. Murray and P. A. Foster, “The peripheral pulse wave: information overlooked,” J. Clin. Monit. 12(5), 365–377 (1996).
[Crossref] [PubMed]

1994 (1)

R. Morecraft, W. F. Blair, T. D. Brown, and R. H. Gable, “Acute effects of smoking on digital artery blood flow in humans,” J. Hand Surg. Am. 19(1), 1–7 (1994).
[Crossref] [PubMed]

1992 (1)

G. Mardirossian and R. E. Schneider, “Limitations of pulse oximetry,” Anesth. Prog. 39(6), 194–196 (1992).
[PubMed]

1989 (1)

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

1981 (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

1965 (1)

C. C. Brown, D. B. Giddon, and E. D. Dean, “Techniques of plethysmography,” Psychophysiology 1(3), 253–266 (1965).
[Crossref] [PubMed]

1964 (1)

N. A. Lassen, J. Lindbjerg, and O. Munck, “Measurement of blood-flow through skeletal muscle by intramuscular injection of Xenon-133,” Lancet 283(7335), 686–689 (1964).
[Crossref] [PubMed]

1948 (1)

A. B. Hertzman and W. C. Randall, “Regional differences in the basal and maximal rates of blood flow in the skin,” J. Appl. Physiol. 1(3), 234–241 (1948).
[Crossref] [PubMed]

1946 (1)

H. Barcroft and O. Edholm, “Temperature and blood flow in the human forearm,” J. Physiol. 104(4), 366–376 (1946).
[Crossref]

1939 (1)

A. Burton, “The range and variability of the blood flow in the human fingers and the vasomotor regulation of body temperature,” American Journal of Physiology–Legacy Content 127(3), 437–453 (1939).
[Crossref]

Abraham, P.

A. Humeau-Heurtier, E. Guerreschi, P. Abraham, and G. Mahé, “Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends,” IEEE Trans. Biomed. Eng. 60(3), 659–666 (2013).
[Crossref] [PubMed]

Akbari, Y.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

Alcocer, J.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

Alexander, B.

E. Chung, G. Chen, B. Alexander, and M. Cannesson, “Non-invasive continuous blood pressure monitoring: a review of current applications,” Front. Med. 7(1), 91–101 (2013).
[Crossref] [PubMed]

Allen, J.

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

J. Allen and A. Murray, “Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites,” Physiol. Meas. 24(2), 297–307 (2003).
[Crossref] [PubMed]

Anderson, T. J.

S. Verma, M. R. Buchanan, and T. J. Anderson, “Endothelial function testing as a biomarker of vascular disease,” Circulation 108(17), 2054–2059 (2003).
[Crossref] [PubMed]

Ang, Q.

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

Arora, R. P.

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[Crossref] [PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref] [PubMed]

Ashton, M.

S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
[Crossref] [PubMed]

Azabji Kenfack, M.

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

Baker, W. B.

Bandyopadhyay, R.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Barcroft, H.

H. Barcroft and O. Edholm, “Temperature and blood flow in the human forearm,” J. Physiol. 104(4), 366–376 (1946).
[Crossref]

Bazrafkan, A.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

Bernal, N.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

Blair, W. F.

R. Morecraft, W. F. Blair, T. D. Brown, and R. H. Gable, “Acute effects of smoking on digital artery blood flow in humans,” J. Hand Surg. Am. 19(1), 1–7 (1994).
[Crossref] [PubMed]

Bleeker, M. W.

D. H. Thijssen, M. W. Bleeker, P. Smits, and M. T. Hopman, “Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography,” Clin. Sci. 108(2), 151–157 (2005).
[Crossref] [PubMed]

Blum, K.

S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
[Crossref] [PubMed]

Boas, D. A.

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Brenner, M.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Briers, D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Briers, J.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref] [PubMed]

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref] [PubMed]

Bronzi, D.

Brown, C. C.

C. C. Brown, D. B. Giddon, and E. D. Dean, “Techniques of plethysmography,” Psychophysiology 1(3), 253–266 (1965).
[Crossref] [PubMed]

Brown, T. D.

R. Morecraft, W. F. Blair, T. D. Brown, and R. H. Gable, “Acute effects of smoking on digital artery blood flow in humans,” J. Hand Surg. Am. 19(1), 1–7 (1994).
[Crossref] [PubMed]

Buchanan, M. R.

S. Verma, M. R. Buchanan, and T. J. Anderson, “Endothelial function testing as a biomarker of vascular disease,” Circulation 108(17), 2054–2059 (2003).
[Crossref] [PubMed]

Burton, A.

