Abstract

Optical coherence microscopy (OCM) is a promising modality for high resolution imaging, but has limited ability to capture large-scale volumetric information about dynamic biological processes with cellular resolution. To enhance the throughput of OCM, we implemented a hybrid adaptive optics (hyAO) approach that combines computational adaptive optics with an intentionally aberrated imaging beam generated via hardware adaptive optics. Using hyAO, we demonstrate the depth-equalized illumination and collection ability of an astigmatic beam compared to a Gaussian beam for cellular-resolution imaging. With this advantage, we achieved volumetric OCM with a higher space-bandwidth-time product compared to Gaussian-beam acquisition that employed focus-scanning across depth. HyAO was also used to perform volumetric time-lapse OCM imaging of cellular dynamics over a 1mm × 1mm × 1mm field-of-view with 2 μm isotropic spatial resolution and 3-minute temporal resolution. As hyAO is compatible with both spectral-domain and swept-source beam-scanning OCM systems, significant further improvements in absolute volumetric throughput are possible by use of ultrahigh-speed swept sources.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computed optical interferometric tomography for high-speed volumetric cellular imaging

Yuan-Zhi Liu, Nathan D. Shemonski, Steven G. Adie, Adeel Ahmad, Andrew J. Bower, P. Scott Carney, and Stephen A. Boppart
Biomed. Opt. Express 5(9) 2988-3000 (2014)

Ultrahigh speed spectral-domain optical coherence microscopy

Hsiang-Chieh Lee, Jonathan J. Liu, Yuri Sheikine, Aaron D. Aguirre, James L. Connolly, and James G. Fujimoto
Biomed. Opt. Express 4(8) 1236-1254 (2013)

Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy

Séverine Coquoz, Arno Bouwens, Paul J. Marchand, Jérôme Extermann, and Theo Lasser
Opt. Express 25(24) 30807-30819 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Friedl and D. Gilmour, “Collective cell migration in morphogenesis, regeneration and cancer,” Nat. Rev. Mol. Cell Biol. 10(7), 445–457 (2009).
    [Crossref] [PubMed]
  2. F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013).
    [Crossref] [PubMed]
  3. K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
    [Crossref] [PubMed]
  4. B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
    [Crossref] [PubMed]
  5. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2(10), 904–911 (2015).
    [Crossref]
  6. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref] [PubMed]
  7. W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14(16), 7159–7171 (2006).
    [Crossref] [PubMed]
  8. S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
    [Crossref] [PubMed]
  9. J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics, (SPIE, 2008), 9.
  10. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
    [Crossref] [PubMed]
  11. K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
    [Crossref] [PubMed]
  12. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).
    [Crossref] [PubMed]
  13. C. Costa, A. Bradu, J. Rogers, P. Phelan, and A. Podoleanu, “Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror,” J. Biomed. Opt. 20(1), 016012 (2015).
    [Crossref] [PubMed]
  14. L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).
    [Crossref] [PubMed]
  15. K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [Crossref] [PubMed]
  16. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express 19(13), 12141–12155 (2011).
    [Crossref] [PubMed]
  17. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
    [Crossref] [PubMed]
  18. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  19. A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
    [Crossref] [PubMed]
  20. S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
    [Crossref] [PubMed]
  21. Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 10(11), 1411–1420 (2017).
    [Crossref] [PubMed]
  22. B. Yin, C. Hyun, J. A. Gardecki, and G. J. Tearney, “Extended depth of focus for coherence-based cellular imaging,” Optica 4(8), 959–965 (2017).
    [Crossref] [PubMed]
  23. A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
    [Crossref] [PubMed]
  24. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref] [PubMed]
  25. O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 58(11), 4605–4615 (2017).
    [Crossref] [PubMed]
  26. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22(7), 1380–1388 (2005).
    [Crossref] [PubMed]
  27. A. Dubois, Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016).
  28. O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy [Invited],” Biomed. Opt. Express 8(2), 622–639 (2017).
    [Crossref] [PubMed]
  29. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref] [PubMed]
  30. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
    [Crossref] [PubMed]
  31. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
    [Crossref] [PubMed]
  32. S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
    [Crossref] [PubMed]
  33. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
    [Crossref] [PubMed]
  34. Y. Xu, X. K. B. Chng, S. G. Adie, S. A. Boppart, and P. S. Carney, “Multifocal interferometric synthetic aperture microscopy,” Opt. Express 22(13), 16606–16618 (2014).
    [Crossref] [PubMed]
  35. A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
    [Crossref] [PubMed]
  36. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
    [Crossref] [PubMed]
  37. Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
    [Crossref] [PubMed]
  38. J. A. Mulligan, F. Bordeleau, C. A. Reinhart-King, and S. G. Adie, “Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy,” Biomed. Opt. Express 8(2), 1152–1171 (2017).
    [Crossref] [PubMed]
  39. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
    [Crossref] [PubMed]
  40. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref] [PubMed]
  41. K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J. Biophotonics 3(4), 187–206 (2010).
    [Crossref] [PubMed]
  42. F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
    [Crossref] [PubMed]
  43. S. G. Adie, N. D. Shemonski, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric Synthetic Aperture Microscopy (ISAM),” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, Cham, 2015), pp. 965–1004.
  44. Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
    [Crossref] [PubMed]
  45. A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
    [Crossref] [PubMed]
  46. B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett. 35(18), 3120–3122 (2010).
    [Crossref] [PubMed]
  47. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13(3), 470–473 (1996).
    [Crossref]
  48. J. P. Rolland, P. Meemon, S. Murali, I. Kaya, N. Papp, K. P. Thompson, K.-S. E. D. A. P. Lee, and B. Bouma, “Gabor Domain Optical Coherence Microscopy,” in Optical Coherence Tomography and Coherence Techniques IV, Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), 7372_7371K.
  49. M. Duelk and K. Hsu, “SLEDs and Swept Source Laser Technology for OCT,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, Cham, 2015), pp. 527–561.
  50. X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
    [Crossref]
  51. N. Gjorevski and C. M. Nelson, “Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional Epithelial Tissues,” Biophys. J. 103(1), 152–162 (2012).
    [Crossref] [PubMed]
  52. X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
    [Crossref]
  53. J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
    [Crossref] [PubMed]
  54. L. Przybyla, J. N. Lakins, R. Sunyer, X. Trepat, and V. M. Weaver, “Monitoring developmental force distributions in reconstituted embryonic epithelia,” Methods 94, 101–113 (2016).
    [Crossref] [PubMed]
  55. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  56. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
    [Crossref] [PubMed]
  57. S. Tozburun, C. Blatter, M. Siddiqui, E. F. J. Meijer, and B. J. Vakoc, “Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser,” Biomed. Opt. Express 9(3), 952–961 (2018).
    [Crossref] [PubMed]
  58. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
    [Crossref] [PubMed]
  59. L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher, and R. A. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4(8), 924–931 (2017).
    [Crossref]
  60. P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016).
    [Crossref] [PubMed]
  61. P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT,” Optica 5(4), 409–412 (2018).
    [Crossref]
  62. P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8(7), 3343–3359 (2017).
    [Crossref] [PubMed]
  63. S. Coquoz, A. Bouwens, P. J. Marchand, J. Extermann, and T. Lasser, “Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy,” Opt. Express 25(24), 30807–30819 (2017).
    [Crossref] [PubMed]
  64. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011).
    [Crossref] [PubMed]
  65. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [Crossref] [PubMed]
  66. H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
    [Crossref] [PubMed]
  67. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
    [Crossref] [PubMed]
  68. Y.-Z. Liu, F. A. South, P. Pande, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Optical coherence microscopy using hardware and computational adaptive optics,” in Imaging and Applied Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), AOTh3D.2.

