Abstract

Monitoring and manipulating neuronal activities with optical microscopy desires a method where light can be focused or projected over a long axial range so that large brain tissues (>100 μm thick) can be simultaneously imaged, and specific brain regions can be optogenetically stimulated without the need for slow optical refocusing. However, the micron-scale resolution required in neuronal imaging yields a depth of field of less than 10 μm in conventional imaging systems. We propose to use a circularly symmetric phase mask to extend the depth of field. A numerical study shows that our method maintains both the peak and the shape of the point spread function vs the axial position better than current methods. Imaging of a 3D bead suspension and sparsely labelled thick brain tissue confirms the feasibility of the system for fast volumetric imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo volumetric imaging of biological dynamics in deep tissue via wavefront engineering

Lingjie Kong, Jianyong Tang, and Meng Cui
Opt. Express 24(2) 1214-1221 (2016)

Fast volumetric phase-gradient imaging in thick samples

J. David Giese, Tim N. Ford, and Jerome Mertz
Opt. Express 22(1) 1152-1162 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
    [Crossref] [PubMed]
  2. M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
    [Crossref] [PubMed]
  3. A. L. Barth and J. F. A. Poulet, “Experimental evidence for sparse firing in the neocortex,” Trends Neurosci. 35(6), 345–355 (2012).
    [Crossref] [PubMed]
  4. T. Hromádka, M. R. Deweese, and A. M. Zador, “Sparse representation of sounds in the unanesthetized auditory cortex,” PLoS Biol. 6(1), e16 (2008).
    [Crossref] [PubMed]
  5. B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol. 14(4), 481–487 (2004).
    [Crossref] [PubMed]
  6. N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
    [Crossref] [PubMed]
  7. A. J. Peters, S. X. Chen, and T. Komiyama, “Emergence of reproducible spatiotemporal activity during motor learning,” Nature 510(7504), 263–267 (2014).
    [Crossref] [PubMed]
  8. Z. Zalevsky, “Extended depth of focus imaging: a review,” J. Photonics for Energy 2010, 018001 (2010).
  9. J. Ojeda-Castañeda and C. M. Gómez-Sarabia, “Tuning field depth at high resolution by pupil engineering,” Adv. Opt. Photonics 7(4), 814–880 (2015).
    [Crossref]
  10. J. Jiang, D. Zhang, S. Walker, C. Gu, Y. Ke, W. H. Yung, and S. C. Chen, “Fast 3-D temporal focusing microscopy using an electrically tunable lens,” Opt. Express 23(19), 24362–24368 (2015).
    [Crossref] [PubMed]
  11. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front Neural Circuit 2, 5 (2008).
  12. W. J. Shain, N. A. Vickers, B. B. Goldberg, T. Bifano, and J. Mertz, “Extended depth-of-field microscopy with a high-speed deformable mirror,” Opt. Lett. 42(5), 995–998 (2017).
    [Crossref] [PubMed]
  13. S. Liu and H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19(1), 353–362 (2011).
    [Crossref] [PubMed]
  14. M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
    [Crossref]
  15. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995).
    [Crossref] [PubMed]
  16. S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
    [Crossref] [PubMed]
  17. N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A, Pure Appl. Opt. 5(5), S157–S163 (2003).
    [Crossref]
  18. E. Ben-Eliezer, E. Marom, N. Konforti, and Z. Zalevsky, “Experimental realization of an imaging system with an extended depth of field,” Appl. Opt. 44(14), 2792–2798 (2005).
    [Crossref] [PubMed]
  19. R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
    [Crossref] [PubMed]
  20. F. Zhou, R. Ye, G. Li, H. Zhang, and D. Wang, “Optimized circularly symmetric phase mask to extend the depth of focus,” J. Opt. Soc. Am. A 26(8), 1889–1895 (2009).
    [Crossref] [PubMed]
  21. J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
    [Crossref] [PubMed]
  22. S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28(10), 771–773 (2003).
    [Crossref] [PubMed]
  23. R. Ng, Digital light field photography (stanford university California, 2006).
  24. R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
    [Crossref] [PubMed]
  25. S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).
    [Crossref] [PubMed]
  26. J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
    [Crossref] [PubMed]
  27. A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
    [Crossref] [PubMed]
  28. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).
  29. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  30. C. J. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30(25), 3563–3568 (1991).
    [Crossref] [PubMed]
  31. K. Chu, P. J. McMillan, Z. J. Smith, J. Yin, J. Atkins, P. Goodwin, S. Wachsmann-Hogiu, and S. Lane, “Image reconstruction for structured-illumination microscopy with low signal level,” Opt. Express 22(7), 8687–8702 (2014).
    [Crossref] [PubMed]
  32. R. N. Zahreddine and C. J. Cogswell, “Total variation regularized deconvolution for extended depth of field microscopy,” Appl. Opt. 54(9), 2244–2254 (2015).
    [Crossref] [PubMed]

