Abstract

We present a new fiber-bundle-based endomicroscopy system to measure the fast cerebral blood flow (CBF) velocity in blood vessels located between the surface and the deep brain of living animals. The CBF velocity is obtained by measuring the displacement of the partially overlapped red blood cell images directly, using double-pulse 532-nm laser illumination. The proposed method could measure CBF in blood vessels with diameters ranging from 4 μm to 42 μm and could measure CBF velocities up to 3.2 μm/ms for different vessel diameters at a depth of 2.1 mm from the brain surface in a living mouse.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence Doppler tomography for quantitative cerebral blood flow imaging

Jiang You, Congwu Du, Nora D. Volkow, and Yingtian Pan
Biomed. Opt. Express 5(9) 3217-3230 (2014)

Blood cell assisted in vivo Particle Image Velocimetry using the confocal laser scanning microscope

Sung Min Choi, Wi Han Kim, Daniel Côté, Cheol-Woo Park, and Ho Lee
Opt. Express 19(5) 4357-4368 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Venkat, M. Chopp, and J. Chen, “New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain,” Croat. Med. J. 57(3), 223–228 (2016).
    [Crossref] [PubMed]
  2. I. F. Kimbrough, S. Robel, E. D. Roberson, and H. Sontheimer, “Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease,” Brain 138(12), 3716–3733 (2015).
    [Crossref] [PubMed]
  3. V. Berezowski, A. M. Fukuda, R. Cecchelli, and J. Badaut, “Endothelial Cells and Astrocytes: A Concerto en Duo in Ischemic Pathophysiology,” Int. J. Cell Biol. 2012, 176287 (2012).
    [Crossref] [PubMed]
  4. D. A. Turner and D. C. Adamson, “Neuronal-Astrocyte Metabolic Interactions: Understanding the Transition into Abnormal Astrocytoma Metabolism,” J. Neuropathol. Exp. Neurol. 70(3), 167–176 (2011).
    [Crossref] [PubMed]
  5. P. J. Magistretti and I. Allaman, “A Cellular Perspective on Brain Energy Metabolism and Functional Imaging,” Neuron 86(4), 883–901 (2015).
    [Crossref] [PubMed]
  6. R. Oliveira, S. Semedo, E. Figueiras, L. F. R. Ferreira, and A. Humeau, “Laser Doppler flowmeters for microcirculation measurements,” in 1st Portuguese Biomedical Engineering Meeting, 2011), 1–4.
  7. T. O. Manning, N. A. Monteiro-Riviere, D. G. Bristol, and J. E. Riviere, “Cutaneous laser-Doppler velocimetry in nine animal species,” Am. J. Vet. Res. 52(12), 1960–1964 (1991).
    [PubMed]
  8. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004).
    [Crossref] [PubMed]
  9. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
    [Crossref] [PubMed]
  10. M. E. Secchi, A. Sulli, C. Pizzorni, and M. Cutolo, “Studio della microangiopatia sclerodermia mediante valutazione dinamica con laser-Doppler e morfologica con videocapillaroscopia periungueale: risultati preliminari.,” Reumatismo 61(1), 34–40 (2009).
    [PubMed]
  11. M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
    [Crossref] [PubMed]
  12. M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).
  13. R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
    [Crossref] [PubMed]
  14. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
    [Crossref] [PubMed]
  15. R. L. Rungta, B.-F. Osmanski, D. Boido, M. Tanter, and S. Charpak, “Light controls cerebral blood flow in naive animals,” Nat. Commun. 8, 14191 (2017).
    [Crossref] [PubMed]
  16. P. Vérant, R. Serduc, B. Van Der Sanden, C. Rémy, and J. C. Vial, “A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy,” J. Cereb. Blood Flow Metab. 27(5), 1072–1081 (2007).
    [Crossref] [PubMed]
  17. A. Letourneur, V. Chen, G. Waterman, and P. J. Drew, “A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice,” Physiol. Rep. 2(12), 2 (2014).
    [Crossref] [PubMed]
  18. W. Gao, “Quantitative depth resolved microcirculation imaging with optical coherence tomography angiography (Part II): Microvascular network imaging,” Microcirculation (2017).
    [Crossref]
  19. V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
    [Crossref] [PubMed]
  20. B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
    [Crossref] [PubMed]
  21. M. Kim, J. Hong, J. Kim, and H. J. Shin, “Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal,” Biomed. Opt. Express 8(6), 2781–2795 (2017).
    [Crossref] [PubMed]
  22. T.-C. Huang, W.-C. Lin, C.-C. Wu, G. Zhang, and K.-P. Lin, “Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods,” Microvasc. Res. 80(3), 477–483 (2010).
    [Crossref] [PubMed]
  23. K. Masamoto, R. Hoshikawa, and H. Kawaguchi, “Fluorescence Imaging of Blood Flow Velocity in the Rodent Brain,” Curr. Top. Med. Chem. 16(24), 2677–2684 (2016).
    [Crossref] [PubMed]
  24. M. Tomita, Y. Tomita, M. Unekawa, H. Toriumi, and N. Suzuki, “Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries,” Neuroimage 56(3), 1001–1010 (2011).
    [Crossref] [PubMed]
  25. M. A. Kurochkin, E. S. Stiukhina, I. V. Fedosov, D. E. Postnov, and V. V. Tuchin, “Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion,” Proc. SPIE,  9917, 9917 (2016).
  26. C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
    [Crossref]
  27. K. Jambunathan, X. Y. Ju, B. N. Dobbins, and S. Ashforth-Frost, “An improved cross correlation technique for particle image velocimetry,” Meas. Sci. Technol. 6(5), 507–514 (1995).
    [Crossref]
  28. A. G. Koutsiaris, D. S. Mathioulakis, and S. Tsangaris, “Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries,” Meas. Sci. Technol. 10(11), 1037–1046 (1999).
    [Crossref]
  29. J. Soria, “An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique,” Exp. Therm. Fluid Sci. 12(2), 221–233 (1996).
    [Crossref]
  30. R. J. Adrian, “Image shifting technique to resolve directional ambiguity in double-pulsed velocity,” Appl. Opt. 25(21), 3855–3858 (1986).
    [Crossref] [PubMed]
  31. A. Vogel and W. Lauterborn, “Time-Resolved Particle Image Velocimetry Used in the Investigation of Cavitation Bubble Dynamics,” Appl. Opt. 27(9), 1869–1876 (1988).
    [Crossref] [PubMed]
  32. Z. C. Liu, C. C. Landreth, R. J. Adrian, and T. J. Hanratty, “High-Resolution Measurement of Turbulent Structure in a Channel with Particle Image Velocimetry,” Exp. Fluids 10(6), 301–312 (1991).
    [Crossref]
  33. A. Cenedese and A. Paglialunga, “Digital Direct Analysis of a Multiexposed Photograph in Piv,” Exp. Fluids 8(5), 273–280 (1990).
    [Crossref]
  34. Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
    [Crossref] [PubMed]
  35. W.-H. Kim, C.-I. Kim, S.-W. Lee, S.-H. Lim, C.-W. Park, H. Lee, and M.-K. Park, “Particle Image Velocimetry of the Blood Flow in a Micro-channel Using the Confocal Laser Scanning Microscope,” J. Opt. Soc. Korea 14(1), 42–48 (2010).
    [Crossref]
  36. S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
    [Crossref] [PubMed]
  37. L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
    [Crossref] [PubMed]
  38. K. B. J. Franklin and G. Paxinos, The Mouse Brain in Stereotaxic Coordinates (Academic Press, 1997), pp. xxii p., 186 p. of plates.
  39. T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
    [Crossref] [PubMed]
  40. D. W. Slaaf, T. J. M. Jeurens, G. J. Tangelder, R. S. Reneman, and T. Arts, “Methods to measure blood flow velocity of red blood cells in vivo at the microscopic level,” Ann. Biomed. Eng. 14(2), 175–186 (1986).
    [Crossref] [PubMed]
  41. J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
    [Crossref] [PubMed]
  42. C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci. 5(5), 347–360 (2004).
    [Crossref] [PubMed]
  43. Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
    [Crossref] [PubMed]
  44. E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease,” Circulation 107(1), 139–146 (2003).
    [Crossref] [PubMed]
  45. R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore, “Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging,” J. Appl. Physiol. 74(1), 492–497 (1993).
    [Crossref] [PubMed]
  46. O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
    [Crossref] [PubMed]
  47. O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
    [Crossref] [PubMed]

