Abstract

Optical coherence tomography (OCT) is a widely used biomedical imaging tool, primarily in ophthalmology to diagnose and stage retinal diseases. In order to increase access for a wider range of applications and in low resource settings, we developed a portable, low-cost OCT system that has comparable imaging performance to commercially available systems. Here, we present the system design and characterization and compare the system performance to other commercially available OCT systems. In addition, future cost reductions and potential additional applications of the low-cost OCT system are discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A low-cost, portable, and quantitative spectral imaging system for application to biological tissues

Henry L. Fu, Bing Yu, Justin Y Lo, Greg M. Palmer, Thomas F. Kuech, and Nimmi Ramanujam
Opt. Express 18(12) 12630-12645 (2010)

Performance characterization of low-cost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system

Paul Kumar Upputuri and Manojit Pramanik
Biomed. Opt. Express 6(10) 4118-4129 (2015)

Low-cost hand-held probe for depth-resolved low-coherence interferometry

Paritosh Pande, Ryan L. Shelton, Guillermo L. Monroy, Ryan M. Nolan, and Stephen A. Boppart
Biomed. Opt. Express 8(1) 338-348 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
    [Crossref] [PubMed]
  3. M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
    [Crossref] [PubMed]
  4. U. Schmidt-Erfurth, S. Klimscha, S. M. Waldstein, and H. Bogunović, “A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration,” Eye (Lond.) 31(1), 26–44 (2017).
    [Crossref] [PubMed]
  5. R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
    [Crossref] [PubMed]
  6. Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
    [Crossref] [PubMed]
  7. J. C. Contreras-Naranjo, Q. S. Wei, and A. Ozcan, “Mobile Phone-Based Microscopy, Sensing, and Diagnostics,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–14 (2016).
    [Crossref]
  8. S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry,” Lab Chip 17(16), 2839–2851 (2017).
    [Crossref] [PubMed]
  9. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
    [Crossref] [PubMed]
  10. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
    [Crossref] [PubMed]
  11. Z. Wang, H. C. Lee, D. Vermeulen, L. Chen, T. Nielsen, S. Y. Park, A. Ghaemi, E. Swanson, C. Doerr, and J. Fujimoto, “Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection,” Biomed. Opt. Express 6(7), 2562–2574 (2015).
    [Crossref] [PubMed]
  12. P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Low-cost hand-held probe for depth-resolved low-coherence interferometry,” Biomed. Opt. Express 8(1), 338–348 (2017).
    [Crossref] [PubMed]
  13. J. Fujimoto and E. Swanson, “The Development, Commercialization, and Impact of Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT1 (2016).
    [Crossref] [PubMed]
  14. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
    [Crossref] [PubMed]
  15. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [Crossref] [PubMed]
  16. P. Mailankody, R. Battu, A. Khanna, A. Lenka, R. Yadav, and P. K. Pal, “Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease,” Parkinsonism Relat. Disord. 21(10), 1164–1169 (2015).
    [Crossref] [PubMed]
  17. V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152(4), 663–668 (2011).
    [Crossref] [PubMed]

2017 (3)

U. Schmidt-Erfurth, S. Klimscha, S. M. Waldstein, and H. Bogunović, “A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration,” Eye (Lond.) 31(1), 26–44 (2017).
[Crossref] [PubMed]

S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry,” Lab Chip 17(16), 2839–2851 (2017).
[Crossref] [PubMed]

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Low-cost hand-held probe for depth-resolved low-coherence interferometry,” Biomed. Opt. Express 8(1), 338–348 (2017).
[Crossref] [PubMed]

2016 (3)

J. Fujimoto and E. Swanson, “The Development, Commercialization, and Impact of Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT1 (2016).
[Crossref] [PubMed]

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

J. C. Contreras-Naranjo, Q. S. Wei, and A. Ozcan, “Mobile Phone-Based Microscopy, Sensing, and Diagnostics,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–14 (2016).
[Crossref]

2015 (2)

2014 (2)

2013 (1)

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

2011 (2)

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152(4), 663–668 (2011).
[Crossref] [PubMed]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

2010 (1)

2007 (1)

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

2002 (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Adhi, M.

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

Aleman, J.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Alvarez, M. M.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Battu, R.

P. Mailankody, R. Battu, A. Khanna, A. Lenka, R. Yadav, and P. K. Pal, “Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease,” Parkinsonism Relat. Disord. 21(10), 1164–1169 (2015).
[Crossref] [PubMed]

Batzaya, B.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Bogunovic, H.