2017 (3)

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).
[Crossref] [PubMed]

W. J. Shain, N. A. Vickers, B. B. Goldberg, T. Bifano, and J. Mertz, “Extended depth-of-field microscopy with a high-speed deformable mirror,” Opt. Lett. 42(5), 995–998 (2017).
[Crossref] [PubMed]

2016 (1)

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

2015 (4)

J. Ojeda-Castañeda and C. M. Gómez-Sarabia, “Tuning field depth at high resolution by pupil engineering,” Adv. Opt. Photonics 7(4), 814–880 (2015).
[Crossref]

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

R. N. Zahreddine and C. J. Cogswell, “Total variation regularized deconvolution for extended depth of field microscopy,” Appl. Opt. 54(9), 2244–2254 (2015).
[Crossref] [PubMed]

J. Jiang, D. Zhang, S. Walker, C. Gu, Y. Ke, W. H. Yung, and S. C. Chen, “Fast 3-D temporal focusing microscopy using an electrically tunable lens,” Opt. Express 23(19), 24362–24368 (2015).
[Crossref] [PubMed]

2014 (3)

K. Chu, P. J. McMillan, Z. J. Smith, J. Yin, J. Atkins, P. Goodwin, S. Wachsmann-Hogiu, and S. Lane, “Image reconstruction for structured-illumination microscopy with low signal level,” Opt. Express 22(7), 8687–8702 (2014).
[Crossref] [PubMed]

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

A. J. Peters, S. X. Chen, and T. Komiyama, “Emergence of reproducible spatiotemporal activity during motor learning,” Nature 510(7504), 263–267 (2014).
[Crossref] [PubMed]

2013 (2)

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
[Crossref] [PubMed]

2012 (1)

A. L. Barth and J. F. A. Poulet, “Experimental evidence for sparse firing in the neocortex,” Trends Neurosci. 35(6), 345–355 (2012).
[Crossref] [PubMed]

2011 (3)

J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
[Crossref] [PubMed]

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

S. Liu and H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19(1), 353–362 (2011).
[Crossref] [PubMed]

2010 (1)

Z. Zalevsky, “Extended depth of focus imaging: a review,” J. Photonics for Energy 2010, 018001 (2010).

2009 (1)

2008 (3)

J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
[Crossref] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front Neural Circuit 2, 5 (2008).

T. Hromádka, M. R. Deweese, and A. M. Zador, “Sparse representation of sounds in the unanesthetized auditory cortex,” PLoS Biol. 6(1), e16 (2008).
[Crossref] [PubMed]

2007 (1)

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (1)

B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol. 14(4), 481–487 (2004).
[Crossref] [PubMed]

2003 (2)

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A, Pure Appl. Opt. 5(5), S157–S163 (2003).
[Crossref]

S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28(10), 771–773 (2003).
[Crossref] [PubMed]

1995 (1)

1991 (1)

Alivisatos, A. P.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Alkema, M. J.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Andalman, A.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front Neural Circuit 2, 5 (2008).

Ares García, J.

Atkins, J.

Bará, S.

Barth, A. L.

A. L. Barth and J. F. A. Poulet, “Experimental evidence for sparse firing in the neocortex,” Trends Neurosci. 35(6), 345–355 (2012).
[Crossref] [PubMed]

Ben-Eliezer, E.

Bianchini, P.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Bifano, T.