A. Burton, “The range and variability of the blood flow in the human fingers and the vasomotor regulation of body temperature,” American Journal of Physiology–Legacy Content 127(3), 437–453 (1939).
[Crossref]

Busch, D. R.

Cannesson, M.

E. Chung, G. Chen, B. Alexander, and M. Cannesson, “Non-invasive continuous blood pressure monitoring: a review of current applications,” Front. Med. 7(1), 91–101 (2013).
[Crossref] [PubMed]

Capelli, C.

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

Carp, S. A.

Castellvi, C.

Chen, G.

E. Chung, G. Chen, B. Alexander, and M. Cannesson, “Non-invasive continuous blood pressure monitoring: a review of current applications,” Front. Med. 7(1), 91–101 (2013).
[Crossref] [PubMed]

Chen, M.

Choi, B.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref] [PubMed]

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[Crossref] [PubMed]

O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express 3(6), 1340–1349 (2012).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
[Crossref] [PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
[Crossref] [PubMed]

C. Stoianovici, P. Wilder-Smith, and B. Choi, “Assessment of pulpal vitality using laser speckle imaging,” Lasers Surg. Med. 43(8), 833–837 (2011).
[Crossref] [PubMed]

S. M. White, S. C. George, and B. Choi, “Automated computation of functional vascular density using laser speckle imaging in a rodent window chamber model,” Microvasc. Res. 82(1), 92–95 (2011).
[Crossref] [PubMed]

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
[Crossref] [PubMed]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[Crossref] [PubMed]

Chung, E.

E. Chung, G. Chen, B. Alexander, and M. Cannesson, “Non-invasive continuous blood pressure monitoring: a review of current applications,” Front. Med. 7(1), 91–101 (2013).
[Crossref] [PubMed]

Clancy, N. T.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O’Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007).
[Crossref]

Crouzet, C.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

Cuccia, D. J.

Davis, M. A.

de Bruijn, H. S.

B. Kruijt, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, and D. J. Robinson, “Laser speckle imaging of dynamic changes in flow during photodynamic therapy,” Lasers Med. Sci. 21(4), 208–212 (2006).
[Crossref] [PubMed]

de Bruin, D. M.

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

Dean, E. D.

C. C. Brown, D. B. Giddon, and E. D. Dean, “Techniques of plethysmography,” Psychophysiology 1(3), 253–266 (1965).
[Crossref] [PubMed]

Dixon, P.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Dobbe, I. J. G. G.

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

Donga, D.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

Doshi, S. N.

S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
[Crossref] [PubMed]

Dragojevic, T.

Draijer, M.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

Duncan, D. D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
[Crossref] [PubMed]

Dunn, A. K.

M. A. Davis, L. Gagnon, D. A. Boas, and A. K. Dunn, “Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex,” Biomed. Opt. Express 7(3), 759–775 (2016).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Dunn, C. E.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

Durduran, T.

Durian, D.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Durkin, A. J.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
[Crossref] [PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
[Crossref] [PubMed]

Edholm, O.

H. Barcroft and O. Edholm, “Temperature and blood flow in the human forearm,” J. Physiol. 104(4), 366–376 (1946).
[Crossref]

Enfield, J. G.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O’Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007).
[Crossref]

Faber, D. J.

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

Farahabadi, M. H.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

Farnebo, S.

J. Zötterman, R. Mirdell, S. Horsten, S. Farnebo, and E. Tesselaar, “Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation,” PLoS One 12(3), e0174703 (2017).
[Crossref] [PubMed]

Fercher, A.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Ferretti, G.

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

Foster, P. A.

W. B. Murray and P. A. Foster, “The peripheral pulse wave: information overlooked,” J. Clin. Monit. 12(5), 365–377 (1996).
[Crossref] [PubMed]

Gable, R. H.

R. Morecraft, W. F. Blair, T. D. Brown, and R. H. Gable, “Acute effects of smoking on digital artery blood flow in humans,” J. Hand Surg. Am. 19(1), 1–7 (1994).
[Crossref] [PubMed]

Gagnon, L.

George, S. C.

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[Crossref] [PubMed]

S. M. White, S. C. George, and B. Choi, “Automated computation of functional vascular density using laser speckle imaging in a rodent window chamber model,” Microvasc. Res. 82(1), 92–95 (2011).
[Crossref] [PubMed]

Ghatak, S.

S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
[Crossref] [PubMed]

Ghijsen, M.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Giddon, D. B.