2017 (4)

R. L. Rungta, B.-F. Osmanski, D. Boido, M. Tanter, and S. Charpak, “Light controls cerebral blood flow in naive animals,” Nat. Commun. 8, 14191 (2017).
[Crossref] [PubMed]

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[Crossref] [PubMed]

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

M. Kim, J. Hong, J. Kim, and H. J. Shin, “Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal,” Biomed. Opt. Express 8(6), 2781–2795 (2017).
[Crossref] [PubMed]

2016 (4)

K. Masamoto, R. Hoshikawa, and H. Kawaguchi, “Fluorescence Imaging of Blood Flow Velocity in the Rodent Brain,” Curr. Top. Med. Chem. 16(24), 2677–2684 (2016).
[Crossref] [PubMed]

M. A. Kurochkin, E. S. Stiukhina, I. V. Fedosov, D. E. Postnov, and V. V. Tuchin, “Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion,” Proc. SPIE,  9917, 9917 (2016).

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

P. Venkat, M. Chopp, and J. Chen, “New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain,” Croat. Med. J. 57(3), 223–228 (2016).
[Crossref] [PubMed]

2015 (2)

I. F. Kimbrough, S. Robel, E. D. Roberson, and H. Sontheimer, “Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease,” Brain 138(12), 3716–3733 (2015).
[Crossref] [PubMed]

P. J. Magistretti and I. Allaman, “A Cellular Perspective on Brain Energy Metabolism and Functional Imaging,” Neuron 86(4), 883–901 (2015).
[Crossref] [PubMed]

2014 (1)

A. Letourneur, V. Chen, G. Waterman, and P. J. Drew, “A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice,” Physiol. Rep. 2(12), 2 (2014).
[Crossref] [PubMed]

2013 (2)

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

2012 (2)

V. Berezowski, A. M. Fukuda, R. Cecchelli, and J. Badaut, “Endothelial Cells and Astrocytes: A Concerto en Duo in Ischemic Pathophysiology,” Int. J. Cell Biol. 2012, 176287 (2012).
[Crossref] [PubMed]

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

2011 (4)

M. Tomita, Y. Tomita, M. Unekawa, H. Toriumi, and N. Suzuki, “Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries,” Neuroimage 56(3), 1001–1010 (2011).
[Crossref] [PubMed]

D. A. Turner and D. C. Adamson, “Neuronal-Astrocyte Metabolic Interactions: Understanding the Transition into Abnormal Astrocytoma Metabolism,” J. Neuropathol. Exp. Neurol. 70(3), 167–176 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

2010 (3)

W.-H. Kim, C.-I. Kim, S.-W. Lee, S.-H. Lim, C.-W. Park, H. Lee, and M.-K. Park, “Particle Image Velocimetry of the Blood Flow in a Micro-channel Using the Confocal Laser Scanning Microscope,” J. Opt. Soc. Korea 14(1), 42–48 (2010).
[Crossref]

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

T.-C. Huang, W.-C. Lin, C.-C. Wu, G. Zhang, and K.-P. Lin, “Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods,” Microvasc. Res. 80(3), 477–483 (2010).
[Crossref] [PubMed]

2009 (2)

M. E. Secchi, A. Sulli, C. Pizzorni, and M. Cutolo, “Studio della microangiopatia sclerodermia mediante valutazione dinamica con laser-Doppler e morfologica con videocapillaroscopia periungueale: risultati preliminari.,” Reumatismo 61(1), 34–40 (2009).
[PubMed]

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

2008 (2)

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).

2007 (1)

P. Vérant, R. Serduc, B. Van Der Sanden, C. Rémy, and J. C. Vial, “A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy,” J. Cereb. Blood Flow Metab. 27(5), 1072–1081 (2007).
[Crossref] [PubMed]

2004 (3)

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004).
[Crossref] [PubMed]

C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci. 5(5), 347–360 (2004).
[Crossref] [PubMed]

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

2003 (1)

E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease,” Circulation 107(1), 139–146 (2003).
[Crossref] [PubMed]

2002 (1)

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[Crossref] [PubMed]

1999 (1)

A. G. Koutsiaris, D. S. Mathioulakis, and S. Tsangaris, “Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries,” Meas. Sci. Technol. 10(11), 1037–1046 (1999).
[Crossref]

1998 (1)

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

1996 (1)

J. Soria, “An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique,” Exp. Therm. Fluid Sci. 12(2), 221–233 (1996).
[Crossref]

1995 (1)

K. Jambunathan, X. Y. Ju, B. N. Dobbins, and S. Ashforth-Frost, “An improved cross correlation technique for particle image velocimetry,” Meas. Sci. Technol. 6(5), 507–514 (1995).
[Crossref]

1993 (1)

R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore, “Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging,” J. Appl. Physiol. 74(1), 492–497 (1993).
[Crossref] [PubMed]

1991 (3)

Z. C. Liu, C. C. Landreth, R. J. Adrian, and T. J. Hanratty, “High-Resolution Measurement of Turbulent Structure in a Channel with Particle Image Velocimetry,” Exp. Fluids 10(6), 301–312 (1991).
[Crossref]

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
[Crossref]

T. O. Manning, N. A. Monteiro-Riviere, D. G. Bristol, and J. E. Riviere, “Cutaneous laser-Doppler velocimetry in nine animal species,” Am. J. Vet. Res. 52(12), 1960–1964 (1991).
[PubMed]

1990 (1)

A. Cenedese and A. Paglialunga, “Digital Direct Analysis of a Multiexposed Photograph in Piv,” Exp. Fluids 8(5), 273–280 (1990).
[Crossref]

1988 (1)

1986 (2)

R. J. Adrian, “Image shifting technique to resolve directional ambiguity in double-pulsed velocity,” Appl. Opt. 25(21), 3855–3858 (1986).
[Crossref] [PubMed]

D. W. Slaaf, T. J. M. Jeurens, G. J. Tangelder, R. S. Reneman, and T. Arts, “Methods to measure blood flow velocity of red blood cells in vivo at the microscopic level,” Ann. Biomed. Eng. 14(2), 175–186 (1986).
[Crossref] [PubMed]

Adamson, D. C.