Bonifazi, P.

S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).
[Crossref] [PubMed]

Bovetti, S.

S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).
[Crossref] [PubMed]

Boyden, E. S.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Broxton, M.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Burns, V. M.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Cathey, W. T.

Chen, S. C.

Chen, S. X.

A. J. Peters, S. X. Chen, and T. Komiyama, “Emergence of reproducible spatiotemporal activity during motor learning,” Nature 510(7504), 263–267 (2014).
[Crossref] [PubMed]

Chi, W.

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A, Pure Appl. Opt. 5(5), S157–S163 (2003).
[Crossref]

Chu, K.

Chun, M.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Church, G. M.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Cogswell, C. J.

Crane, M. M.

J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
[Crossref] [PubMed]

Dal Maschio, M.

S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).
[Crossref] [PubMed]

Deisseroth, K.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Deweese, M. R.

T. Hromádka, M. R. Deweese, and A. M. Zador, “Sparse representation of sounds in the unanesthetized auditory cortex,” PLoS Biol. 6(1), e16 (2008).
[Crossref] [PubMed]

Diaspro, A.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Donoghue, J. P.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Dowski, E. R.

Duocastella, M.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Fang-Yen, C.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Fellin, T.

S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).
[Crossref] [PubMed]

Field, D. J.

B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol. 14(4), 481–487 (2004).
[Crossref] [PubMed]

Fox, M. D.

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

Freeman, J.

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

George, N.

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A, Pure Appl. Opt. 5(5), S157–S163 (2003).
[Crossref]

Gershow, M.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Goldberg, B. B.

Gomez García, M.

Gómez-Sarabia, C. M.

J. Ojeda-Castañeda and C. M. Gómez-Sarabia, “Tuning field depth at high resolution by pupil engineering,” Adv. Opt. Photonics 7(4), 814–880 (2015).
[Crossref]

Goodwin, P.

Gottschalk, A.

J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
[Crossref] [PubMed]

Greenspan, R. J.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Grosenick, L.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Gu, C.

Gu, M.

Harvey, A. R.

Hoffmann, M.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Hromádka, T.

T. Hromádka, M. R. Deweese, and A. M. Zador, “Sparse representation of sounds in the unanesthetized auditory cortex,” PLoS Biol. 6(1), e16 (2008).
[Crossref] [PubMed]

Hua, H.

Husson, S. J.

J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
[Crossref] [PubMed]

Jaroszewicz, Z.

Ji, N.

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

Jiang, J.

Kato, S.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Kauvar, I.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Ke, Y.

Kolodziejczyk, A.

Komiyama, T.

A. J. Peters, S. X. Chen, and T. Komiyama, “Emergence of reproducible spatiotemporal activity during motor learning,” Nature 510(7504), 263–267 (2014).
[Crossref] [PubMed]

Konforti, N.

Lane, S.

Leifer, A. M.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Li, G.

Liu, S.

Lovett-Barron, M.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Lu, H.

J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
[Crossref] [PubMed]

Marom, E.

McEuen, P. L.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

McMillan, P. J.

Mertz, J.

Mezouari, S.

Moretti, C.

S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).
[Crossref] [PubMed]

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front Neural Circuit 2, 5 (2008).

Ojeda-Castañeda, J.

J. Ojeda-Castañeda and C. M. Gómez-Sarabia, “Tuning field depth at high resolution by pupil engineering,” Adv. Opt. Photonics 7(4), 814–880 (2015).
[Crossref]

Olshausen, B. A.

B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol. 14(4), 481–487 (2004).
[Crossref] [PubMed]

Pak, N.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Petelczyc, K.

Peterka, D. S.

S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
[Crossref] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front Neural Circuit 2, 5 (2008).

Peters, A. J.

A. J. Peters, S. X. Chen, and T. Komiyama, “Emergence of reproducible spatiotemporal activity during motor learning,” Nature 510(7504), 263–267 (2014).
[Crossref] [PubMed]

Poulet, J. F. A.

A. L. Barth and J. F. A. Poulet, “Experimental evidence for sparse firing in the neocortex,” Trends Neurosci. 35(6), 345–355 (2012).
[Crossref] [PubMed]

Prevedel, R.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Quirin, S.