C. C. Brown, D. B. Giddon, and E. D. Dean, “Techniques of plethysmography,” Psychophysiology 1(3), 253–266 (1965).
[Crossref] [PubMed]

Gioux, S.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Gittings, A.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Gnyawali, S. C.

S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
[Crossref] [PubMed]

Goodfellow, J.

S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
[Crossref] [PubMed]

Gopal, A.

Greenberg, J. H.

Gu, Y.

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

Guerreschi, E.

A. Humeau-Heurtier, E. Guerreschi, P. Abraham, and G. Mahé, “Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends,” IEEE Trans. Biomed. Eng. 60(3), 659–666 (2013).
[Crossref] [PubMed]

Guizar-Iturbide, I.

Guzman, J.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

Hayes, M. J.

M. J. Hayes and P. R. Smith, “A new method for pulse oximetry possessing inherent insensitivity to artifact,” IEEE Trans. Biomed. Eng. 48(4), 452–461 (2001).
[Crossref] [PubMed]

Haykowsky, M. J.

D. E. Warburton, M. J. Haykowsky, H. A. Quinney, D. P. Humen, and K. K. Teo, “Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part II: Novel techniques and new advances,” Sports Med. 27(4), 241–260 (1999).
[Crossref] [PubMed]

He, X. W.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref] [PubMed]

Heeg, E.

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

Hertzman, A. B.

A. B. Hertzman and W. C. Randall, “Regional differences in the basal and maximal rates of blood flow in the skin,” J. Appl. Physiol. 1(3), 234–241 (1948).
[Crossref] [PubMed]

Hingorani, R.

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[Crossref] [PubMed]

Hirst, E.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Ho, J.

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

Hondebrink, E.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

Hopman, M. T.

D. H. Thijssen, M. W. Bleeker, P. Smits, and M. T. Hopman, “Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography,” Clin. Sci. 108(2), 151–157 (2005).
[Crossref] [PubMed]

Horsten, S.

J. Zötterman, R. Mirdell, S. Horsten, S. Farnebo, and E. Tesselaar, “Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation,” PLoS One 12(3), e0174703 (2017).
[Crossref] [PubMed]

Huang, N.

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

Hughes, C. C.

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[Crossref] [PubMed]

Humeau-Heurtier, A.

A. Humeau-Heurtier, E. Guerreschi, P. Abraham, and G. Mahé, “Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends,” IEEE Trans. Biomed. Eng. 60(3), 659–666 (2013).
[Crossref] [PubMed]

Humen, D. P.

D. E. Warburton, M. J. Haykowsky, H. A. Quinney, D. P. Humen, and K. K. Teo, “Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part II: Novel techniques and new advances,” Sports Med. 27(4), 241–260 (1999).
[Crossref] [PubMed]

Imholz, B. P.

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jamasian, B.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

Jansen, S. M.

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

Jones, C. J.

S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
[Crossref] [PubMed]

Justicia, C.

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[Crossref] [PubMed]

Kelly, K. M.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref] [PubMed]

Khaksari, K.

K. Khaksari and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 076002 (2016).
[Crossref] [PubMed]

Khanna, S.

S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
[Crossref] [PubMed]

Kirkpatrick, S. J.

K. Khaksari and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 076002 (2016).
[Crossref] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
[Crossref] [PubMed]

Konecky, S. D.

Krantz, D. S.

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

Kruijt, B.

B. Kruijt, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, and D. J. Robinson, “Laser speckle imaging of dynamic changes in flow during photodynamic therapy,” Lasers Med. Sci. 21(4), 208–212 (2006).
[Crossref] [PubMed]

Lador, F.

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

Larsson, M.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Lassen, N. A.

N. A. Lassen, J. Lindbjerg, and O. Munck, “Measurement of blood-flow through skeletal muscle by intramuscular injection of Xenon-133,” Lancet 283(7335), 686–689 (1964).
[Crossref] [PubMed]

Leahy, M. J.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O’Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007).
[Crossref]

Lee, D.

Lentsch, G. R.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

Lertsakdadet, B.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

Lertsakdadet, B. S.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref] [PubMed]

Lewis, M. J.

S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
[Crossref] [PubMed]

Liang, K.-Y.

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

Licker, M.

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

Lindbjerg, J.

N. A. Lassen, J. Lindbjerg, and O. Munck, “Measurement of blood-flow through skeletal muscle by intramuscular injection of Xenon-133,” Lancet 283(7335), 686–689 (1964).
[Crossref] [PubMed]

Lundberg, U.

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

Mahé, G.