U. Schmidt-Erfurth, S. Klimscha, S. M. Waldstein, and H. Bogunović, “A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration,” Eye (Lond.) 31(1), 26–44 (2017).
[Crossref] [PubMed]

Boppart, S. A.

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Low-cost hand-held probe for depth-resolved low-coherence interferometry,” Biomed. Opt. Express 8(1), 338–348 (2017).
[Crossref] [PubMed]

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref] [PubMed]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Boyden, E. S.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Cable, A. E.

Chaney, E. J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Chang, J. B.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, F.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Chen, L.

Choi, W.

Contreras-Naranjo, J. C.

J. C. Contreras-Naranjo, Q. S. Wei, and A. Ozcan, “Mobile Phone-Based Microscopy, Sensing, and Diagnostics,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–14 (2016).
[Crossref]

Coskun, A. F.

S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry,” Lab Chip 17(16), 2839–2851 (2017).
[Crossref] [PubMed]

Doerr, C.

Dokmeci, M. R.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Duker, J. S.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
[Crossref] [PubMed]

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152(4), 663–668 (2011).
[Crossref] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
[Crossref] [PubMed]

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152(4), 663–668 (2011).
[Crossref] [PubMed]

Ghaemi, A.

Goren, J.

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152(4), 663–668 (2011).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hornegger, J.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Jayaraman, V.

Jeon, M.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Joshi, A.

S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry,” Lab Chip 17(16), 2839–2851 (2017).
[Crossref] [PubMed]

Jung, W.

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref] [PubMed]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Kazemzadeh-Narbat, M.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Khademhosseini, A.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Khanna, A.

P. Mailankody, R. Battu, A. Khanna, A. Lenka, R. Yadav, and P. K. Pal, “Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease,” Parkinsonism Relat. Disord. 21(10), 1164–1169 (2015).
[Crossref] [PubMed]

Kim, J.

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref] [PubMed]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Klimscha, S.

U. Schmidt-Erfurth, S. Klimscha, S. M. Waldstein, and H. Bogunović, “A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration,” Eye (Lond.) 31(1), 26–44 (2017).
[Crossref] [PubMed]

Knowlton, S.

S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry,” Lab Chip 17(16), 2839–2851 (2017).
[Crossref] [PubMed]

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Kraus, M. F.

Krishnadoss, V.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Lee, H. C.

Lee, K. S.

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Lenka, A.

P. Mailankody, R. Battu, A. Khanna, A. Lenka, R. Yadav, and P. K. Pal, “Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease,” Parkinsonism Relat. Disord. 21(10), 1164–1169 (2015).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J. J.

Lu, C. D.

Mailankody, P.

P. Mailankody, R. Battu, A. Khanna, A. Lenka, R. Yadav, and P. K. Pal, “Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease,” Parkinsonism Relat. Disord. 21(10), 1164–1169 (2015).
[Crossref] [PubMed]

Manjunath, V.

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152(4), 663–668 (2011).
[Crossref] [PubMed]

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

McCormick, D. T.

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref] [PubMed]

Meemon, P.

Monroy, G. L.

Murali, S.

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Nielsen, T.

Nolan, R. M.

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Ozcan, A.

J. C. Contreras-Naranjo, Q. S. Wei, and A. Ozcan, “Mobile Phone-Based Microscopy, Sensing, and Diagnostics,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–14 (2016).
[Crossref]

Pal, P. K.

P. Mailankody, R. Battu, A. Khanna, A. Lenka, R. Yadav, and P. K. Pal, “Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease,” Parkinsonism Relat. Disord. 21(10), 1164–1169 (2015).
[Crossref] [PubMed]

Pande, P.

Park, S. Y.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ramanujam, A. A.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Rolland, J. P.

Sayegh, S. I.

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

U. Schmidt-Erfurth, S. Klimscha, S. M. Waldstein, and H. Bogunović, “A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration,” Eye (Lond.) 31(1), 26–44 (2017).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shelton, R. L.

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Low-cost hand-held probe for depth-resolved low-coherence interferometry,” Biomed. Opt. Express 8(1), 338–348 (2017).
[Crossref] [PubMed]

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref] [PubMed]

Stewart, C. N.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Syrrist, P.

S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry,” Lab Chip 17(16), 2839–2851 (2017).
[Crossref] [PubMed]

Tasoglu, S.

S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry,” Lab Chip 17(16), 2839–2851 (2017).
[Crossref] [PubMed]

Thompson, K. P.