D. A. Turner and D. C. Adamson, “Neuronal-Astrocyte Metabolic Interactions: Understanding the Transition into Abnormal Astrocytoma Metabolism,” J. Neuropathol. Exp. Neurol. 70(3), 167–176 (2011).
[Crossref] [PubMed]

Adrian, R. J.

Z. C. Liu, C. C. Landreth, R. J. Adrian, and T. J. Hanratty, “High-Resolution Measurement of Turbulent Structure in a Channel with Particle Image Velocimetry,” Exp. Fluids 10(6), 301–312 (1991).
[Crossref]

R. J. Adrian, “Image shifting technique to resolve directional ambiguity in double-pulsed velocity,” Appl. Opt. 25(21), 3855–3858 (1986).
[Crossref] [PubMed]

Allaman, I.

P. J. Magistretti and I. Allaman, “A Cellular Perspective on Brain Energy Metabolism and Functional Imaging,” Neuron 86(4), 883–901 (2015).
[Crossref] [PubMed]

An, J.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Arts, T.

D. W. Slaaf, T. J. M. Jeurens, G. J. Tangelder, R. S. Reneman, and T. Arts, “Methods to measure blood flow velocity of red blood cells in vivo at the microscopic level,” Ann. Biomed. Eng. 14(2), 175–186 (1986).
[Crossref] [PubMed]

Ashforth-Frost, S.

K. Jambunathan, X. Y. Ju, B. N. Dobbins, and S. Ashforth-Frost, “An improved cross correlation technique for particle image velocimetry,” Meas. Sci. Technol. 6(5), 507–514 (1995).
[Crossref]

Badaut, J.

V. Berezowski, A. M. Fukuda, R. Cecchelli, and J. Badaut, “Endothelial Cells and Astrocytes: A Concerto en Duo in Ischemic Pathophysiology,” Int. J. Cell Biol. 2012, 176287 (2012).
[Crossref] [PubMed]

Bargmann, C. I.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Berezowski, V.

V. Berezowski, A. M. Fukuda, R. Cecchelli, and J. Badaut, “Endothelial Cells and Astrocytes: A Concerto en Duo in Ischemic Pathophysiology,” Int. J. Cell Biol. 2012, 176287 (2012).
[Crossref] [PubMed]

Boido, D.

R. L. Rungta, B.-F. Osmanski, D. Boido, M. Tanter, and S. Charpak, “Light controls cerebral blood flow in naive animals,” Nat. Commun. 8, 14191 (2017).
[Crossref] [PubMed]

Brinton, M.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Bristol, D. G.

T. O. Manning, N. A. Monteiro-Riviere, D. G. Bristol, and J. E. Riviere, “Cutaneous laser-Doppler velocimetry in nine animal species,” Am. J. Vet. Res. 52(12), 1960–1964 (1991).
[PubMed]

Burr, O.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Cecchelli, R.

V. Berezowski, A. M. Fukuda, R. Cecchelli, and J. Badaut, “Endothelial Cells and Astrocytes: A Concerto en Duo in Ischemic Pathophysiology,” Int. J. Cell Biol. 2012, 176287 (2012).
[Crossref] [PubMed]

Cenedese, A.

A. Cenedese and A. Paglialunga, “Digital Direct Analysis of a Multiexposed Photograph in Piv,” Exp. Fluids 8(5), 273–280 (1990).
[Crossref]

Charpak, S.

R. L. Rungta, B.-F. Osmanski, D. Boido, M. Tanter, and S. Charpak, “Light controls cerebral blood flow in naive animals,” Nat. Commun. 8, 14191 (2017).
[Crossref] [PubMed]

Chen, J.

P. Venkat, M. Chopp, and J. Chen, “New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain,” Croat. Med. J. 57(3), 223–228 (2016).
[Crossref] [PubMed]

Chen, T. W.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Chen, V.

A. Letourneur, V. Chen, G. Waterman, and P. J. Drew, “A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice,” Physiol. Rep. 2(12), 2 (2014).
[Crossref] [PubMed]

Cheng, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004).
[Crossref] [PubMed]

Chopp, M.

P. Venkat, M. Chopp, and J. Chen, “New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain,” Croat. Med. J. 57(3), 223–228 (2016).
[Crossref] [PubMed]

Cutolo, M.

M. E. Secchi, A. Sulli, C. Pizzorni, and M. Cutolo, “Studio della microangiopatia sclerodermia mediante valutazione dinamica con laser-Doppler e morfologica con videocapillaroscopia periungueale: risultati preliminari.,” Reumatismo 61(1), 34–40 (2009).
[PubMed]

Dalal, R.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Dannhardt, V.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Davidson, T. J.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Deisseroth, K.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Denk, W.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Dobbins, B. N.

K. Jambunathan, X. Y. Ju, B. N. Dobbins, and S. Ashforth-Frost, “An improved cross correlation technique for particle image velocimetry,” Meas. Sci. Technol. 6(5), 507–514 (1995).
[Crossref]

Drew, P. J.

A. Letourneur, V. Chen, G. Waterman, and P. J. Drew, “A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice,” Physiol. Rep. 2(12), 2 (2014).
[Crossref] [PubMed]

Dunn, A. K.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Fedosov, I. V.

M. A. Kurochkin, E. S. Stiukhina, I. V. Fedosov, D. E. Postnov, and V. V. Tuchin, “Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion,” Proc. SPIE,  9917, 9917 (2016).

Fenno, L. E.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Ferreira, L. F. R.

R. Oliveira, S. Semedo, E. Figueiras, L. F. R. Ferreira, and A. Humeau, “Laser Doppler flowmeters for microcirculation measurements,” in 1st Portuguese Biomedical Engineering Meeting, 2011), 1–4.

Figueiras, E.

R. Oliveira, S. Semedo, E. Figueiras, L. F. R. Ferreira, and A. Humeau, “Laser Doppler flowmeters for microcirculation measurements,” in 1st Portuguese Biomedical Engineering Meeting, 2011), 1–4.

Firmin, D. N.

R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore, “Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging,” J. Appl. Physiol. 74(1), 492–497 (1993).
[Crossref] [PubMed]

Fischer, E.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Ford, T. N.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

Fukuda, A. M.

V. Berezowski, A. M. Fukuda, R. Cecchelli, and J. Badaut, “Endothelial Cells and Astrocytes: A Concerto en Duo in Ischemic Pathophysiology,” Int. J. Cell Biol. 2012, 176287 (2012).
[Crossref] [PubMed]

Gao, W.