2018 (2)

2017 (10)

P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8(7), 3343–3359 (2017).
[Crossref] [PubMed]

S. Coquoz, A. Bouwens, P. J. Marchand, J. Extermann, and T. Lasser, “Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy,” Opt. Express 25(24), 30807–30819 (2017).
[Crossref] [PubMed]

L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher, and R. A. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4(8), 924–931 (2017).
[Crossref]

J. A. Mulligan, F. Bordeleau, C. A. Reinhart-King, and S. G. Adie, “Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy,” Biomed. Opt. Express 8(2), 1152–1171 (2017).
[Crossref] [PubMed]

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref] [PubMed]

L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 10(11), 1411–1420 (2017).
[Crossref] [PubMed]

B. Yin, C. Hyun, J. A. Gardecki, and G. J. Tearney, “Extended depth of focus for coherence-based cellular imaging,” Optica 4(8), 959–965 (2017).
[Crossref] [PubMed]

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 58(11), 4605–4615 (2017).
[Crossref] [PubMed]

O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy [Invited],” Biomed. Opt. Express 8(2), 622–639 (2017).
[Crossref] [PubMed]

2016 (8)

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref] [PubMed]

S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref] [PubMed]

A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
[Crossref] [PubMed]

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

L. Przybyla, J. N. Lakins, R. Sunyer, X. Trepat, and V. M. Weaver, “Monitoring developmental force distributions in reconstituted embryonic epithelia,” Methods 94, 101–113 (2016).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (5)

2013 (5)

2012 (7)

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
[Crossref] [PubMed]

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

N. Gjorevski and C. M. Nelson, “Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional Epithelial Tissues,” Biophys. J. 103(1), 152–162 (2012).
[Crossref] [PubMed]

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

2011 (4)

2010 (4)

2009 (3)

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
[Crossref]

S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

P. Friedl and D. Gilmour, “Collective cell migration in morphogenesis, regeneration and cancer,” Nat. Rev. Mol. Cell Biol. 10(7), 445–457 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

2006 (2)

2005 (1)

1998 (2)

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
[Crossref] [PubMed]

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

1996 (1)

Adie, S. G.

Ahmad, A.

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Ajduk, A.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref] [PubMed]

Alex, A.

Angelini, T. E.

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
[Crossref]

Anon, E.

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

Apelian, C.

Bachmann, A. H.

Banerjee, S.

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

Barry, S.

Bazellieres, E.

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

Beaurepaire, E.

Bembenek, J. N.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Betzig, E.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Biedermann, B. R.

Blanchot, L.

Blatter, C.

Boccara, A. C.

Boccara, C.

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 58(11), 4605–4615 (2017).
[Crossref] [PubMed]

Böhme, R.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Bonin, T.

Bonora, S.

Boppart, S. A.

Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

Y. Xu, X. K. B. Chng, S. G. Adie, S. A. Boppart, and P. S. Carney, “Multifocal interferometric synthetic aperture microscopy,” Opt. Express 22(13), 16606–16618 (2014).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett. 35(18), 3120–3122 (2010).
[Crossref] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14(16), 7159–7171 (2006).
[Crossref] [PubMed]

Bordeleau, F.

Bourquin, S.

Bouwens, A.

Bower, A. J.

Bradu, A.

C. Costa, A. Bradu, J. Rogers, P. Phelan, and A. Podoleanu, “Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror,” J. Biomed. Opt. 20(1), 016012 (2015).
[Crossref] [PubMed]

Butler, J. P.

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
[Crossref]

Cable, A. E.

Carney, P. S.

Chen, B.-C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Chen, M.

Chen, Y.

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 10(11), 1411–1420 (2017).
[Crossref] [PubMed]

Chng, X. K. B.

Choi, H.

Conte, V.

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

Coquoz, S.

Costa, C.

C. Costa, A. Bradu, J. Rogers, P. Phelan, and A. Podoleanu, “Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror,” J. Biomed. Opt. 20(1), 016012 (2015).
[Crossref] [PubMed]

Curatolo, A.