A. Humeau-Heurtier, E. Guerreschi, P. Abraham, and G. Mahé, “Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends,” IEEE Trans. Biomed. Eng. 60(3), 659–666 (2013).
[Crossref] [PubMed]

Mardirossian, G.

G. Mardirossian and R. E. Schneider, “Limitations of pulse oximetry,” Anesth. Prog. 39(6), 194–196 (1992).
[PubMed]

Martínez-Niconoff, G.

Matthews, K. A.

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

Mazhar, A.

McNamara, P.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O’Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007).
[Crossref]

Mead, L. A.

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

Menkes, M. S.

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

Mesquita, R. C.

Miike, H.

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys. 18(5), 365–372 (1996).
[Crossref] [PubMed]

Milstein, D. M. J.

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

Mirdell, R.

J. Zötterman, R. Mirdell, S. Horsten, S. Farnebo, and E. Tesselaar, “Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation,” PLoS One 12(3), e0174703 (2017).
[Crossref] [PubMed]

Moia, C.

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

Morecraft, R.

R. Morecraft, W. F. Blair, T. D. Brown, and R. H. Gable, “Acute effects of smoking on digital artery blood flow in humans,” J. Hand Surg. Am. 19(1), 1–7 (1994).
[Crossref] [PubMed]

Morel, D.

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Moy, W. J.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref] [PubMed]

Munck, O.

N. A. Lassen, J. Lindbjerg, and O. Munck, “Measurement of blood-flow through skeletal muscle by intramuscular injection of Xenon-133,” Lancet 283(7335), 686–689 (1964).
[Crossref] [PubMed]

Murray, A.

J. Allen and A. Murray, “Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites,” Physiol. Meas. 24(2), 297–307 (2003).
[Crossref] [PubMed]

Murray, W. B.

W. B. Murray and P. A. Foster, “The peripheral pulse wave: information overlooked,” J. Clin. Monit. 12(5), 365–377 (1996).
[Crossref] [PubMed]

Naka, K. K.

S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
[Crossref] [PubMed]

Nakajima, K.

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys. 18(5), 365–372 (1996).
[Crossref] [PubMed]

Nelson, J. S.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[Crossref] [PubMed]

Nguyen, P.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

Nielsen, K. M.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref] [PubMed]

Nilsson, G. E.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O’Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007).
[Crossref]

O’Doherty, J.

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O’Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007).
[Crossref]

Osann, K. E.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

Owen, C.

Pal, D.

S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
[Crossref] [PubMed]

Parthasarathy, A. B.

Patel, S. J.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref] [PubMed]

Payne, N.

S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
[Crossref] [PubMed]

Pearson, T. A.

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

Ponticorvo, A.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

Qaqish, B.

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

Qiu, H.

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

Quinney, H. A.

D. E. Warburton, M. J. Haykowsky, H. A. Quinney, D. P. Humen, and K. K. Teo, “Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part II: Novel techniques and new advances,” Sports Med. 27(4), 241–260 (1999).
[Crossref] [PubMed]

Ramirez-San-Juan, J. C.

Ramos-García, R.

Randall, W. C.

A. B. Hertzman and W. C. Randall, “Regional differences in the basal and maximal rates of blood flow in the skin,” J. Appl. Physiol. 1(3), 234–241 (1948).
[Crossref] [PubMed]

Regan, C.

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

Rice, T. B.

Richards, G.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref] [PubMed]

Robinson, D. J.

B. Kruijt, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, and D. J. Robinson, “Laser speckle imaging of dynamic changes in flow during photodynamic therapy,” Lasers Med. Sci. 21(4), 208–212 (2006).
[Crossref] [PubMed]

Roy, S.

S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
[Crossref] [PubMed]

Schneider, R. E.

G. Mardirossian and R. E. Schneider, “Limitations of pulse oximetry,” Anesth. Prog. 39(6), 194–196 (1992).
[PubMed]

Sen, C. K.

S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
[Crossref] [PubMed]

Shelley, K. H.

K. H. Shelley, “Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,” Anesth. Analg. 105(6), S31–S36 (2007).
[Crossref] [PubMed]

Shi, R.

Smith, P. R.

M. J. Hayes and P. R. Smith, “A new method for pulse oximetry possessing inherent insensitivity to artifact,” IEEE Trans. Biomed. Eng. 48(4), 452–461 (2001).
[Crossref] [PubMed]

Smits, P.

D. H. Thijssen, M. W. Bleeker, P. Smits, and M. T. Hopman, “Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography,” Clin. Sci. 108(2), 151–157 (2005).
[Crossref] [PubMed]

Steenbergen, W.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

Sterenborg, H. J.

