Abstract

Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Digital micromirror device based ophthalmoscope with concentric circle scanning

Mathi Damodaran, Kari V. Vienola, Boy Braaf, Koenraad A. Vermeer, and Johannes F. de Boer
Biomed. Opt. Express 8(5) 2766-2780 (2017)

High-speed, image-based eye tracking with a scanning laser ophthalmoscope

Christy K. Sheehy, Qiang Yang, David W. Arathorn, Pavan Tiruveedhula, Johannes F. de Boer, and Austin Roorda
Biomed. Opt. Express 3(10) 2611-2622 (2012)

Compact scanning laser ophthalmoscope with high-speed retinal tracker

Daniel X. Hammer, R. Daniel Ferguson, John C. Magill, Michael A. White, Ann E. Elsner, and Robert H. Webb
Appl. Opt. 42(22) 4621-4632 (2003)

References

  • View by:
  • |
  • |
  • |

  1. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
    [Crossref] [PubMed]
  2. L. A. Riggs and F. Ratliff, “The Effects of Counteracting the Normal Movements of the Eye,” J. Opt. Soc. Am. 42, 872–873 (1952).
  3. R. W. Ditchburn and B. L. Ginsborg, “Vision with a Stabilized Retinal Image,” Nature 170(4314), 36–37 (1952).
    [Crossref] [PubMed]
  4. L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “The Disappearance of Steadily Fixated Visual Test Objects,” J. Opt. Soc. Am. 43(6), 495–501 (1953).
    [Crossref] [PubMed]
  5. R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145(1), 98–107 (1959).
    [Crossref] [PubMed]
  6. A. E. Drysdale, “The visibility of retinal blood vessels,” Vision Res. 15(7), 813–818 (1975).
    [Crossref] [PubMed]
  7. J. Jurin, “An essay on distinct and indistinct vision,” in A Compleat System of Opticks, viz. A Popular, A Mathematical, a Mechanical, and a Philosophical Treatise, R. Smith, ed. (1738), pp. 115–171.
  8. E. B. Huey, “Preliminary Experiments in the Physiology and Psychology of Reading,” Am. J. Psychol. 9(4), 575–586 (1898).
    [Crossref]
  9. R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol. 119(1), 1–17 (1953).
    [Crossref] [PubMed]
  10. D. A. Robinson, “A method of measuring eye movement using a scleral search coil in a magnetic field,” IEEE Trans. Biomed. Eng. 10, 137–145 (1963).
    [PubMed]
  11. T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am. 63(8), 921–928 (1973).
    [Crossref] [PubMed]
  12. H. D. Crane and C. M. Steele, “Generation-V dual-Purkinje-image eyetracker,” Appl. Opt. 24(4), 527–537 (1985).
    [Crossref] [PubMed]
  13. M. Barbosa and A. C. James, “Joint iris boundary detection and fit: a real-time method for accurate pupil tracking,” Biomed. Opt. Express 5(8), 2458–2470 (2014).
    [Crossref] [PubMed]
  14. A. B. Roig, M. Morales, J. Espinosa, J. Perez, D. Mas, and C. Illueca, “Pupil detection and tracking for analysis of fixational eye micromovements,” Optik 123(1), 11–15 (2012).
    [Crossref]
  15. T. N. Cornsweet, “New Technique for the Measurement of Small Eye Movements,” J. Opt. Soc. Am. 48(11), 808–811 (1958).
    [Crossref] [PubMed]
  16. R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
    [Crossref] [PubMed]
  17. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987).
    [Crossref] [PubMed]
  18. J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” in NASA Image Registration Workshop (IRW97), J. Le Moigne, ed. (NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 1997).
  19. M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
    [Crossref] [PubMed]
  20. D. P. Wornson, G. W. Hughes, and R. H. Webb, “Fundus tracking with the scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1500–1504 (1987).
    [Crossref] [PubMed]
  21. R. D. Ferguson, “Servo tracking system utilizing phase-sensitive detection of reflectance variations,” U.S. Patent 5,943,115 (August 24, 1999).
  22. D. Hammer, R. Ferguson, J. Magill, M. White, A. Elsner, and R. Webb, “Image stabilization for scanning laser ophthalmoscopy,” Opt. Express 10(26), 1542–1549 (2002).
    [Crossref] [PubMed]
  23. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
    [Crossref] [PubMed]
  24. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
    [Crossref] [PubMed]
  25. M. Damodaran, K. V. Vienola, B. Braaf, K. A. Vermeer, and J. F. de Boer, “Digital micromirror device based ophthalmoscope with concentric circle scanning,” Biomed. Opt. Express 8(5), 2766–2780 (2017).
    [Crossref] [PubMed]
  26. K. V. Vienola, M. Damodaran, B. Braaf, K. A. Vermeer, and J. F. de Boer, “Parallel line scanning ophthalmoscope for retinal imaging,” Opt. Lett. 40(22), 5335–5338 (2015).
    [Crossref] [PubMed]
  27. L. J. Hornbeck, “Digital Light Processing for high-brightness high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
    [Crossref]
  28. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
    [Crossref] [PubMed]
  29. E. DeHoog and J. Schwiegerling, “Optimal parameters for retinal illumination and imaging in fundus cameras,” Appl. Opt. 47(36), 6769–6777 (2008).
    [Crossref] [PubMed]
  30. R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
    [Crossref] [PubMed]
  31. J. Lewis, “Fast normalized cross-correlation,” Vision interface 10, 120– 123 (1995).
  32. International Electrotechnical Commission, Safety of laser products - Part 1: Equipment classification and requirements, (Geneva, Switzerland), IEC-60825–1, (2014).
  33. J. Otero-Millan, S. L. Macknik, and S. Martinez-Conde, “Fixational eye movements and binocular vision,” Front. Integr. Nuerosci. 8, 52 (2014).
    [Crossref] [PubMed]
  34. J. M. Findlay, “Frequency analysis of human involuntary eye movement,” Kybernetik 8(6), 207–214 (1971).
    [Crossref] [PubMed]
  35. Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
    [Crossref] [PubMed]
  36. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
    [Crossref] [PubMed]
  37. P. Bedggood and A. Metha, “De-warping of images and improved eye tracking for the scanning laser ophthalmoscope,” PLoS One 12(4), e0174617 (2017).
    [Crossref] [PubMed]
  38. A. E. Salmon, R. F. Cooper, C. S. Langlo, A. Baghaie, A. Dubra, and J. Carroll, “An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy,” Transl. Vis. Sci. Technol. 6(2), 9 (2017).
    [Crossref] [PubMed]
  39. L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res. 34(8), 1077–1087 (1994).
    [Crossref] [PubMed]
  40. F. LaRocca, D. Nankivil, S. Farsiu, and J. A. Izatt, “Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system,” Biomed. Opt. Express 4(11), 2307–2321 (2013).
    [Crossref] [PubMed]
  41. D. I. Barnea and H. F. Silverman, “A Class of Algorithms for Fast Digital Image Registration,” IEEE Trans. Comput. C-21(2), 179–186 (1972).
    [Crossref]
  42. B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” Proceedings of the 7th international joint conference on Artificial intelligence (IJCAI), pp. 674–679 (1981).
  43. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
    [Crossref] [PubMed]