A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
[Crossref] [PubMed]

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref] [PubMed]

Davidson, M. W.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Davis, B. J.

Delori, F. C.

Derby, J. C.

Desai, T. A.

Descloux, A.

Ding, W.

L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

Dobre, G. M.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

Dolezyczek, H.

Dorsch, R. G.

Drexler, W.

Eigenwillig, C. M.

English, B. P.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Extermann, J.

Fechtig, D.

Fechtig, D. J.

Ferreira, C.

Fingler, J.

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 10(11), 1411–1420 (2017).
[Crossref] [PubMed]

Fink, M.

Fitzke, F. W.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

Franke, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Fraser, S. E.

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 10(11), 1411–1420 (2017).
[Crossref] [PubMed]

Fredberg, J. J.

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
[Crossref]

Friedl, P.

P. Friedl and D. Gilmour, “Collective cell migration in morphogenesis, regeneration and cancer,” Nat. Rev. Mol. Cell Biol. 10(7), 445–457 (2009).
[Crossref] [PubMed]

Fritz, A.

Fritz-Laylin, L.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Fütterer, C.

F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013).
[Crossref] [PubMed]

Gao, W.

Gardecki, J. A.

Gilmour, D.

P. Friedl and D. Gilmour, “Collective cell migration in morphogenesis, regeneration and cancer,” Nat. Rev. Mol. Cell Biol. 10(7), 445–457 (2009).
[Crossref] [PubMed]

Ginner, L.

Gjorevski, N.

N. Gjorevski and C. M. Nelson, “Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional Epithelial Tissues,” Biophys. J. 103(1), 152–162 (2012).
[Crossref] [PubMed]

Gradowski, M. A.

Graf, B. W.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett. 35(18), 3120–3122 (2010).
[Crossref] [PubMed]

Grajciar, B.

Grieve, K.

Grill, S. W.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Gweon, B.

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

Gyger, M.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Ha, J.

Hain, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Hammer, J. A.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Hanstorp, D.

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J. Biophotonics 3(4), 187–206 (2010).
[Crossref] [PubMed]

Harwood, A.

S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Herde, A. E.

Hermann, B.

S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Hillmann, D.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
[Crossref] [PubMed]

Hofer, B.

S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Huber, F.

F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013).
[Crossref] [PubMed]

Huber, R.

Hüttmann, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
[Crossref] [PubMed]

Hyun, C.

Ibrahim, S. F.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Jackson, D. A.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

Jain, A.

J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics, (SPIE, 2008), 9.

Janetopoulos, C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Jang, H.

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

Jang, J.

Jang, W.

Jian, Y.

Jiang, J. Y.

Jonnal, R. S.

Kamali, T.

Kampik, A.

Karamata, B.

Karnowski, K.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref] [PubMed]

Käs, J.

F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013).
[Crossref] [PubMed]

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Kennedy, B. F.

A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
[Crossref] [PubMed]

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref] [PubMed]

Khoudeir, L.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Kiehart, D. P.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Kim, J.-Y.

Klein, T.

Kocaoglu, O. P.

Koch, P.

Krawiec, K.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref] [PubMed]

Kumar, A.

Lakins, J. N.

L. Przybyla, J. N. Lakins, R. Sunyer, X. Trepat, and V. M. Weaver, “Monitoring developmental force distributions in reconstituted embryonic epithelia,” Methods 94, 101–113 (2016).
[Crossref] [PubMed]

Lambelet, P.

Lasser, T.

Laubscher, M.

Lebec, M.

Lee, K. S.

Lee, K.-S.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[Crossref] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics, (SPIE, 2008), 9.

Lee, S.

Legant, W. R.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Leitgeb, R. A.

L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher, and R. A. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4(8), 924–931 (2017).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref] [PubMed]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
[Crossref] [PubMed]

C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express 19(13), 12141–12155 (2011).
[Crossref] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

Leutenegger, M.