B. Kruijt, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, and D. J. Robinson, “Laser speckle imaging of dynamic changes in flow during photodynamic therapy,” Lasers Med. Sci. 21(4), 208–212 (2006).
[Crossref] [PubMed]

Stoianovici, C.

C. Stoianovici, P. Wilder-Smith, and B. Choi, “Assessment of pulpal vitality using laser speckle imaging,” Lasers Surg. Med. 43(8), 833–837 (2011).
[Crossref] [PubMed]

Strackee, S. D.

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

Stromberg, T.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Suh, S.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Takesh, T.

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

Tam, E.

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

Tamura, T.

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys. 18(5), 365–372 (1996).
[Crossref] [PubMed]

Teo, K. K.

D. E. Warburton, M. J. Haykowsky, H. A. Quinney, D. P. Humen, and K. K. Teo, “Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part II: Novel techniques and new advances,” Sports Med. 27(4), 241–260 (1999).
[Crossref] [PubMed]

Tesselaar, E.

J. Zötterman, R. Mirdell, S. Horsten, S. Farnebo, and E. Tesselaar, “Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation,” PLoS One 12(3), e0174703 (2017).
[Crossref] [PubMed]

Thijssen, D. H.

D. H. Thijssen, M. W. Bleeker, P. Smits, and M. T. Hopman, “Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography,” Clin. Sci. 108(2), 151–157 (2005).
[Crossref] [PubMed]

Thomas, C. B.

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

Thompson, O. B.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Tom, W. J.

Torabzadeh, M.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

Tosi, A.

Tromberg, B. J.

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express 3(6), 1340–1349 (2012).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
[Crossref] [PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
[Crossref] [PubMed]

Tuchin, V. V.

Valdes, C. P.

van der Ploeg-van den Heuvel, A.

B. Kruijt, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, and D. J. Robinson, “Laser speckle imaging of dynamic changes in flow during photodynamic therapy,” Lasers Med. Sci. 21(4), 208–212 (2006).
[Crossref] [PubMed]

van Leeuwen, T.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

van Leeuwen, T. G.

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

van Montfrans, G. A.

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

Varma, H. M.

Verma, S.

S. Verma, M. R. Buchanan, and T. J. Anderson, “Endothelial function testing as a biomarker of vascular disease,” Circulation 108(17), 2054–2059 (2003).
[Crossref] [PubMed]

Villa, F.

Wang, Y.

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

Warburton, D. E.

D. E. Warburton, M. J. Haykowsky, H. A. Quinney, D. P. Humen, and K. K. Teo, “Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part II: Novel techniques and new advances,” Sports Med. 27(4), 241–260 (1999).
[Crossref] [PubMed]

Wesseling, K. H.

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

White, S. M.

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[Crossref] [PubMed]

S. M. White, S. C. George, and B. Choi, “Automated computation of functional vascular density using laser speckle imaging in a rodent window chamber model,” Microvasc. Res. 82(1), 92–95 (2011).
[Crossref] [PubMed]

Wieling, W.

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

Wilder-Smith, P.

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

C. Stoianovici, P. Wilder-Smith, and B. Choi, “Assessment of pulpal vitality using laser speckle imaging,” Lasers Surg. Med. 43(8), 833–837 (2011).
[Crossref] [PubMed]

Wilson, R. H.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

Wink, C.

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

Yang, B.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

Yang, B. Y.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

Yang, O.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
[Crossref] [PubMed]

Yodh, A. G.

Zaher, S. M.

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

Zappa, F.

Zeng, J.

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

Zhang, X.

Zhao, S.

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

Zhou, Y.

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

Zhu, D.

Zötterman, J.

J. Zötterman, R. Mirdell, S. Horsten, S. Farnebo, and E. Tesselaar, “Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation,” PLoS One 12(3), e0174703 (2017).
[Crossref] [PubMed]

American Journal of Physiology–Legacy Content (1)

A. Burton, “The range and variability of the blood flow in the human fingers and the vasomotor regulation of body temperature,” American Journal of Physiology–Legacy Content 127(3), 437–453 (1939).
[Crossref]

Anesth. Analg. (1)

K. H. Shelley, “Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,” Anesth. Analg. 105(6), S31–S36 (2007).
[Crossref] [PubMed]

Anesth. Prog. (1)

G. Mardirossian and R. E. Schneider, “Limitations of pulse oximetry,” Anesth. Prog. 39(6), 194–196 (1992).
[PubMed]

Biomed. Opt. Express (7)