2017 (3)

P. Bedggood and A. Metha, “De-warping of images and improved eye tracking for the scanning laser ophthalmoscope,” PLoS One 12(4), e0174617 (2017).
[Crossref] [PubMed]

A. E. Salmon, R. F. Cooper, C. S. Langlo, A. Baghaie, A. Dubra, and J. Carroll, “An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy,” Transl. Vis. Sci. Technol. 6(2), 9 (2017).
[Crossref] [PubMed]

M. Damodaran, K. V. Vienola, B. Braaf, K. A. Vermeer, and J. F. de Boer, “Digital micromirror device based ophthalmoscope with concentric circle scanning,” Biomed. Opt. Express 8(5), 2766–2780 (2017).
[Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (1)

2012 (3)

2010 (1)

2008 (1)

2007 (1)

2006 (1)

2004 (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

2003 (1)

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

2002 (1)

1997 (1)

L. J. Hornbeck, “Digital Light Processing for high-brightness high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
[Crossref]

1996 (1)

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

1995 (1)

J. Lewis, “Fast normalized cross-correlation,” Vision interface 10, 120– 123 (1995).

1994 (1)

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res. 34(8), 1077–1087 (1994).
[Crossref] [PubMed]

1987 (2)

1985 (1)

1981 (1)

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
[Crossref] [PubMed]

1975 (1)

A. E. Drysdale, “The visibility of retinal blood vessels,” Vision Res. 15(7), 813–818 (1975).
[Crossref] [PubMed]

1973 (1)

1972 (1)

D. I. Barnea and H. F. Silverman, “A Class of Algorithms for Fast Digital Image Registration,” IEEE Trans. Comput. C-21(2), 179–186 (1972).
[Crossref]