Lim, J.

Lippincott-Schwartz, J.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Liu, Y.-Z.

Liu, Z.

L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2(10), 904–911 (2015).
[Crossref]

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Lohmann, A. W.

Lorenser, D.

A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
[Crossref] [PubMed]

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref] [PubMed]

Lührs, C.

Lyu, H. C.

Malinowska, M.

Marchand, P. J.

Marchetti, M. C.

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

Marks, D. L.

Mazlin, V.

Meemon, N.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Meemon, P.

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[Crossref] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics, (SPIE, 2008), 9.

Meijer, E. F. J.

Mendlovic, D.

Milkie, D. E.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Miller, D. T.

Millet, E.

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
[Crossref]

Mimori-Kiyosue, Y.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Mitchell, D. M.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Müller, K.

F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013).
[Crossref] [PubMed]

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Mulligan, J. A.

Mullins, R. D.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Munro, P. R. T.

A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
[Crossref] [PubMed]

Murali, S.

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[Crossref] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics, (SPIE, 2008), 9.

Nelson, C. M.

N. Gjorevski and C. M. Nelson, “Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional Epithelial Tissues,” Biophys. J. 103(1), 152–162 (2012).
[Crossref] [PubMed]

Neubauer, A.

Nguyen, D.

Norman, J. J.

Notbohm, J.

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

Oh, W.-Y.

Oldenburg, A. L.

Papp, N.

J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics, (SPIE, 2008), 9.

Pâques, M.

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 58(11), 4605–4615 (2017).
[Crossref] [PubMed]

Park, J.-H.

Park, Y.

Pfäffle, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Phelan, P.

C. Costa, A. Bradu, J. Rogers, P. Phelan, and A. Podoleanu, “Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror,” J. Biomed. Opt. 20(1), 016012 (2015).
[Crossref] [PubMed]

Pircher, M.

Platzer, R.

Podoleanu, A.

C. Costa, A. Bradu, J. Rogers, P. Phelan, and A. Podoleanu, “Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror,” J. Biomed. Opt. 20(1), 016012 (2015).
[Crossref] [PubMed]

Podoleanu, A. G.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

Považay, B.

S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Przybyla, L.

L. Przybyla, J. N. Lakins, R. Sunyer, X. Trepat, and V. M. Weaver, “Monitoring developmental force distributions in reconstituted embryonic epithelia,” Methods 94, 101–113 (2016).
[Crossref] [PubMed]

Radhakrishnan, H.

Ralston, T. S.

Ramser, K.

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J. Biophotonics 3(4), 187–206 (2010).
[Crossref] [PubMed]

Rauch, P.

F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013).
[Crossref] [PubMed]

Reinhart-King, C. A.

Rey, S. M.

S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Reymann, A.-C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Reznicek, L.

Ritter, A. T.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Rogers, J.

C. Costa, A. Bradu, J. Rogers, P. Phelan, and A. Podoleanu, “Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror,” J. Biomed. Opt. 20(1), 016012 (2015).
[Crossref] [PubMed]

Rolland, J. P.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[Crossref] [PubMed]

K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[Crossref] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics, (SPIE, 2008), 9.

Romero, D. P.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Rönicke, S.

F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013).
[Crossref] [PubMed]

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Rose, D.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Sahel, J.

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 58(11), 4605–4615 (2017).
[Crossref] [PubMed]

Sahel, J.-A.

Saint-Jalmes, H.

Salas, M.

Sampson, D. D.

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref] [PubMed]

A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
[Crossref] [PubMed]

Sarunic, M. V.

Schlachter, S. C.

Schmoll, T.

Schnauß, J.

F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013).
[Crossref] [PubMed]

Scott Carney, P.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

Seeger, M.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

Serra-Picamal, X.

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

Seydoux, G.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Shao, L.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Shemonski, N. D.