W. Gao, “Quantitative depth resolved microcirculation imaging with optical coherence tomography angiography (Part II): Microvascular network imaging,” Microcirculation (2017).
[Crossref]

Gharib, M.

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
[Crossref]

Gong, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004).
[Crossref] [PubMed]

Gordus, A.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Gottschalk, A.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Gradinaru, V.

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Hanratty, T. J.

Z. C. Liu, C. C. Landreth, R. J. Adrian, and T. J. Hanratty, “High-Resolution Measurement of Turbulent Structure in a Channel with Particle Image Velocimetry,” Exp. Fluids 10(6), 301–312 (1991).
[Crossref]

Hegemann, P.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Helmchen, F.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Henderson, J. M.

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Hong, J.

Hong, J. K.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Hoshikawa, R.

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

K. Masamoto, R. Hoshikawa, and H. Kawaguchi, “Fluorescence Imaging of Blood Flow Velocity in the Rodent Brain,” Curr. Top. Med. Chem. 16(24), 2677–2684 (2016).
[Crossref] [PubMed]

Huang, T.-C.

T.-C. Huang, W.-C. Lin, C.-C. Wu, G. Zhang, and K.-P. Lin, “Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods,” Microvasc. Res. 80(3), 477–483 (2010).
[Crossref] [PubMed]

Huie, P.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Humeau, A.

R. Oliveira, S. Semedo, E. Figueiras, L. F. R. Ferreira, and A. Humeau, “Laser Doppler flowmeters for microcirculation measurements,” in 1st Portuguese Biomedical Engineering Meeting, 2011), 1–4.

Iadecola, C.

C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci. 5(5), 347–360 (2004).
[Crossref] [PubMed]

Ikoma, Y.

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

Jambunathan, K.

K. Jambunathan, X. Y. Ju, B. N. Dobbins, and S. Ashforth-Frost, “An improved cross correlation technique for particle image velocimetry,” Meas. Sci. Technol. 6(5), 507–514 (1995).
[Crossref]

Jang, J. Y.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Janigro, D.

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

Jeurens, T. J. M.

D. W. Slaaf, T. J. M. Jeurens, G. J. Tangelder, R. S. Reneman, and T. Arts, “Methods to measure blood flow velocity of red blood cells in vivo at the microscopic level,” Ann. Biomed. Eng. 14(2), 175–186 (1986).
[Crossref] [PubMed]

Jones, T. A.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Ju, X. Y.

K. Jambunathan, X. Y. Ju, B. N. Dobbins, and S. Ashforth-Frost, “An improved cross correlation technique for particle image velocimetry,” Meas. Sci. Technol. 6(5), 507–514 (1995).
[Crossref]

Kang, T. M.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Kanno, I.

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

Kawaguchi, H.

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

K. Masamoto, R. Hoshikawa, and H. Kawaguchi, “Fluorescence Imaging of Blood Flow Velocity in the Rodent Brain,” Curr. Top. Med. Chem. 16(24), 2677–2684 (2016).
[Crossref] [PubMed]

Kazmi, S. M. S.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Kim, C.-I.

Kim, D. S.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Kim, J.

Kim, M.

Kim, W.-H.

Kimbrough, I. F.

I. F. Kimbrough, S. Robel, E. D. Roberson, and H. Sontheimer, “Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease,” Brain 138(12), 3716–3733 (2015).
[Crossref] [PubMed]

Kleinfeld, D.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Koutsiaris, A. G.

A. G. Koutsiaris, D. S. Mathioulakis, and S. Tsangaris, “Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries,” Meas. Sci. Technol. 10(11), 1037–1046 (1999).
[Crossref]

Krizanac-Bengez, L.

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

Kugler, S.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Kurochkin, M. A.

M. A. Kurochkin, E. S. Stiukhina, I. V. Fedosov, D. E. Postnov, and V. V. Tuchin, “Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion,” Proc. SPIE,  9917, 9917 (2016).

Lagnado, L.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Lakatta, E. G.

E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease,” Circulation 107(1), 139–146 (2003).
[Crossref] [PubMed]

Landreth, C. C.

Z. C. Liu, C. C. Landreth, R. J. Adrian, and T. J. Hanratty, “High-Resolution Measurement of Turbulent Structure in a Channel with Particle Image Velocimetry,” Exp. Fluids 10(6), 301–312 (1991).
[Crossref]

Lauterborn, W.

Lee, H.

Lee, K. S.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Lee, S.-W.

Letourneur, A.

A. Letourneur, V. Chen, G. Waterman, and P. J. Drew, “A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice,” Physiol. Rep. 2(12), 2 (2014).
[Crossref] [PubMed]

Levy, D.

E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease,” Circulation 107(1), 139–146 (2003).
[Crossref] [PubMed]

Lim, D.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

Lim, S.-H.

Lin, K.-P.

T.-C. Huang, W.-C. Lin, C.-C. Wu, G. Zhang, and K.-P. Lin, “Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods,” Microvasc. Res. 80(3), 477–483 (2010).
[Crossref] [PubMed]

Lin, W.-C.

T.-C. Huang, W.-C. Lin, C.-C. Wu, G. Zhang, and K.-P. Lin, “Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods,” Microvasc. Res. 80(3), 477–483 (2010).
[Crossref] [PubMed]

Liu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004).
[Crossref] [PubMed]

Liu, Z. C.

Z. C. Liu, C. C. Landreth, R. J. Adrian, and T. J. Hanratty, “High-Resolution Measurement of Turbulent Structure in a Channel with Particle Image Velocimetry,” Exp. Fluids 10(6), 301–312 (1991).
[Crossref]

Longmore, D. B.

R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore, “Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging,” J. Appl. Physiol. 74(1), 492–497 (1993).
[Crossref] [PubMed]

Looger, L. L.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Lu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004).
[Crossref] [PubMed]

Luo, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004).
[Crossref] [PubMed]

Macklin, J. J.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Magistretti, P. J.

P. J. Magistretti and I. Allaman, “A Cellular Perspective on Brain Energy Metabolism and Functional Imaging,” Neuron 86(4), 883–901 (2015).
[Crossref] [PubMed]

Mandel, Y.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Manivanh, R.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Manning, T. O.

T. O. Manning, N. A. Monteiro-Riviere, D. G. Bristol, and J. E. Riviere, “Cutaneous laser-Doppler velocimetry in nine animal species,” Am. J. Vet. Res. 52(12), 1960–1964 (1991).
[PubMed]

Marvin, J. S.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Masamoto, K.

K. Masamoto, R. Hoshikawa, and H. Kawaguchi, “Fluorescence Imaging of Blood Flow Velocity in the Rodent Brain,” Curr. Top. Med. Chem. 16(24), 2677–2684 (2016).
[Crossref] [PubMed]

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

Mathioulakis, D. S.

A. G. Koutsiaris, D. S. Mathioulakis, and S. Tsangaris, “Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries,” Meas. Sci. Technol. 10(11), 1037–1046 (1999).
[Crossref]

Mayberg, M. R.