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
[Crossref] [PubMed]

W. B. Baker, A. B. Parthasarathy, D. R. Busch, R. C. Mesquita, J. H. Greenberg, and A. G. Yodh, “Modified Beer-Lambert law for blood flow,” Biomed. Opt. Express 5(11), 4053–4075 (2014).
[Crossref] [PubMed]

R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
[Crossref] [PubMed]

T. Dragojević, D. Bronzi, H. M. Varma, C. P. Valdes, C. Castellvi, F. Villa, A. Tosi, C. Justicia, F. Zappa, and T. Durduran, “High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera,” Biomed. Opt. Express 6(8), 2865–2876 (2015).
[Crossref] [PubMed]

M. A. Davis, L. Gagnon, D. A. Boas, and A. K. Dunn, “Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex,” Biomed. Opt. Express 7(3), 759–775 (2016).
[Crossref] [PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[Crossref] [PubMed]

T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express 3(6), 1340–1349 (2012).
[Crossref] [PubMed]

Cardiovasc. Res. (1)

B. P. Imholz, W. Wieling, G. A. van Montfrans, and K. H. Wesseling, “Fifteen years experience with finger arterial pressure monitoring: assessment of the technology,” Cardiovasc. Res. 38(3), 605–616 (1998).
[Crossref] [PubMed]

Circulation (1)

S. Verma, M. R. Buchanan, and T. J. Anderson, “Endothelial function testing as a biomarker of vascular disease,” Circulation 108(17), 2054–2059 (2003).
[Crossref] [PubMed]

Clin. Sci. (3)

S. N. Doshi, K. K. Naka, N. Payne, C. J. Jones, M. Ashton, M. J. Lewis, and J. Goodfellow, “Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide,” Clin. Sci. 101(6), 629–635 (2001).
[Crossref] [PubMed]

D. H. Thijssen, M. W. Bleeker, P. Smits, and M. T. Hopman, “Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography,” Clin. Sci. 108(2), 151–157 (2005).
[Crossref] [PubMed]

M. Azabji Kenfack, F. Lador, M. Licker, C. Moia, E. Tam, C. Capelli, D. Morel, and G. Ferretti, “Cardiac output by Modelflow® method from intra-arterial and fingertip pulse pressure profiles,” Clin. Sci. 106(4), 365–369 (2004).
[Crossref] [PubMed]

Front. Med. (1)

E. Chung, G. Chen, B. Alexander, and M. Cannesson, “Non-invasive continuous blood pressure monitoring: a review of current applications,” Front. Med. 7(1), 91–101 (2013).
[Crossref] [PubMed]

Hypertension (1)

M. S. Menkes, K. A. Matthews, D. S. Krantz, U. Lundberg, L. A. Mead, B. Qaqish, K.-Y. Liang, C. B. Thomas, and T. A. Pearson, “Cardiovascular reactivity to the cold pressor test as a predictor of hypertension,” Hypertension 14(5), 524–530 (1989).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (2)

M. J. Hayes and P. R. Smith, “A new method for pulse oximetry possessing inherent insensitivity to artifact,” IEEE Trans. Biomed. Eng. 48(4), 452–461 (2001).
[Crossref] [PubMed]

A. Humeau-Heurtier, E. Guerreschi, P. Abraham, and G. Mahé, “Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends,” IEEE Trans. Biomed. Eng. 60(3), 659–666 (2013).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

A. B. Hertzman and W. C. Randall, “Regional differences in the basal and maximal rates of blood flow in the skin,” J. Appl. Physiol. 1(3), 234–241 (1948).
[Crossref] [PubMed]

J. Biomed. Opt. (8)

M. Ghijsen, G. R. Lentsch, S. Gioux, M. Brenner, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption,” J. Biomed. Opt. 23(3), 1–12 (2018).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

C. Regan, S. M. White, B. Y. Yang, T. Takesh, J. Ho, C. Wink, P. Wilder-Smith, and B. Choi, “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).
[Crossref] [PubMed]

S. M. Jansen, D. M. de Bruin, D. J. Faber, I. J. G. G. Dobbe, E. Heeg, D. M. J. Milstein, S. D. Strackee, and T. G. van Leeuwen, “Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography,” J. Biomed. Opt. 22(8), 1–9 (2017).
[Crossref] [PubMed]

K. Khaksari and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 076002 (2016).
[Crossref] [PubMed]

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref] [PubMed]

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

J. Clin. Monit. (1)

W. B. Murray and P. A. Foster, “The peripheral pulse wave: information overlooked,” J. Clin. Monit. 12(5), 365–377 (1996).
[Crossref] [PubMed]