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

Shin, J.

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

Siddiqui, M.

Singe, C. C.

A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
[Crossref] [PubMed]

Sison, M.

Sliney, D. H.

Spahr, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Sreekumar, P.

A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
[Crossref] [PubMed]

Srinivasan, V. J.

Steinmann, L.

Sudkamp, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Sun, L.

L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

Sunyer, R.

L. Przybyla, J. N. Lakins, R. Sunyer, X. Trepat, and V. M. Weaver, “Monitoring developmental force distributions in reconstituted embryonic epithelia,” Methods 94, 101–113 (2016).
[Crossref] [PubMed]

Szkulmowski, M.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref] [PubMed]

S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref] [PubMed]

Szlag, D.

Tambe, D. T.

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

Tamborski, S.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref] [PubMed]

S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref] [PubMed]

Tan, W.

Tearney, G. J.

Thompson, K. P.

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[Crossref] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics, (SPIE, 2008), 9.

Thouvenin, O.

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 58(11), 4605–4615 (2017).
[Crossref] [PubMed]

O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy [Invited],” Biomed. Opt. Express 8(2), 622–639 (2017).
[Crossref] [PubMed]

Tian, L.

Tozburun, S.

Trepat, X.

L. Przybyla, J. N. Lakins, R. Sunyer, X. Trepat, and V. M. Weaver, “Monitoring developmental force distributions in reconstituted embryonic epithelia,” Methods 94, 101–113 (2016).
[Crossref] [PubMed]

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
[Crossref]

Trinh, L. A.

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 10(11), 1411–1420 (2017).
[Crossref] [PubMed]

Tulu, U. S.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Unterhuber, A.

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Utuje, K. J. C.

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

Vakoc, B. J.

Villiger, M.

Vincent, R.

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

Waller, L.

Wang, J. T.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Wang, K.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Wang, Q.

Wasserman, M. R.

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
[Crossref]

Weaver, V. M.

L. Przybyla, J. N. Lakins, R. Sunyer, X. Trepat, and V. M. Weaver, “Monitoring developmental force distributions in reconstituted embryonic epithelia,” Methods 94, 101–113 (2016).
[Crossref] [PubMed]

Webb, D. J.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

Webb, R. H.

Weingast, J.

Weitz, D. A.

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
[Crossref]

Werkmeister, R. M.

Wetzel, F.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Wieloch, B.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref] [PubMed]

Wieser, W.

Wijesinghe, P.

Wilczynski, G.

Winter, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Wojtkowski, M.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref] [PubMed]

S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref] [PubMed]

Wu, X. S.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Wurster, L. M.

Xiao, P.

Xu, J.

Xu, Y.

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Yeh, L.-H.

Yi, L.

L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

Yin, B.

Yu, H.

Zalevsky, Z.

Zawadzki, R. J.

Zhao, H.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Zhong, J.

Zink, M.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Adv. Phys. (1)

F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (12)

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

J. A. Mulligan, F. Bordeleau, C. A. Reinhart-King, and S. G. Adie, “Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy,” Biomed. Opt. Express 8(2), 1152–1171 (2017).
[Crossref] [PubMed]

S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref] [PubMed]

O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy [Invited],” Biomed. Opt. Express 8(2), 622–639 (2017).
[Crossref] [PubMed]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
[Crossref] [PubMed]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
[Crossref] [PubMed]

S. Tozburun, C. Blatter, M. Siddiqui, E. F. J. Meijer, and B. J. Vakoc, “Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser,” Biomed. Opt. Express 9(3), 952–961 (2018).
[Crossref] [PubMed]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref] [PubMed]

P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8(7), 3343–3359 (2017).
[Crossref] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011).
[Crossref] [PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
[Crossref] [PubMed]

Biophys. J. (2)

J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 2729–2738 (2016).
[Crossref] [PubMed]