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

Mertz, J.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

Mitra, P. P.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Mogri, M.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Mohiaddin, R. H.

R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore, “Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging,” J. Appl. Physiol. 74(1), 492–497 (1993).
[Crossref] [PubMed]

Monteiro-Riviere, N. A.

T. O. Manning, N. A. Monteiro-Riviere, D. G. Bristol, and J. E. Riviere, “Cutaneous laser-Doppler velocimetry in nine animal species,” Am. J. Vet. Res. 52(12), 1960–1964 (1991).
[PubMed]

Nakamura, S.

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[Crossref] [PubMed]

Nishio, S.

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[Crossref] [PubMed]

Oechsner, M.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Okamoto, K.

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[Crossref] [PubMed]

Oliveira, R.

R. Oliveira, S. Semedo, E. Figueiras, L. F. R. Ferreira, and A. Humeau, “Laser Doppler flowmeters for microcirculation measurements,” in 1st Portuguese Biomedical Engineering Meeting, 2011), 1–4.

Orger, M. B.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Osada, T.

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

Osade, T.

M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).

Osmanski, B.-F.

R. L. Rungta, B.-F. Osmanski, D. Boido, M. Tanter, and S. Charpak, “Light controls cerebral blood flow in naive animals,” Nat. Commun. 8, 14191 (2017).
[Crossref] [PubMed]

Paglialunga, A.

A. Cenedese and A. Paglialunga, “Digital Direct Analysis of a Multiexposed Photograph in Piv,” Exp. Fluids 8(5), 273–280 (1990).
[Crossref]

Palanker, D.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Park, C.-W.

Park, J. H.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Park, M.-K.

Parthasarthy, A. B.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Patel, R.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Pizzorni, C.

M. E. Secchi, A. Sulli, C. Pizzorni, and M. Cutolo, “Studio della microangiopatia sclerodermia mediante valutazione dinamica con laser-Doppler e morfologica con videocapillaroscopia periungueale: risultati preliminari.,” Reumatismo 61(1), 34–40 (2009).
[PubMed]

Pöhler, M.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Postnov, D. E.

M. A. Kurochkin, E. S. Stiukhina, I. V. Fedosov, D. E. Postnov, and V. V. Tuchin, “Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion,” Proc. SPIE,  9917, 9917 (2016).

Pulver, S. R.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Rémy, C.

P. Vérant, R. Serduc, B. Van Der Sanden, C. Rémy, and J. C. Vial, “A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy,” J. Cereb. Blood Flow Metab. 27(5), 1072–1081 (2007).
[Crossref] [PubMed]

Reneman, R. S.

D. W. Slaaf, T. J. M. Jeurens, G. J. Tangelder, R. S. Reneman, and T. Arts, “Methods to measure blood flow velocity of red blood cells in vivo at the microscopic level,” Ann. Biomed. Eng. 14(2), 175–186 (1986).
[Crossref] [PubMed]

Reuter, I.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Riviere, J. E.

T. O. Manning, N. A. Monteiro-Riviere, D. G. Bristol, and J. E. Riviere, “Cutaneous laser-Doppler velocimetry in nine animal species,” Am. J. Vet. Res. 52(12), 1960–1964 (1991).
[PubMed]

Robel, S.

I. F. Kimbrough, S. Robel, E. D. Roberson, and H. Sontheimer, “Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease,” Brain 138(12), 3716–3733 (2015).
[Crossref] [PubMed]

Roberson, E. D.

I. F. Kimbrough, S. Robel, E. D. Roberson, and H. Sontheimer, “Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease,” Brain 138(12), 3716–3733 (2015).
[Crossref] [PubMed]

Rosengarten, B.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Rosengarten, S.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Rungta, R. L.

R. L. Rungta, B.-F. Osmanski, D. Boido, M. Tanter, and S. Charpak, “Light controls cerebral blood flow in naive animals,” Nat. Commun. 8, 14191 (2017).
[Crossref] [PubMed]

Sarkisyan, K. S.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Schiszler, I.

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

Schreiter, E. R.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Schuler, C.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Secchi, M. E.

M. E. Secchi, A. Sulli, C. Pizzorni, and M. Cutolo, “Studio della microangiopatia sclerodermia mediante valutazione dinamica con laser-Doppler e morfologica con videocapillaroscopia periungueale: risultati preliminari.,” Reumatismo 61(1), 34–40 (2009).
[PubMed]

Semedo, S.

R. Oliveira, S. Semedo, E. Figueiras, L. F. R. Ferreira, and A. Humeau, “Laser Doppler flowmeters for microcirculation measurements,” in 1st Portuguese Biomedical Engineering Meeting, 2011), 1–4.

Serduc, R.

P. Vérant, R. Serduc, B. Van Der Sanden, C. Rémy, and J. C. Vial, “A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy,” J. Cereb. Blood Flow Metab. 27(5), 1072–1081 (2007).
[Crossref] [PubMed]

Severi, K. E.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Shin, H. J.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

M. Kim, J. Hong, J. Kim, and H. J. Shin, “Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal,” Biomed. Opt. Express 8(6), 2781–2795 (2017).
[Crossref] [PubMed]

Slaaf, D. W.

D. W. Slaaf, T. J. M. Jeurens, G. J. Tangelder, R. S. Reneman, and T. Arts, “Methods to measure blood flow velocity of red blood cells in vivo at the microscopic level,” Ann. Biomed. Eng. 14(2), 175–186 (1986).
[Crossref] [PubMed]

Song, N. E.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

Sontheimer, H.

I. F. Kimbrough, S. Robel, E. D. Roberson, and H. Sontheimer, “Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease,” Brain 138(12), 3716–3733 (2015).
[Crossref] [PubMed]

Soria, J.

J. Soria, “An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique,” Exp. Therm. Fluid Sci. 12(2), 221–233 (1996).
[Crossref]

Stiukhina, E. S.

M. A. Kurochkin, E. S. Stiukhina, I. V. Fedosov, D. E. Postnov, and V. V. Tuchin, “Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion,” Proc. SPIE,  9917, 9917 (2016).

Sugii, Y.

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[Crossref] [PubMed]

Suh, J. F.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Sulli, A.

M. E. Secchi, A. Sulli, C. Pizzorni, and M. Cutolo, “Studio della microangiopatia sclerodermia mediante valutazione dinamica con laser-Doppler e morfologica con videocapillaroscopia periungueale: risultati preliminari.,” Reumatismo 61(1), 34–40 (2009).
[PubMed]

Suzuki, N.

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

M. Tomita, Y. Tomita, M. Unekawa, H. Toriumi, and N. Suzuki, “Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries,” Neuroimage 56(3), 1001–1010 (2011).
[Crossref] [PubMed]

M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

Takuwa, H.

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

Tanahashi, N.

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

Tangelder, G. J.

D. W. Slaaf, T. J. M. Jeurens, G. J. Tangelder, R. S. Reneman, and T. Arts, “Methods to measure blood flow velocity of red blood cells in vivo at the microscopic level,” Ann. Biomed. Eng. 14(2), 175–186 (1986).
[Crossref] [PubMed]

Tanter, M.