1971 (1)

J. M. Findlay, “Frequency analysis of human involuntary eye movement,” Kybernetik 8(6), 207–214 (1971).
[Crossref] [PubMed]

1963 (1)

D. A. Robinson, “A method of measuring eye movement using a scleral search coil in a magnetic field,” IEEE Trans. Biomed. Eng. 10, 137–145 (1963).
[PubMed]

1959 (1)

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145(1), 98–107 (1959).
[Crossref] [PubMed]

1958 (1)

1953 (2)

1952 (2)

L. A. Riggs and F. Ratliff, “The Effects of Counteracting the Normal Movements of the Eye,” J. Opt. Soc. Am. 42, 872–873 (1952).

R. W. Ditchburn and B. L. Ginsborg, “Vision with a Stabilized Retinal Image,” Nature 170(4314), 36–37 (1952).
[Crossref] [PubMed]

1898 (1)

E. B. Huey, “Preliminary Experiments in the Physiology and Psychology of Reading,” Am. J. Psychol. 9(4), 575–586 (1898).
[Crossref]

Arathorn, D. W.

Baghaie, A.

A. E. Salmon, R. F. Cooper, C. S. Langlo, A. Baghaie, A. Dubra, and J. Carroll, “An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy,” Transl. Vis. Sci. Technol. 6(2), 9 (2017).
[Crossref] [PubMed]

Barbosa, M.

Barnea, D. I.

D. I. Barnea and H. F. Silverman, “A Class of Algorithms for Fast Digital Image Registration,” IEEE Trans. Comput. C-21(2), 179–186 (1972).
[Crossref]

Bedggood, P.

P. Bedggood and A. Metha, “De-warping of images and improved eye tracking for the scanning laser ophthalmoscope,” PLoS One 12(4), e0174617 (2017).
[Crossref] [PubMed]

Braaf, B.

Carroll, J.

A. E. Salmon, R. F. Cooper, C. S. Langlo, A. Baghaie, A. Dubra, and J. Carroll, “An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy,” Transl. Vis. Sci. Technol. 6(2), 9 (2017).
[Crossref] [PubMed]

Collewijn, H.

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res. 34(8), 1077–1087 (1994).
[Crossref] [PubMed]

Cooper, R. F.

A. E. Salmon, R. F. Cooper, C. S. Langlo, A. Baghaie, A. Dubra, and J. Carroll, “An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy,” Transl. Vis. Sci. Technol. 6(2), 9 (2017).
[Crossref] [PubMed]

Cornsweet, J. C.

Cornsweet, T. N.

Crane, H. D.

Damodaran, M.

de Boer, J. F.

DeHoog, E.

Delori, F. C.

Ditchburn, R. W.

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145(1), 98–107 (1959).
[Crossref] [PubMed]

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol. 119(1), 1–17 (1953).
[Crossref] [PubMed]

R. W. Ditchburn and B. L. Ginsborg, “Vision with a Stabilized Retinal Image,” Nature 170(4314), 36–37 (1952).
[Crossref] [PubMed]

Drysdale, A. E.

A. E. Drysdale, “The visibility of retinal blood vessels,” Vision Res. 15(7), 813–818 (1975).
[Crossref] [PubMed]

Dubra, A.

A. E. Salmon, R. F. Cooper, C. S. Langlo, A. Baghaie, A. Dubra, and J. Carroll, “An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy,” Transl. Vis. Sci. Technol. 6(2), 9 (2017).
[Crossref] [PubMed]

Elsner, A.

Espinosa, J.

A. B. Roig, M. Morales, J. Espinosa, J. Perez, D. Mas, and C. Illueca, “Pupil detection and tracking for analysis of fixational eye micromovements,” Optik 123(1), 11–15 (2012).
[Crossref]

Farsiu, S.

Fender, D. H.

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145(1), 98–107 (1959).
[Crossref] [PubMed]

Ferguson, R.

Findlay, J. M.

J. M. Findlay, “Frequency analysis of human involuntary eye movement,” Kybernetik 8(6), 207–214 (1971).
[Crossref] [PubMed]

Ginsborg, B. L.

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol. 119(1), 1–17 (1953).
[Crossref] [PubMed]

R. W. Ditchburn and B. L. Ginsborg, “Vision with a Stabilized Retinal Image,” Nature 170(4314), 36–37 (1952).
[Crossref] [PubMed]

Hammer, D.

Hanley, Q. S.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Heintzmann, R.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Hornbeck, L. J.