J. Hand Surg. Am. (1)

R. Morecraft, W. F. Blair, T. D. Brown, and R. H. Gable, “Acute effects of smoking on digital artery blood flow in humans,” J. Hand Surg. Am. 19(1), 1–7 (1994).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Physiol. (1)

H. Barcroft and O. Edholm, “Temperature and blood flow in the human forearm,” J. Physiol. 104(4), 366–376 (1946).
[Crossref]

Lancet (1)

N. A. Lassen, J. Lindbjerg, and O. Munck, “Measurement of blood-flow through skeletal muscle by intramuscular injection of Xenon-133,” Lancet 283(7335), 686–689 (1964).
[Crossref] [PubMed]

Lasers Med. Sci. (2)

B. Kruijt, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, and D. J. Robinson, “Laser speckle imaging of dynamic changes in flow during photodynamic therapy,” Lasers Med. Sci. 21(4), 208–212 (2006).
[Crossref] [PubMed]

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref] [PubMed]

Lasers Surg. Med. (3)

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref] [PubMed]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref] [PubMed]

C. Stoianovici, P. Wilder-Smith, and B. Choi, “Assessment of pulpal vitality using laser speckle imaging,” Lasers Surg. Med. 43(8), 833–837 (2011).
[Crossref] [PubMed]

Med. Eng. Phys. (1)

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys. 18(5), 365–372 (1996).
[Crossref] [PubMed]

Med. Laser Appl. (1)

M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O’Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007).
[Crossref]

Microvasc. Res. (2)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[Crossref] [PubMed]

S. M. White, S. C. George, and B. Choi, “Automated computation of functional vascular density using laser speckle imaging in a rodent window chamber model,” Microvasc. Res. 82(1), 92–95 (2011).
[Crossref] [PubMed]

Neurophotonics (1)

R. H. Wilson, C. Crouzet, M. Torabzadeh, A. Bazrafkan, M. H. Farahabadi, B. Jamasian, D. Donga, J. Alcocer, S. M. Zaher, B. Choi, Y. Akbari, and B. J. Tromberg, “High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation,” Neurophotonics 4(4), 045008 (2017).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photochem. Photobiol. (1)

H. Qiu, Y. Zhou, Y. Gu, Q. Ang, S. Zhao, Y. Wang, J. Zeng, and N. Huang, “Monitoring microcirculation changes in port wine stains during vascular targeted photodynamic therapy by laser speckle imaging,” Photochem. Photobiol. 88(4), 978–984 (2012).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Physiol. Meas. (3)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref] [PubMed]

J. Allen and A. Murray, “Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites,” Physiol. Meas. 24(2), 297–307 (2003).
[Crossref] [PubMed]

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

PLoS One (1)

J. Zötterman, R. Mirdell, S. Horsten, S. Farnebo, and E. Tesselaar, “Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation,” PLoS One 12(3), e0174703 (2017).
[Crossref] [PubMed]

Psychophysiology (1)

C. C. Brown, D. B. Giddon, and E. D. Dean, “Techniques of plethysmography,” Psychophysiology 1(3), 253–266 (1965).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Sci. Rep. (1)

S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, “Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation,” Sci. Rep. 7(1), 41048 (2017).
[Crossref] [PubMed]

Sports Med. (1)

D. E. Warburton, M. J. Haykowsky, H. A. Quinney, D. P. Humen, and K. K. Teo, “Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part II: Novel techniques and new advances,” Sports Med. 27(4), 241–260 (1999).
[Crossref] [PubMed]

Tissue Eng. Part C Methods (1)

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[Crossref] [PubMed]

Other (8)

S. M. Daly and M. J. Leahy, “Advances in blood flow imaging,” Advanced Biophotonics: Tissue Optical Sectioning, 321 (2016).

A. Ponticorvo, R. Rowland, M. Baldado, D. Burmeister, R. Christy, N. Bernal, and A. Durkin, “Assessing the predictive capability of optical imaging techniques, Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI), to the gold standard of clinical assessment in a controlled animal model,” in Photonics in Dermatology and Plastic Surgery 2018, (International Society for Optics and Photonics, 2018), 104670C.

M. Gonzalez, N. Sevilla, J. Chue-Sang, and J. C. Ramella-Roman, “Quantitative analysis of a scar’s pliability, perfusion and metrology,” in Optical Elastography and Tissue Biomechanics IV, (International Society for Optics and Photonics, 2017), 100670R.