R. L. Rungta, B.-F. Osmanski, D. Boido, M. Tanter, and S. Charpak, “Light controls cerebral blood flow in naive animals,” Nat. Commun. 8, 14191 (2017).
[Crossref] [PubMed]

Tatarishvili, J.

M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).

Thompson, K. R.

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Tolo, J.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Tomita, M.

M. Tomita, Y. Tomita, M. Unekawa, H. Toriumi, and N. Suzuki, “Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries,” Neuroimage 56(3), 1001–1010 (2011).
[Crossref] [PubMed]

M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

Tomita, Y.

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

M. Tomita, Y. Tomita, M. Unekawa, H. Toriumi, and N. Suzuki, “Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries,” Neuroimage 56(3), 1001–1010 (2011).
[Crossref] [PubMed]

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).

Toriumi, H.

M. Tomita, Y. Tomita, M. Unekawa, H. Toriumi, and N. Suzuki, “Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries,” Neuroimage 56(3), 1001–1010 (2011).
[Crossref] [PubMed]

M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

Tsangaris, S.

A. G. Koutsiaris, D. S. Mathioulakis, and S. Tsangaris, “Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries,” Meas. Sci. Technol. 10(11), 1037–1046 (1999).
[Crossref]

Tuchin, V. V.

M. A. Kurochkin, E. S. Stiukhina, I. V. Fedosov, D. E. Postnov, and V. V. Tuchin, “Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion,” Proc. SPIE,  9917, 9917 (2016).

Turner, D. A.

D. A. Turner and D. C. Adamson, “Neuronal-Astrocyte Metabolic Interactions: Understanding the Transition into Abnormal Astrocytoma Metabolism,” J. Neuropathol. Exp. Neurol. 70(3), 167–176 (2011).
[Crossref] [PubMed]

Unekawa, M.

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

M. Tomita, Y. Tomita, M. Unekawa, H. Toriumi, and N. Suzuki, “Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries,” Neuroimage 56(3), 1001–1010 (2011).
[Crossref] [PubMed]

M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

Van Der Sanden, B.

P. Vérant, R. Serduc, B. Van Der Sanden, C. Rémy, and J. C. Vial, “A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy,” J. Cereb. Blood Flow Metab. 27(5), 1072–1081 (2007).
[Crossref] [PubMed]

Venkat, P.

P. Venkat, M. Chopp, and J. Chen, “New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain,” Croat. Med. J. 57(3), 223–228 (2016).
[Crossref] [PubMed]

Vérant, P.

P. Vérant, R. Serduc, B. Van Der Sanden, C. Rémy, and J. C. Vial, “A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy,” J. Cereb. Blood Flow Metab. 27(5), 1072–1081 (2007).
[Crossref] [PubMed]

Vial, J. C.

P. Vérant, R. Serduc, B. Van Der Sanden, C. Rémy, and J. C. Vial, “A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy,” J. Cereb. Blood Flow Metab. 27(5), 1072–1081 (2007).
[Crossref] [PubMed]

Vogel, A.

Walker, D. W.

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[Crossref] [PubMed]

Wang, J.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Wardill, T. J.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Waterman, G.

A. Letourneur, V. Chen, G. Waterman, and P. J. Drew, “A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice,” Physiol. Rep. 2(12), 2 (2014).
[Crossref] [PubMed]

Willert, C. E.

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
[Crossref]

Wong, F. Y.

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[Crossref] [PubMed]

Wu, C.-C.

T.-C. Huang, W.-C. Lin, C.-C. Wu, G. Zhang, and K.-P. Lin, “Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods,” Microvasc. Res. 80(3), 477–483 (2010).
[Crossref] [PubMed]

Yizhar, O.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Zeng, S.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004).
[Crossref] [PubMed]

Zhang, G.

T.-C. Huang, W.-C. Lin, C.-C. Wu, G. Zhang, and K.-P. Lin, “Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods,” Microvasc. Res. 80(3), 477–483 (2010).
[Crossref] [PubMed]

Am. J. Vet. Res. (1)

T. O. Manning, N. A. Monteiro-Riviere, D. G. Bristol, and J. E. Riviere, “Cutaneous laser-Doppler velocimetry in nine animal species,” Am. J. Vet. Res. 52(12), 1960–1964 (1991).
[PubMed]

Ann. Biomed. Eng. (1)

D. W. Slaaf, T. J. M. Jeurens, G. J. Tangelder, R. S. Reneman, and T. Arts, “Methods to measure blood flow velocity of red blood cells in vivo at the microscopic level,” Ann. Biomed. Eng. 14(2), 175–186 (1986).
[Crossref] [PubMed]

Appl. Opt. (2)

Asian Biomed. (1)

M. Unekawa, M. Tomita, T. Osade, Y. Tomita, H. Toriumi, J. Tatarishvili, and N. Suzuki, “Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with high-speed camera,” Asian Biomed. 2, 203–218 (2008).

Biomed. Opt. Express (1)

Brain (1)

I. F. Kimbrough, S. Robel, E. D. Roberson, and H. Sontheimer, “Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease,” Brain 138(12), 3716–3733 (2015).
[Crossref] [PubMed]

Circulation (1)

E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease,” Circulation 107(1), 139–146 (2003).
[Crossref] [PubMed]

Croat. Med. J. (1)

P. Venkat, M. Chopp, and J. Chen, “New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain,” Croat. Med. J. 57(3), 223–228 (2016).
[Crossref] [PubMed]

Curr. Top. Med. Chem. (1)

K. Masamoto, R. Hoshikawa, and H. Kawaguchi, “Fluorescence Imaging of Blood Flow Velocity in the Rodent Brain,” Curr. Top. Med. Chem. 16(24), 2677–2684 (2016).
[Crossref] [PubMed]

Exp. Fluids (3)

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
[Crossref]

Z. C. Liu, C. C. Landreth, R. J. Adrian, and T. J. Hanratty, “High-Resolution Measurement of Turbulent Structure in a Channel with Particle Image Velocimetry,” Exp. Fluids 10(6), 301–312 (1991).
[Crossref]

A. Cenedese and A. Paglialunga, “Digital Direct Analysis of a Multiexposed Photograph in Piv,” Exp. Fluids 8(5), 273–280 (1990).
[Crossref]

Exp. Therm. Fluid Sci. (1)

J. Soria, “An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique,” Exp. Therm. Fluid Sci. 12(2), 221–233 (1996).
[Crossref]

Int. J. Cell Biol. (1)

V. Berezowski, A. M. Fukuda, R. Cecchelli, and J. Badaut, “Endothelial Cells and Astrocytes: A Concerto en Duo in Ischemic Pathophysiology,” Int. J. Cell Biol. 2012, 176287 (2012).
[Crossref] [PubMed]

J. Alzheimers Dis. (1)

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular Coupling in Parkinson’s Disease Patients: Effects of Dementia and Acetylcholinesterase Inhibitor Treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore, “Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging,” J. Appl. Physiol. 74(1), 492–497 (1993).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (2)