L. J. Hornbeck, “Digital Light Processing for high-brightness high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
[Crossref]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Huey, E. B.

E. B. Huey, “Preliminary Experiments in the Physiology and Psychology of Reading,” Am. J. Psychol. 9(4), 575–586 (1898).
[Crossref]

Hughes, G. W.

Illueca, C.

A. B. Roig, M. Morales, J. Espinosa, J. Perez, D. Mas, and C. Illueca, “Pupil detection and tracking for analysis of fixational eye micromovements,” Optik 123(1), 11–15 (2012).
[Crossref]

Izatt, J. A.

James, A. C.

Jovin, T. M.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Kanade, T.

B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” Proceedings of the 7th international joint conference on Artificial intelligence (IJCAI), pp. 674–679 (1981).

Langlo, C. S.

A. E. Salmon, R. F. Cooper, C. S. Langlo, A. Baghaie, A. Dubra, and J. Carroll, “An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy,” Transl. Vis. Sci. Technol. 6(2), 9 (2017).
[Crossref] [PubMed]

LaRocca, F.

Lewis, J.

J. Lewis, “Fast normalized cross-correlation,” Vision interface 10, 120– 123 (1995).

Lucas, B. D.

B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” Proceedings of the 7th international joint conference on Artificial intelligence (IJCAI), pp. 674–679 (1981).

Macknik, S. L.

J. Otero-Millan, S. L. Macknik, and S. Martinez-Conde, “Fixational eye movements and binocular vision,” Front. Integr. Nuerosci. 8, 52 (2014).
[Crossref] [PubMed]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Magill, J.

Martinez-Conde, S.

J. Otero-Millan, S. L. Macknik, and S. Martinez-Conde, “Fixational eye movements and binocular vision,” Front. Integr. Nuerosci. 8, 52 (2014).
[Crossref] [PubMed]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Mas, D.

A. B. Roig, M. Morales, J. Espinosa, J. Perez, D. Mas, and C. Illueca, “Pupil detection and tracking for analysis of fixational eye micromovements,” Optik 123(1), 11–15 (2012).
[Crossref]

Mayne, S.

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145(1), 98–107 (1959).
[Crossref] [PubMed]

Metha, A.

P. Bedggood and A. Metha, “De-warping of images and improved eye tracking for the scanning laser ophthalmoscope,” PLoS One 12(4), e0174617 (2017).
[Crossref] [PubMed]

Morales, M.

A. B. Roig, M. Morales, J. Espinosa, J. Perez, D. Mas, and C. Illueca, “Pupil detection and tracking for analysis of fixational eye micromovements,” Optik 123(1), 11–15 (2012).
[Crossref]

Munroe, P.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Nailon, J.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Nankivil, D.

Nozato, K.

Otero-Millan, J.

J. Otero-Millan, S. L. Macknik, and S. Martinez-Conde, “Fixational eye movements and binocular vision,” Front. Integr. Nuerosci. 8, 52 (2014).
[Crossref] [PubMed]

Parker, A.

Perez, J.

A. B. Roig, M. Morales, J. Espinosa, J. Perez, D. Mas, and C. Illueca, “Pupil detection and tracking for analysis of fixational eye micromovements,” Optik 123(1), 11–15 (2012).
[Crossref]

Ratliff, F.

L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “The Disappearance of Steadily Fixated Visual Test Objects,” J. Opt. Soc. Am. 43(6), 495–501 (1953).
[Crossref] [PubMed]

L. A. Riggs and F. Ratliff, “The Effects of Counteracting the Normal Movements of the Eye,” J. Opt. Soc. Am. 42, 872–873 (1952).

Riggs, L. A.

L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “The Disappearance of Steadily Fixated Visual Test Objects,” J. Opt. Soc. Am. 43(6), 495–501 (1953).
[Crossref] [PubMed]

L. A. Riggs and F. Ratliff, “The Effects of Counteracting the Normal Movements of the Eye,” J. Opt. Soc. Am. 42, 872–873 (1952).

Robinson, D. A.

D. A. Robinson, “A method of measuring eye movement using a scleral search coil in a magnetic field,” IEEE Trans. Biomed. Eng. 10, 137–145 (1963).
[PubMed]

Roig, A. B.

A. B. Roig, M. Morales, J. Espinosa, J. Perez, D. Mas, and C. Illueca, “Pupil detection and tracking for analysis of fixational eye micromovements,” Optik 123(1), 11–15 (2012).
[Crossref]

Roorda, A.