J. G. Webster, Design of pulse oximeters (CRC Press, 1997).

M. Ghijsen, B. Choi, A. J. Durkin, S. Gioux, and B. J. Tromberg, “Real-time wide-field metabolic imaging achieved through coherent spatial frequency domain imaging (cSFDI),” in SPIE Photonics West - Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XIV, (SPIE, 2016)

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in Biomedical Optics (BiOS)2008, (International Society for Optics and Photonics, 2008), 687007.

B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
[Crossref]

L. S. Costanzo, Physiology Third ed. (Saunders, 2006), p. 490.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 ATSA signal processing diagram. The schematic shows the core algorithmic steps from acquisition of raw data to the final SPG and PPG waveforms.
Fig. 2
Fig. 2 ATSA Instrument Description. (a) Orientation of the core hardware components, casing and tissue sample. (b) Physiological origin of the SPG and PPG signals. (c) SPG waveform example. (d) PPG waveform example
Fig. 3
Fig. 3 TD Algorithm. (a) The SPG and PPG signals in blue and red, respectively. The black dotted rectangle demarcates the single pulse in Fig. 3(b). (b) Close-up of a single cardiac cycle. The two parallel lines flanked by the inward pointing black arrows visually depict the time delay. In both panels, the black asterisks mark the systolic peaks of the SPG waveform and the green asterisks mark the systolic peaks of the PPG waveform.
Fig. 4
Fig. 4 Time Frequency Analysis algorithm. The top left shows a raw SPG tracing from which (1) a single cardiac waveform is extracted. (2) The FFT of the waveform is computed to yield the frequency spectrum, consisting of distinct harmonic peaks. (3) The height of each harmonic is used to calculate harmonic ratios, discrete values stored for each cardiac cycle. (4) The algorithm repeats for the next cardiac cycle, accumulating harmonic ratios into a distribution that can be visualized with a histogram or used to compute a mean.
Fig. 5
Fig. 5 In-vitro validation test setup. (a) A syringe pump pushes a hemoglobin solution through a Digit Analog with a clipped on ATSA instrument. (b) Measured flow index in arbitrary units plotted against volumetric flow in ml per minute. The blue circles show ATSA recordings averaged over 10 seconds while the dotted black line shows a linear fit with an R2 coefficient of 0.98.
Fig. 6
Fig. 6 Comparison of distortion of SPG and PPG signals. (a) Dual-axis plot of the SPG and PPG waveforms during exercise. (b) Dual-axis plot the SPG and PPG waveforms during a cold pressor challenge. In both graphs, SPG signal is blue and PPG signal is red.
Fig. 7
Fig. 7 Two Subject Comparison of TD. (a) Dual-axis plot of the SPG and PPG waveforms marked for Subject A. (b) Dual axis plots of the SPG and PPG waveforms for Subject B. In both Fig. 6(a) and (b), SPG and PPG signals are blue and red, respectively. The SPG and PPG signal peaks are highlighted with black and green asterisks, respectively. (c) Histogram distribution of TD calculated for both subjects. The histogram values were extracted from approximately 300 pulses each.
Fig. 8
Fig. 8 Time Frequency Analysis Comparison. (a) Single cardiac cycle extracted from the raw flow data of Subject A. (b) Frequency spectrum computed for Subject A’s waveform wherein H1 and H3 demarcate the first (fundamental) and third harmonic, respectively. (c) Single cardiac cycle taken from Subject B. (d) Frequency spectrum computed for Subject B’s waveform. As in Fig. 8(b), H1 and H3 point to the first and third harmonic. (e) Histogram distribution of THR for Subject A (orange) and Subject B (turquoise). The distributions for each subject were extracted from approximately 300 heartbeats.
Fig. 9
Fig. 9 SPG-PPG parameters vs. age. (a) Linear regression of TD onto age. (b) Linear regression of THR onto age. The solid red line is the linear best fit of the data. The curved dotted red lines are the 95% confidence intervals. The blue tick marks indicate the individual data points.
Fig. 10
Fig. 10 SPG and PPG signals from each of the physiological challenges. (a) Baseline data. (b) Cold pressor data. (c) Post-exercise data. In each panel, the SPG waveform is blue and the PPG waveform is red, both in arbitrary units.
Fig. 11
Fig. 11 Changes from baseline in the cold-pressor and exercise challenges. (a) Repeatability testing on a single subject performing seven tandem measurements. Each box plot depicts the range of changes during the cold pressor, exercise and baseline conditions. (b) Changes from baseline obtained from individual measurements performed on four subjects.

Metrics