Raichle, M. E.

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

Ramoino, P.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Raskar, R.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Roukes, M. L.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Saggau, P.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Samuel, A. D. T.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Sancataldo, G.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Sankaran, S.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Schrödel, T.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Schultheis, C.

J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
[Crossref] [PubMed]

Sejnowski, T. J.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Shain, W. J.

Sheppard, C. J.

Smith, S. L.

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

Smith, Z. J.

Stirman, J. N.

J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
[Crossref] [PubMed]

Tomer, R.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Vaziri, A.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Vickers, N. A.

Wabnig, S.

J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
[Crossref] [PubMed]

Wachsmann-Hogiu, S.

Walker, S.

Wang, D.

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front Neural Circuit 2, 5 (2008).

Weiss, P. S.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Wetzstein, G.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front Neural Circuit 2, 5 (2008).

Yang, S.

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Ye, R.

Yin, J.

Yoon, Y. G.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Yung, W. H.

Yuste, R.

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
[Crossref] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front Neural Circuit 2, 5 (2008).

Zador, A. M.

T. Hromádka, M. R. Deweese, and A. M. Zador, “Sparse representation of sounds in the unanesthetized auditory cortex,” PLoS Biol. 6(1), e16 (2008).
[Crossref] [PubMed]

Zahreddine, R. N.

Zalevsky, Z.

Zhang, D.

Zhang, H.

Zhou, F.

Zimmer, M.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

Zucca, S.

S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Adv. Opt. Photonics (1)

J. Ojeda-Castañeda and C. M. Gómez-Sarabia, “Tuning field depth at high resolution by pupil engineering,” Adv. Opt. Photonics 7(4), 814–880 (2015).
[Crossref]

Appl. Opt. (4)

Cell (1)

R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,” Cell 163(7), 1796–1806 (2015).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol. 14(4), 481–487 (2004).
[Crossref] [PubMed]

Front Neural Circuit (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front Neural Circuit 2, 5 (2008).

J. Opt. A, Pure Appl. Opt. (1)

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A, Pure Appl. Opt. 5(5), S157–S163 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Photonics for Energy (1)

Z. Zalevsky, “Extended depth of focus imaging: a review,” J. Photonics for Energy 2010, 018001 (2010).

Nat. Methods (3)

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref] [PubMed]

J. N. Stirman, M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu, “Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans,” Nat. Methods 8(2), 153–158 (2011).
[Crossref] [PubMed]

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Nat. Neurosci. (1)

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

Nature (1)

A. J. Peters, S. X. Chen, and T. Komiyama, “Emergence of reproducible spatiotemporal activity during motor learning,” Nature 510(7504), 263–267 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

PLoS Biol. (1)

T. Hromádka, M. R. Deweese, and A. M. Zador, “Sparse representation of sounds in the unanesthetized auditory cortex,” PLoS Biol. 6(1), e16 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).
[Crossref] [PubMed]

Science (1)

A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J. Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste, “Neuroscience. The brain activity map,” Science 339(6125), 1284–1285 (2013).
[Crossref] [PubMed]

Trends Neurosci. (1)

A. L. Barth and J. F. A. Poulet, “Experimental evidence for sparse firing in the neocortex,” Trends Neurosci. 35(6), 345–355 (2012).
[Crossref] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