Rossi, E. A.

Saito, K.

Salmon, A. E.

A. E. Salmon, R. F. Cooper, C. S. Langlo, A. Baghaie, A. Dubra, and J. Carroll, “An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy,” Transl. Vis. Sci. Technol. 6(2), 9 (2017).
[Crossref] [PubMed]

Sarafis, V.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Schwiegerling, J.

Sendtner, R. A.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

Sheehy, C. K.

Silverman, H. F.

D. I. Barnea and H. F. Silverman, “A Class of Algorithms for Fast Digital Image Registration,” IEEE Trans. Comput. C-21(2), 179–186 (1972).
[Crossref]

Steele, C. M.

Stetter, M.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

Timberlake, G. T.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

Tiruveedhula, P.

Van der Steen, J.

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res. 34(8), 1077–1087 (1994).
[Crossref] [PubMed]

Van Rijn, L. J.

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res. 34(8), 1077–1087 (1994).
[Crossref] [PubMed]

Vermeer, K. A.

Vienola, K. V.

Vogel, C. R.

Webb, R.

Webb, R. H.

White, M.

Williams, D. R.

Wornson, D. P.

Yang, Q.

Zhang, J.

Zhang, Y.

Am. J. Psychol. (1)

E. B. Huey, “Preliminary Experiments in the Physiology and Psychology of Reading,” Am. J. Psychol. 9(4), 575–586 (1898).
[Crossref]

Appl. Opt. (4)

Biomed. Opt. Express (6)

Front. Integr. Nuerosci. (1)

J. Otero-Millan, S. L. Macknik, and S. Martinez-Conde, “Fixational eye movements and binocular vision,” Front. Integr. Nuerosci. 8, 52 (2014).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (2)

D. A. Robinson, “A method of measuring eye movement using a scleral search coil in a magnetic field,” IEEE Trans. Biomed. Eng. 10, 137–145 (1963).
[PubMed]

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
[Crossref] [PubMed]

IEEE Trans. Comput. (1)

D. I. Barnea and H. F. Silverman, “A Class of Algorithms for Fast Digital Image Registration,” IEEE Trans. Comput. C-21(2), 179–186 (1972).
[Crossref]

J. Opt. Soc. Am. (4)

J. Physiol. (2)

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145(1), 98–107 (1959).
[Crossref] [PubMed]

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol. 119(1), 1–17 (1953).
[Crossref] [PubMed]

Kybernetik (1)

J. M. Findlay, “Frequency analysis of human involuntary eye movement,” Kybernetik 8(6), 207–214 (1971).
[Crossref] [PubMed]

Micron (1)

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Nature (1)

R. W. Ditchburn and B. L. Ginsborg, “Vision with a Stabilized Retinal Image,” Nature 170(4314), 36–37 (1952).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Optik (1)

A. B. Roig, M. Morales, J. Espinosa, J. Perez, D. Mas, and C. Illueca, “Pupil detection and tracking for analysis of fixational eye micromovements,” Optik 123(1), 11–15 (2012).
[Crossref]

PLoS One (1)

P. Bedggood and A. Metha, “De-warping of images and improved eye tracking for the scanning laser ophthalmoscope,” PLoS One 12(4), e0174617 (2017).
[Crossref] [PubMed]

Proc. SPIE (1)

L. J. Hornbeck, “Digital Light Processing for high-brightness high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
[Crossref]

Transl. Vis. Sci. Technol. (1)

A. E. Salmon, R. F. Cooper, C. S. Langlo, A. Baghaie, A. Dubra, and J. Carroll, “An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy,” Transl. Vis. Sci. Technol. 6(2), 9 (2017).
[Crossref] [PubMed]

Vision interface (1)

J. Lewis, “Fast normalized cross-correlation,” Vision interface 10, 120– 123 (1995).

Vision Res. (3)

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

A. E. Drysdale, “The visibility of retinal blood vessels,” Vision Res. 15(7), 813–818 (1975).
[Crossref] [PubMed]

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res. 34(8), 1077–1087 (1994).
[Crossref] [PubMed]

Other (5)

B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” Proceedings of the 7th international joint conference on Artificial intelligence (IJCAI), pp. 674–679 (1981).

J. Jurin, “An essay on distinct and indistinct vision,” in A Compleat System of Opticks, viz. A Popular, A Mathematical, a Mechanical, and a Philosophical Treatise, R. Smith, ed. (1738), pp. 115–171.