N. Gjorevski and C. M. Nelson, “Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional Epithelial Tissues,” Biophys. J. 103(1), 152–162 (2012).
[Crossref] [PubMed]

Eur. Biophys. J. (1)

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 58(11), 4605–4615 (2017).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

C. Costa, A. Bradu, J. Rogers, P. Phelan, and A. Podoleanu, “Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror,” J. Biomed. Opt. 20(1), 016012 (2015).
[Crossref] [PubMed]

L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).
[Crossref] [PubMed]

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

J. Biophotonics (3)

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J. Biophotonics 3(4), 187–206 (2010).
[Crossref] [PubMed]

S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–379 (2009).
[Crossref] [PubMed]

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 10(11), 1411–1420 (2017).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (4)

Methods (1)

L. Przybyla, J. N. Lakins, R. Sunyer, X. Trepat, and V. M. Weaver, “Monitoring developmental force distributions in reconstituted embryonic epithelia,” Methods 94, 101–113 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Nat. Phys. (3)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009).
[Crossref]

X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

P. Friedl and D. Gilmour, “Collective cell migration in morphogenesis, regeneration and cancer,” Nat. Rev. Mol. Cell Biol. 10(7), 445–457 (2009).
[Crossref] [PubMed]

Opt. Express (10)

W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14(16), 7159–7171 (2006).
[Crossref] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).
[Crossref] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[Crossref] [PubMed]

C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express 19(13), 12141–12155 (2011).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

Y. Xu, X. K. B. Chng, S. G. Adie, S. A. Boppart, and P. S. Carney, “Multifocal interferometric synthetic aperture microscopy,” Opt. Express 22(13), 16606–16618 (2014).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
[Crossref] [PubMed]

S. Coquoz, A. Bouwens, P. J. Marchand, J. Extermann, and T. Lasser, “Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy,” Opt. Express 25(24), 30807–30819 (2017).
[Crossref] [PubMed]

Opt. Lett. (7)

Optica (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Sci. Rep. (3)

A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 23483 (2016).
[Crossref] [PubMed]

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Science (1)

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Other (6)

J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics, (SPIE, 2008), 9.

A. Dubois, Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016).

S. G. Adie, N. D. Shemonski, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric Synthetic Aperture Microscopy (ISAM),” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, Cham, 2015), pp. 965–1004.

J. P. Rolland, P. Meemon, S. Murali, I. Kaya, N. Papp, K. P. Thompson, K.-S. E. D. A. P. Lee, and B. Bouma, “Gabor Domain Optical Coherence Microscopy,” in Optical Coherence Tomography and Coherence Techniques IV, Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), 7372_7371K.

M. Duelk and K. Hsu, “SLEDs and Swept Source Laser Technology for OCT,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, Cham, 2015), pp. 527–561.

Y.-Z. Liu, F. A. South, P. Pande, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Optical coherence microscopy using hardware and computational adaptive optics,” in Imaging and Applied Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), AOTh3D.2.

Supplementary Material (2)