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[Crossref] [PubMed]

P. Vérant, R. Serduc, B. Van Der Sanden, C. Rémy, and J. C. Vial, “A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy,” J. Cereb. Blood Flow Metab. 27(5), 1072–1081 (2007).
[Crossref] [PubMed]

J. Neuropathol. Exp. Neurol. (1)

D. A. Turner and D. C. Adamson, “Neuronal-Astrocyte Metabolic Interactions: Understanding the Transition into Abnormal Astrocytoma Metabolism,” J. Neuropathol. Exp. Neurol. 70(3), 167–176 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Korea (1)

J. Physiol. (1)

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[Crossref] [PubMed]

Meas. Sci. Technol. (2)

K. Jambunathan, X. Y. Ju, B. N. Dobbins, and S. Ashforth-Frost, “An improved cross correlation technique for particle image velocimetry,” Meas. Sci. Technol. 6(5), 507–514 (1995).
[Crossref]

A. G. Koutsiaris, D. S. Mathioulakis, and S. Tsangaris, “Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries,” Meas. Sci. Technol. 10(11), 1037–1046 (1999).
[Crossref]

Microcirculation (2)

M. Tomita, T. Osada, I. Schiszler, Y. Tomita, M. Unekawa, H. Toriumi, N. Tanahashi, and N. Suzuki, “Automated Method for Tracking Vast Numbers of FITC-Labeled RBCs in Microvessels of Rat Brain in Vivo Using a High-Speed Confocal Microscope System,” Microcirculation 15(2), 163–174 (2008).
[Crossref] [PubMed]

R. Hoshikawa, H. Kawaguchi, H. Takuwa, Y. Ikoma, Y. Tomita, M. Unekawa, N. Suzuki, I. Kanno, and K. Masamoto, “Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice,” Microcirculation 23(6), 416–425 (2016).
[Crossref] [PubMed]

Microvasc. Res. (1)

T.-C. Huang, W.-C. Lin, C.-C. Wu, G. Zhang, and K.-P. Lin, “Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods,” Microvasc. Res. 80(3), 477–483 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

R. L. Rungta, B.-F. Osmanski, D. Boido, M. Tanter, and S. Charpak, “Light controls cerebral blood flow in naive animals,” Nat. Commun. 8, 14191 (2017).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci. 5(5), 347–360 (2004).
[Crossref] [PubMed]

Neuroimage (1)

M. Tomita, Y. Tomita, M. Unekawa, H. Toriumi, and N. Suzuki, “Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries,” Neuroimage 56(3), 1001–1010 (2011).
[Crossref] [PubMed]

Neurol. Res. (1)

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

Neuron (3)

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, J. Tolo, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schuler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

P. J. Magistretti and I. Allaman, “A Cellular Perspective on Brain Energy Metabolism and Functional Imaging,” Neuron 86(4), 883–901 (2015).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004).
[Crossref] [PubMed]

Physiol. Meas. (1)

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002).
[Crossref] [PubMed]

Physiol. Rep. (1)

A. Letourneur, V. Chen, G. Waterman, and P. J. Drew, “A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice,” Physiol. Rep. 2(12), 2 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Proc. SPIE (1)

M. A. Kurochkin, E. S. Stiukhina, I. V. Fedosov, D. E. Postnov, and V. V. Tuchin, “Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion,” Proc. SPIE,  9917, 9917 (2016).

Reumatismo (1)

M. E. Secchi, A. Sulli, C. Pizzorni, and M. Cutolo, “Studio della microangiopatia sclerodermia mediante valutazione dinamica con laser-Doppler e morfologica con videocapillaroscopia periungueale: risultati preliminari.,” Reumatismo 61(1), 34–40 (2009).
[PubMed]

Sci. Rep. (2)

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Science (1)

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Other (3)

W. Gao, “Quantitative depth resolved microcirculation imaging with optical coherence tomography angiography (Part II): Microvascular network imaging,” Microcirculation (2017).
[Crossref]

R. Oliveira, S. Semedo, E. Figueiras, L. F. R. Ferreira, and A. Humeau, “Laser Doppler flowmeters for microcirculation measurements,” in 1st Portuguese Biomedical Engineering Meeting, 2011), 1–4.

K. B. J. Franklin and G. Paxinos, The Mouse Brain in Stereotaxic Coordinates (Academic Press, 1997), pp. xxii p., 186 p. of plates.

Supplementary Material (6)

NameDescription
» Visualization 1       Visualization 1: Real-time fluorescent cerebral blood vessel imaging using a previous fiber-bundle–based integrated platform with 620 µm fiber bundle. Fluorescein isothiocyanate (FITC)-dextran (20 KDa, 7.5 mg in 0.2 ml saline, Merck KGaA.) was inject
» Visualization 2       Visualization 2-6: Real-time fluorescent cerebral blood vessel imaging using a new fiber-bundle–based microscope-PIV integrated platform with 330 µm fiber bundle. Rhodamine B isothiocyanate–Dextran diluent (R9379, 70 KDa, Merck KGaA., 20 mg/0.2 ml) w
» Visualization 3       Visualization 2-6: Real-time fluorescent cerebral blood vessel imaging using a new fiber-bundle–based microscope-PIV integrated platform with 330 µm fiber bundle. Rhodamine B isothiocyanate–Dextran diluent (R9379, 70 KDa, Merck KGaA., 20 mg/0.2 ml) w
» Visualization 4       Visualization 2-6: Real-time fluorescent cerebral blood vessel imaging using a new fiber-bundle–based microscope-PIV integrated platform with 330 µm fiber bundle. Rhodamine B isothiocyanate–Dextran diluent (R9379, 70 KDa, Merck KGaA., 20 mg/0.2 ml) w
» Visualization 5       Visualization 2-6: Real-time fluorescent cerebral blood vessel imaging using a new fiber-bundle–based microscope-PIV integrated platform with 330 µm fiber bundle. Rhodamine B isothiocyanate–Dextran diluent (R9379, 70 KDa, Merck KGaA., 20 mg/0.2 ml) w
» Visualization 6       Visualization 2-6: Real-time fluorescent cerebral blood vessel imaging using a new fiber-bundle–based microscope-PIV integrated platform with 330 µm fiber bundle. Rhodamine B isothiocyanate–Dextran diluent (R9379, 70 KDa, Merck KGaA., 20 mg/0.2 ml) w

