Abstract

We present the design and comprehensive instrumental characterization of a time domain diffuse optical tomography (TD-DOT) platform based on wide-field illumination and wide-field hyperspectral time-resolved single-pixel detection for functional and molecular imaging in turbid media. The proposed platform combines two digital micro-mirror devices (DMDs) to generate structured light and a spectrally resolved multi-anode photomultiplier tube (PMT) detector in time domain for hyperspectral data acquisition over 16 wavelength channels based on the time-correlated single-photon counting (TCSPC) technique. The design of the proposed platform is described in detail and its characteristics in spatial, temporal and spectral dimensions are calibrated and presented. The performance of the system is further validated through a phantom study where two absorbers in glass tubes with spectral contrast are mapped in a turbid medium of ~20 mm thickness. The method presented here offers the potential of accelerating the imaging process and improving reconstruction results in TD-DOT and thus facilitates its wide spread use in preclinical and clinical in vivo imaging scenarios.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of an optical imaging platform for functional imaging of small animals using wide-field excitation

Vivek Venugopal, Jin Chen, and Xavier Intes
Biomed. Opt. Express 1(1) 143-156 (2010)

Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection

Qi Pian, Ruoyang Yao, Lingling Zhao, and Xavier Intes
Opt. Lett. 40(3) 431-434 (2015)

Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti
Biomed. Opt. Express 5(7) 2037-2053 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
    [Crossref] [PubMed]
  2. D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
    [Crossref] [PubMed]
  3. V. Venugopal and X. Intes, “Recent advances in optical mammography,” Curr. Med. Imaging Rev. 8(3), 244–259 (2012).
    [Crossref]
  4. J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
    [Crossref] [PubMed]
  5. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
    [Crossref] [PubMed]
  6. C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
    [Crossref] [PubMed]
  7. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
    [Crossref] [PubMed]
  8. F. S. Azar and X. Intes, Translational Multimodality Optical Imaging (Artech House Publishing, 2008).
  9. Q. Pian, C. Wang, X. Chen, J. Liang, L. Zhao, G. Wang, and X. Intes, “Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues,” Curr. Mol. Imaging 3(2), 72–87 (2014).
    [Crossref]
  10. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
    [Crossref] [PubMed]
  11. V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express 1(1), 143–156 (2010).
    [Crossref] [PubMed]
  12. F. Nouizi, M. Torregrossa, R. Chabrier, and P. Poulet, “Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography,” Opt. Express 19(13), 12843–12854 (2011).
    [Crossref] [PubMed]
  13. J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2(4), 871–886 (2011).
    [Crossref] [PubMed]
  14. Z. Li and M. Niedre, “Hybrid use of early and quasi-continuous wave photons in time-domain tomographic imaging for improved resolution and quantitative accuracy,” Biomed. Opt. Express 2(3), 665–679 (2011).
    [Crossref] [PubMed]
  15. M. Pimpalkhare, J. Chen, V. Venugopal, and X. Intes, “Ex vivo fluorescence molecular tomography of the spine,” Int. J. Biomed. Imaging 2012, 942326 (2012).
    [Crossref] [PubMed]
  16. Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
    [Crossref] [PubMed]
  17. Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40(3), 431–434 (2015).
    [Crossref] [PubMed]
  18. S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
    [Crossref] [PubMed]
  19. A. Farina, M. Betcke, L. di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42(14), 2822–2825 (2017).
    [Crossref] [PubMed]
  20. Becker & Hickl GmbH, PML-16-C User Handbook (Berlin, Germany, 2006).
  21. V. Venugopal and X. Intes, “Adaptive wide-field optical tomography,” J. Biomed. Opt. 18(3), 036006 (2013).
    [Crossref] [PubMed]
  22. J. Chen, Q. Fang, and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt. 17(10), 106009 (2012).
    [Crossref] [PubMed]
  23. R. Yao, X. Intes, and Q. Fang, “Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation,” Biomed. Opt. Express 7(1), 171–184 (2016).
    [Crossref] [PubMed]
  24. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation, Dept. Phys., Univ. of Pennsylvania, Philadelphia, PA, 1996, pp. 58–59.
  25. D. Boas, T. Gaudette, and S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8(5), 263–270 (2001).
    [Crossref] [PubMed]
  26. L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
    [Crossref] [PubMed]
  27. J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express 17(22), 19566–19579 (2009).
    [Crossref] [PubMed]
  28. J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett. 35(13), 2121–2123 (2010).
    [Crossref] [PubMed]
  29. V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35(19), 3189–3191 (2010).
    [Crossref] [PubMed]
  30. J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
    [Crossref] [PubMed]
  31. N. Ducros, C. D’andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35(21), 3676–3678 (2010).
    [Crossref] [PubMed]
  32. M. Ochoa, Q. Pian, R. Yao, N. Ducros, and X. Intes, “Assessing patterns for compressive fluorescence lifetime imaging,” Opt. Lett. 43(18), 4370–4373 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