R. D. Ferguson, “Servo tracking system utilizing phase-sensitive detection of reflectance variations,” U.S. Patent 5,943,115 (August 24, 1999).

J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” in NASA Image Registration Workshop (IRW97), J. Le Moigne, ed. (NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 1997).

International Electrotechnical Commission, Safety of laser products - Part 1: Equipment classification and requirements, (Geneva, Switzerland), IEC-60825–1, (2014).

Supplementary Material (1)

NameDescription
» Visualization 1       A confocal video generated from the data (left) and the corresponding eye movement is drawn in the plot (right)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic of the optical setup. (A) The illumination module consists of LED, light pipe, relay telescope (L1 and L2), total internal reflection (TIR) prism and the DMD. The light pipe homogenizes the LED illumination whereas the TIR prism will direct the light from on mirrors towards the eye. (B) L3-L7: Lenses; P1-P2: Polarizers; A1: Annulus; A2: Circular aperture; PBS: Polarizing beam splitter; QWP: Quarter-wave plate.
Fig. 2
Fig. 2 Model eye with controlled motion. (A) The function generator provided the scanning waveform to the galvo scanner (GS) in the model eye motion separate from the actual imaging system. In the retinal plane, one pixel was about 8 µm and an amplitude of one volt generated a shift of about ± 40 pixels. (B) A confocal image of the surface of the artificial retina.
Fig. 3
Fig. 3 An example of obtained motion traces using the model eye. (A) The retrieved horizontal motion data is represented in blue dots whereas the sine fit is presented in red line with an extremely good fit having R2 = 0.9979. (B) Because there is no motion in the vertical direction, the motion trace should be zero. However, there is some residual motion coupling from the horizontal channel to vertical channel due to small alignment mismatches of the model eye. The standard deviation of 0.057 pixels (6.5 arcsec) corresponds to about 0.5 µm in the retinal plane. Please note the scaling is different in y-axis between the two plots.
Fig. 4
Fig. 4 The normalized cross-correlation coefficient behavior for different conditions. (A) From the obtained motion trace the highest amplitudes were detected (stationary points) and the corresponding correlation coefficient was acquired. The amplitude was kept constant for each curve, but the optical power was varied. The smallest amplitude follows a similar path as the dashed blue line (no motion) whereas the yellow line decreases a bit stronger. (B) As the image overlap decreases (motion amplitude increases) there are only minor changes in the correlation coefficient. However, the standard deviation of the coefficient increases which is seen in the growing error bars when the image overlap is decreased. The 92% overlap corresponds to about 2.28° shift which is much larger than the typical amplitude of a micro-saccade [1].
Fig. 5
Fig. 5 An in vivo example of the cross-correlation. First a confocal frame is constructed, which will act as a reference frame. Then the next subsampled frame will be cross-correlated to the reference frame to obtain the shift between these two frames. The peak that occurs in the correlation matrix indicates the offset of the subsampled pattern with respect to the reference. The better the two images match, the higher the peak in the correlation matrix will be.
Fig. 6
Fig. 6 Extracted eye motion traces from a healthy subject. All three types of eye motion can be distinguished from the traces, namely micro-saccades (large jumps at 1.1 s and 2.9 s), drift (drifting motion along the trace with small amplitude and frequency) and tremor, high frequency motion superimposed on top of the eye motion trace (Visualization 1).
Fig. 7
Fig. 7 Eye motion amplitude as a function of frequency. The spectrum follows the well-known 1/f curve and ends at 65 Hz which is the current motion detection bandwidth. Low frequency motion such as drift and micro-saccades have larger amplitude than high frequency tremor, which is present up to the detection limit. The two peaks seen at 6.5 Hz and 13 Hz are artefacts that originate from the reference frame (see [28]).
Fig. 8
Fig. 8 Averaging multiple confocal images without and with motion correction. To generate the images, 1000 subsampled frames were taken over 7.6 seconds. As the fill factor of the DMD was 0.05, it took 20 patterns to scan the entire FOV. This then resulted in 50 full confocal images that were averaged. (A) A single confocal image for comparison. (B) When the subsamples images are not corrected for motion, the resulting averaged image is blurry. (C) When each subsampled frame is corrected for the eye motion, the averaged image has high quality, showing good contrast and lots of features typical of the area around the ONH.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ ( u , v ) = x , y [ f ( x , y ) f ¯ u , v ] [ t ( x u , y v ) t ¯ ] x , y [ f ( x , y ) f ¯ u , v ] 2 x , y [ t ( x u , y v ) t ¯ ] 2 ,

Metrics