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of in-vivo fiber-bundle–based endomicroscopy system. It combines an optical platform with a fiber-bundle–based integrated platform and a double pulse laser illumination system using a 300mW 532-nm diode pumped solid state (DPSS) continuous wave (C.W.) laser and Atmega128 microcontroller. Abbreviations: PBS: polarizing beam splitter, SLM: spatial light modulator.
Fig. 2
Fig. 2 Schematic representation of double-pulse laser illumination method. An illustration of the capillary is displayed. The line profile (��) is the relative fluorescence intensity measured along a scan line of red dashed line through the center of capillary to determine the position of RBCs in an image obtained using a single-pulse laser illumination with a pulse duration of t. And the line profile (��’) is the relative fluorescence intensity measured under the double-pulse laser illumination at the same frame. ∆t0 is the time interval between the first and the second laser pulse. The displacement of individual RBCs during the pulse interval time yields the displacement difference (∆��). RBCt is the RBC image captured in the first laser pulse. RBCt + ∆t0 is the RBC image captured in the second laser pulse. In this illustration, the RBCs show fluorescence intensity brighter than the plasma.
Fig. 3
Fig. 3 Real-time fluorescent cerebrovascular image using a previously developed fiber-bundle-based integrated platform. (A) Blood-vessel imaging of the brain surface. (B) Cropped and magnified image sequence of the blue dashed box region in the image A. The red, blue, green, and white arrowheads indicate individual RBCs. (C) Calculated velocity chart plotted against time. Frame rate was 5 fps, and the exposure time was 200 ms. Illumination light output intensity was 1.2 mW/mm2. Scale bars: (A) 100 μm, (B) 20 μm.
Fig. 4
Fig. 4 Comparison of individual RBCs tracking ability according to laser pulse durations of single-pulse laser illumination method. (A) Distribution of blood vessel diameter on the brain surface. (B–F) Single-frame capture of fluorescent cerebrovascular imaging in the same area acquired using a single laser pulse with various laser pulse durations. White arrowheads indicate individual RBCs. (B) Laser pulse duration of 300 ms (see Visualization 2). (C) Laser pulse duration of 200 ms (see Visualization 3). (D) Laser pulse duration of 100 ms (see Visualization 4), (E) Laser pulse duration of 10 ms (see Visualization 5). (F) Laser pulse duration of 1 ms (see Visualization 6). (G) Cropped, magnified and enhanced images of the region in the blue dashed box in D–F for comparison. (H) Cropped, magnified and enhanced image sequence of the region in the blue dashed box in B. The red, yellow and blue arrowheads indicate individual RBCs. Red arrowheads: ‘stagnant flow’, yellow arrowheads: ‘smooth flow’, and blue arrowheads: ‘clustering’. (I–K) The average number of RBCs was collected from 10 frames. (I) The average number of measurable RBCs according to laser pulse duration. (J) Measurable maximum diameter of cerebral vessels according to laser pulse duration. The gray box indicates the diameter range of the capillary. (K) The average number of measurable RBCs according to blood vessel diameter and laser pulse duration. Exposure time was matched to the duration of each laser pulse except for 1 ms laser pulse duration. When the laser pulse duration was 1ms, the exposure time was 10 ms. Frame interval was 100 ms, and 532-nm laser output intensity was 100 mW/mm2. Scale bars: (A–F) 50 μm, (G, H) 20 μm.
Fig. 5
Fig. 5 Autocorrelation measurements of fluorescent cerebrovascular image using a single-pulse laser illumination method and a double-pulse laser illumination method, and blood flow measurement using a double-pulse laser illumination method. (A) Fluorescent cerebrovascular image after the enhancement process obtained using a single-pulse laser illumination method. White arrowheads indicate individual RBCs (n = 62). (B) Line profile data obtained in a red scan line of the image A. Cropped, magnified and inverted image of target blood vessel area of image a is displayed the upper center position. Red dashed lines represent the peak curves of the graph, and red digits indicate the positions of RBCs. (C) Autocorrelation measurement of line profile data obtained in 4 frames using the same position scan line as the image A (Frame 1). The arrows indicate the displacement point measured in each frame. Red arrowheads: 14 μm and 27 μm at frame 1, blue arrowheads: 14 μm and 26 μm at frame 2, yellow arrowhead: 16 μm at frame 3, and green arrowhead: 21 μm at frame 4. (D) Fluorescent cerebrovascular image after the enhancement process obtained using a double-pulse laser illumination method. White arrowheads indicate individual RBCs (n = 77). (E) Line profile data obtained in a red scan line of the image D. Cropped, magnified and inverted image of target blood vessel area of the image D is displayed in the upper center position. Red dashed lines represent the peak curves of the graph, and red digits indicate the positions of RBCs. (F) Autocorrelation measurement of line profile data obtained in 4 frames using the same position scan line as the image D (Frame 3). The arrows indicate the displacement point measured in each frame. Yellow arrowheads: 9 μm, 18 μm, and 25 μm at frame 1, blue arrowheads: 9 μm and 21 μm at frame 2, red arrowheads: 10 μm and 26 μm at frame 3, and green arrowheads: 8 μm and 18 μm at frame 4. (G) The blood flow map of the cerebral blood vessels distributed over the field of view obtained using the double-pulse laser illumination method. Each color distinguishes blood vessels, and arrows indicate the direction of blood flow. (H) Comparison of the number of measurable RBCs at 10 frames in single-pulse laser illumination method and the double-pulse laser illumination method. (I) Comparison of the measured flow velocity and diameter of the cerebral blood vessels in the image G. Pulse duration was 1 ms. Pulse interval was 5 ms in double pulse laser illumination method. Exposure time was 100 ms. Frame interval was 100 ms. The 532-nm laser output intensity was 100 mW/mm2. Scale bars: (A, D, and G) 50 μm, (B, E) 20 μm.
Fig. 6
Fig. 6 Autocorrelation measurement with pulse interval of double-pulse laser illumination method and comparison of cerebral blood flow measurement at various depths using final protocol of a double-pulse laser illumination method. (A) Fluorescent cerebrovascular image after the enhancement process obtained using a single-pulse laser illumination method. Red line is the scan line that measures the intensity profile. White arrowheads indicate individual RBCs (n = 70). (B) Fluorescent cerebrovascular image after the enhancement process obtained using a double-pulse laser illumination method with a pulse interval of 9 ms (n = 71). (C) Fluorescent cerebrovascular image after the enhancement process obtained using a double-pulse laser illumination method with a pulse interval of 5 ms (n = 81). (D) Autocorrelation measurement of line profile data obtained using the scan line as in the image A. The arrows indicate the displacement point measured in each frame. Yellow arrowheads: 23 μm in single-pulse laser illumination method. Blue arrowhead: 22 μm in double-pulse laser illumination method with a pulse interval of 9 ms, and red arrowhead: 13 μm and 24 μm in double-pulse laser illumination method with a pulse interval of 5 ms. (E) Distribution of blood vessel diameter on the brain surface. (F) Blood flow map of the surface cerebral blood vessels distributed over the field of view obtained using a double-pulse laser illumination method. Each color distinguishes blood vessels, and arrows indicate the direction of blood flow. (G) Distribution of blood vessel diameter and blood flow in the brain depth of 2000 μm. (H) Distribution of blood vessel diameter and blood flow in the brain depth of 2100 μm. Pulse duration was 1 ms. Pulse interval was 9 ms in (B), 5 ms in (B, F–H). Exposure time was 10 ms. Frame interval was 100 ms. The 532-nm laser output intensity was 100 mW/mm2. Scale bars: (A–C, E–H) 50 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v = Δx Δ t 0

Metrics