NameDescription
» Visualization 1       Volumetric visualization of fibroblast cell dynamics. The central part has 1mm × 1mm × 1mm field of view, and all the extracted parts have 0.25mm × 0.25mm × 0.25mm field of view.
» Visualization 2       En face maximum intensity projection (400 µm slices) of fibroblast cell dynamics. Scale bar represents 50 µm for all sections.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 System diagram for hybrid AO OCM. FC: 50-50 Fiber Coupler, PC: Polarization Controller, CL: Collimating Lens, M: Mirror, DM: Deformable Mirror, RP: Right-angle Prism, GMx and GMy: galvanometer mirror along x and y directions, OBJ: Objective Lens, S: Sample. All other unlabeled lenses are telescope pairs used for pupil conjugation.
Fig. 2
Fig. 2 Simulation results showing the depth-dependent incident beam intensity and reconstructed OCT signals for a Gaussian versus astigmatic beam. (a) Depth-dependent illumination profile obtained with the following beam types. Beam1: Gaussian beam illumination. Beam 2: Astigmatic beam with EPI. Beam 3: Astigmatic beam with EPII. (b) Reconstruction of depth-dependent collection profile with CAO. Signal A: Depth-dependent OCM signal from Beam 1. Signal B: CAO reconstruction of Signal A. Signal C: Depth-dependent OCM signal from Beam 3. Signal D: CAO reconstruction of Signal C. The dynamic range occupied by Gaussian and astigmatic beam is labelled on the right side.
Fig. 3
Fig. 3 Performance characterization of Gaussian versus astigmatic illumination beams in a resolution phantom, using ESI. (a-e) Comparison of cross-sectional energy distribution across depth, from maximum intensity projection of a 250μm slice. The bottom row is the depth-normalized version of the top row (method explained in Sect. 4.2), with (a) OCM with Gaussian beam, (b) CAO-OCM with Gaussian beam, (c) OCM with astigmatic beam, (d) CAO-OCM with astigmatic beam, and (e) focus scanning OCM fused from 18 volumes. Scale bars indicate 100 μm for all images. (f) Quantitative measurement of peak reconstructed OCT signal intensity. (g) FWHM resolution for hyAO and focus scanning OCM. Color-filled regions indicate ± one standard deviation. In (f) and (g), the depth axis matches the portion of the cross sectional images that are below the sample surface.
Fig. 4
Fig. 4 Comparison of cross sectional energy distribution across depth in grape imaging, from maximum intensity projection of a 10 μm slice, in EPI. (a) OCM with Gaussian beam, (b) CAO-OCM with Gaussian beam, (c) OCM with astigmatic beam, (d) CAO-OCM with astigmatic beam, (e) Focus scanning OCM fused from 18 volumes. The line plots indicate the normalized intensity profile in the image at four depths, labelled by arrows with corresponding color, with black dashed arrow representing the focal plane position for the standard Gaussian acquisition. All images are depth-normalized with the same method as in the phantom results in Fig. 3. Scale bars indicate 100 μm for all images. A gamma correction with γ = 0.7 was applied to all images.
Fig. 5
Fig. 5 Volumetric visualization of fibroblast cell dynamics. (a) the entire volume with 1 mm × 1mm × 1mm FOV, extracted from Supplementary Visualization 1. (b) cell exhibits upward motion in a 30 min duration, (c) cell exhibits rapid sideways motion in a 6 min duration. Both (b) and (c) cover a 0.25mm × 0.25mm × 0.25mm volume, with the initial time point indicated by the cyan channel and final time point by the red channel.
Fig. 6
Fig. 6 En face maximum intensity projection (400 μm slices) of fibroblast cell dynamics. (a) the entire 1mm × 1mm FOV, extracted from Supplementary Visualization 2. (b) cell extending filopodia across a 1 hour duration, (c) cell undergoing migration over a 263 minute period. Scale bar represents 50 μm for all groups.

Tables (1)

Tables Icon

Table 1 Summary of different illumination approaches used for comparing Gaussian and astigmatic beams in the simulation and experiments.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ill (z;k)== 2 P inc π  w 2 (z) ,
g(x,y,z;k)= G( k x , k y ,z=0;k ) e iϕ( k x , k y ) e i k z z e i( k x x+ k y y) d k x d k y .
h(x,y,z;k)= P inc g ill ( x,y,z;k ) g col ( x,y,z;k )= P inc g 2 (x,y,z;k)
H( k x , k y ,z;k )= h(x,y,z;k) e i( k x x+ k y y) dxdy
h ac (x,y,z;k)= H( k x , k y ,z;k ) e i ϕ ac ( k x , k y ,z ) e i( k x x+ k y y) d k x d k y
I rec ( z;k ) max x,y { | h( x,y,z;k ) | 2 },
I rec,ac ( z;k ) max x,y { | h ac ( x,y,z;k ) | 2 }.

Metrics