R. Ng, Digital light field photography (stanford university California, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Setup of the optical system. L1 (an objective) and L2 form a conventional microscope. The image is relayed through Lens L3 and L4 onto the camera. A SLM is placed on the confocal plane of L3 and L4.
Fig. 2
Fig. 2 Examples of point spread functions in three EDoF systems: Our method (a,d); the cubic phase method (b,e); and the liquid slab method(c,f). From top to bottom, the distance to the focal plane is 0, 60 μ m respectively. The PSFs are plotted off center to accommodate the shape of PSFs from the cubic phase mask method. The Strehl ratio (Log scale) vs. axial distance of these three methods is plotted in (g).
Fig. 3
Fig. 3 Measured 3D PSFs plotted in cylindrical coordinates from the conventional system (a) and the proposed system (b). (c) is the axial values of the PSFs along z axis for both systems.
Fig. 4
Fig. 4 Imaging results of multilayer beads with the conventional system (a); the proposed system (b). The contrast in (a) is stretched to show the defocused beads.
Fig. 5
Fig. 5 Results of Brain tissue experiment without z-scanning: (a) from the conventional, (b) raw data from cubic phase method, (c) raw data from the proposed system. (d) Average-intensity projection from conventionally z-scanned images. Scale bar: 50 µm
Fig. 6
Fig. 6 Deconvolution can improve the contrast: (a) raw data from the proposed system and (b) deconvolved result . (c) is the line profiles of a neuron structure marked with a white line in (a) and (b).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E 2 ( x 2 , y 2 ) p ( x 2 , y 2 ) e j k 2 f 1 ( 1 s f 1 ) ( x 2 2 + y 2 2 ) ,
E 3 ( ρ 3 ) p ( f 2 f 3 ρ 3 ) e j [ k 2 f 1 ( 1 s f 1 ) ( f 2 f 3 ) 2 ρ 3 2 + s l m ( ρ 3 ) ] ,
p s f ( ρ 4 , s ) | 0 ρ 3   m a x e [ j k 2 f 1 ( 1 s f 1 ) ( f 2 f 3 ) 2 ρ 3 2 + s l m ( ρ 3 ) ] J 0 ( k ρ 3 ρ 4 f 4 ) ρ 3 d ρ 3 | 2 .
p s f ( 0 , s ) ρ 30 2 ( s ) | Φ '' ( ρ 30 , s ) | ,
Φ ( ρ 3 , s ) = 1 2 f 1 ( 1 s f 1 ) ( f 2 f 3 ) 2 ρ 3 2 + s l m ( ρ 3 ) k ,
Φ ' ( ρ 3 , s ) | ρ 3 = ρ 30 = 0 .
' s l m ( ρ 30 ) = k f 1 ( 1 s f 1 ) ( f 2 f 3 ) 2 ρ 30
' ' s l m ( ρ 30 ) + k 1 f 1 ( 1 s f 1 ) ( f 2 f 3 ) 2 + 2 k ρ 30 2 C = 0.
' ' s l m ( ρ 30 ) ' s l m ( ρ 30 ) ρ 30 + 2 k ρ 30 2 C = 0.
s l m ( ρ 30 ) = k C 1 ρ 30 2 + k ρ 30 4 4 C + C 2
2 k C 1 ρ 30 + k ρ 30 3 C = k f 1 ( 1 s f 1 ) ( f 2 f 3 ) 2 ρ 30 .
C = ρ 3 m a x 2 f 1 2 f 3 2 2 δ f 2 2 , C 1 = δ f 2 2 2 f 1 2 f 3 2 .
s l m ( ρ 3 ) = k δ 2 f 2 2 f 1 2 ρ 3 2 f 3 2 ( 1 ρ 3 2 ρ 3 m a x 2 ) + C 2 ,
c u b i c ( x 3 , y 3 ) = 2 π α ( x 3 3 + y 3 3 ρ 3 m a x 3 ) ,
s l a b ( ρ 2 ) = k d ( n 2 cos θ 2 n 1 cos θ 1 ) ,
cos θ 1 = s ρ 2 2 + s 2
cos θ 2 = 1 ( n 1 n 2 ) 2 sin 2 θ 1 = 1 n 2 n 2 2 n 1 2 ρ 2 2 ρ 2 2 + s 2 .
s l a b ( ρ 3 ) = kd ( n 2 2 n 1 2 ) ( f 2 f 3 ) 2 ρ 3 2 + n 2 2 s 2 n 1 s ( f 2 f 3 ) 2 ρ 3 2 + s 2 .
psf ( x 4 , y 4 , s ) | F { p ( f 2 f 3 x 3 , f 2 f 3 y 3 ) e [ j k 2 f 1 ( 1 s f 1 ) ( f 2 f 3 ) 2 ( x 3 2 + y 3 2 ) + ( x 3 , y 3 ) ] } ( x 4 , y 4 ) λ f 4 | 2 ,

Metrics