Tillberg, P. W.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Trujillo-de Santiago, G.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Vermeulen, D.

Waldstein, S. M.

U. Schmidt-Erfurth, S. Klimscha, S. M. Waldstein, and H. Bogunović, “A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration,” Eye (Lond.) 31(1), 26–44 (2017).
[Crossref] [PubMed]

Wang, Z.

Wei, Q. S.

J. C. Contreras-Naranjo, Q. S. Wei, and A. Ozcan, “Mobile Phone-Based Microscopy, Sensing, and Diagnostics,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–14 (2016).
[Crossref]

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Yadav, R.

P. Mailankody, R. Battu, A. Khanna, A. Lenka, R. Yadav, and P. K. Pal, “Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease,” Parkinsonism Relat. Disord. 21(10), 1164–1169 (2015).
[Crossref] [PubMed]

Zhang, Y. S.

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152(4), 663–668 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Curr. Opin. Ophthalmol. (1)

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

Eye (Lond.) (1)

U. Schmidt-Erfurth, S. Klimscha, S. M. Waldstein, and H. Bogunović, “A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration,” Eye (Lond.) 31(1), 26–44 (2017).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. C. Contreras-Naranjo, Q. S. Wei, and A. Ozcan, “Mobile Phone-Based Microscopy, Sensing, and Diagnostics,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–14 (2016).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. Fujimoto and E. Swanson, “The Development, Commercialization, and Impact of Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT1 (2016).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

J. Biophotonics (1)

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref] [PubMed]

Lab Chip (1)

S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry,” Lab Chip 17(16), 2839–2851 (2017).
[Crossref] [PubMed]

Opt. Express (1)

Parkinsonism Relat. Disord. (1)

P. Mailankody, R. Battu, A. Khanna, A. Lenka, R. Yadav, and P. K. Pal, “Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease,” Parkinsonism Relat. Disord. 21(10), 1164–1169 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. S. Zhang, J. B. Chang, M. M. Alvarez, G. Trujillo-de Santiago, J. Aleman, B. Batzaya, V. Krishnadoss, A. A. Ramanujam, M. Kazemzadeh-Narbat, F. Chen, P. W. Tillberg, M. R. Dokmeci, E. S. Boyden, and A. Khademhosseini, “Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications,” Sci. Rep. 6(22691), 22691 (2016).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the loop spectrometer. Zemax spot diagram of the loop spectrometer design (b) at 815 nm, (c) at 840 nm and (d) at 860 nm.
Fig. 2
Fig. 2 (a) The measured intensity of the beam scan captured by a camera at the focal plane using two liquid lenses. (b) The spot profile without adjusting focus at the edge of the scan marked by the red circle in (a). (c) The spot profile after refocusing. (d) FWHM spot size measurements at different distance from the center without adjusting focus and with new focus. (e) An example OCT scan of a tape phantom on a business card.
Fig. 3
Fig. 3 (a) The measured intensity of the beam scan at the focal plane using a MEMS mirror and a liquid lens set up. (b) The spot profile without adjusting focus at the edge of the scan marked by the red circle in (a). (c) The spot profile after refocusing. (d) FWHM spot size measurements at different distance from the center without adjusting focus. Using refocusing method, a spot size under 20 μm was achieved across the entire 7 mm FOV.
Fig. 4
Fig. 4 The system schematic using the Arduino for synchronization.
Fig. 5
Fig. 5 (a) The low-cost system engine and (b) top view of the system interior.
Fig. 6
Fig. 6 OCT image of scotch tape using the (a) low-cost OCT system (scale bar, 200 μm) and (b) Wasatch commercial system (scale bar, 100 μm). The difference in scale bar comes from different imaging depth and FOV of the systems.
Fig. 7
Fig. 7 OCT image of (a) a pig cornea, (b) lens and iris, (c) and iridocorneal angle. (d) OCT image of murine skin. The scale bar represents 200 μm. The images shown are 10 frame averages and the depth is given for optical path in air.
Fig. 8
Fig. 8 (a) OCT image of a live mice retina. (b) OCT image of the same mice showing the optical neve head. The image on the right (b) has lower contrast and SNR due to the dehydration of the lens during imaging. The scale bar represents 200 μm in air.

Tables (2)

Tables Icon

Table 1 Component Cost of Low-Cost OCT systems.

Tables Icon

Table 2 Specs of the low-cost OCT engine and commercial OCT systems.

Metrics