2016 (2)

R. Yao, X. Intes, and Q. Fang, “Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation,” Biomed. Opt. Express 7(1), 171–184 (2016).
[Crossref] [PubMed]

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (4)

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
[Crossref] [PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

Q. Pian, C. Wang, X. Chen, J. Liang, L. Zhao, G. Wang, and X. Intes, “Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues,” Curr. Mol. Imaging 3(2), 72–87 (2014).
[Crossref]

2013 (1)

V. Venugopal and X. Intes, “Adaptive wide-field optical tomography,” J. Biomed. Opt. 18(3), 036006 (2013).
[Crossref] [PubMed]

2012 (3)

J. Chen, Q. Fang, and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt. 17(10), 106009 (2012).
[Crossref] [PubMed]

M. Pimpalkhare, J. Chen, V. Venugopal, and X. Intes, “Ex vivo fluorescence molecular tomography of the spine,” Int. J. Biomed. Imaging 2012, 942326 (2012).
[Crossref] [PubMed]

V. Venugopal and X. Intes, “Recent advances in optical mammography,” Curr. Med. Imaging Rev. 8(3), 244–259 (2012).
[Crossref]

2011 (4)

2010 (7)

2009 (1)

2008 (1)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

2004 (1)

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

2001 (1)

Abran, M.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref] [PubMed]

Ahn, S.

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

Arridge, S.

Arridge, S. R.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

Bassi, A.

Bélanger, S.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref] [PubMed]

Betcke, M.

Boas, D.

Boas, D. A.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Boverman, G.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Brooks, D. H.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Carp, S. A.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Casanova, C.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref] [PubMed]

Chabrier, R.

Chen, J.

Chen, X.

Q. Pian, C. Wang, X. Chen, J. Liang, L. Zhao, G. Wang, and X. Intes, “Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues,” Curr. Mol. Imaging 3(2), 72–87 (2014).
[Crossref]

Cong, W.

Cubeddu, R.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Culver, J. P.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

D’Andrea, C.

Darne, C.

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Davis, S. C.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

Dehghani, H.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Delpy, D. T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

di Sieno, L.

Ducros, N.

Dutta, J.

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

Eggebrecht, A. T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Everdell, N.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

Fang, Q.

R. Yao, X. Intes, and Q. Fang, “Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation,” Biomed. Opt. Express 7(1), 171–184 (2016).
[Crossref] [PubMed]

J. Chen, Q. Fang, and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt. 17(10), 106009 (2012).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Farina, A.

Ferradal, S. L.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Gaudette, T.

Gibson, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

Grosenick, D.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hebden, J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Hebden, J. C.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Intes, X.

M. Ochoa, Q. Pian, R. Yao, N. Ducros, and X. Intes, “Assessing patterns for compressive fluorescence lifetime imaging,” Opt. Lett. 43(18), 4370–4373 (2018).
[Crossref] [PubMed]

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

R. Yao, X. Intes, and Q. Fang, “Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation,” Biomed. Opt. Express 7(1), 171–184 (2016).
[Crossref] [PubMed]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40(3), 431–434 (2015).
[Crossref] [PubMed]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
[Crossref] [PubMed]

Q. Pian, C. Wang, X. Chen, J. Liang, L. Zhao, G. Wang, and X. Intes, “Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues,” Curr. Mol. Imaging 3(2), 72–87 (2014).
[Crossref]

V. Venugopal and X. Intes, “Adaptive wide-field optical tomography,” J. Biomed. Opt. 18(3), 036006 (2013).
[Crossref] [PubMed]

J. Chen, Q. Fang, and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt. 17(10), 106009 (2012).
[Crossref] [PubMed]

M. Pimpalkhare, J. Chen, V. Venugopal, and X. Intes, “Ex vivo fluorescence molecular tomography of the spine,” Int. J. Biomed. Imaging 2012, 942326 (2012).
[Crossref] [PubMed]

V. Venugopal and X. Intes, “Recent advances in optical mammography,” Curr. Med. Imaging Rev. 8(3), 244–259 (2012).
[Crossref]

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2(4), 871–886 (2011).
[Crossref] [PubMed]

V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35(19), 3189–3191 (2010).
[Crossref] [PubMed]

V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express 1(1), 143–156 (2010).
[Crossref] [PubMed]

J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett. 35(13), 2121–2123 (2010).
[Crossref] [PubMed]

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref] [PubMed]

J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express 17(22), 19566–19579 (2009).
[Crossref] [PubMed]

Joshi, A. A.

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

Kopans, D. B.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Leahy, R. M.

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

Leblond, F.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Lesage, F.

Li, Z.

Liang, J.

Q. Pian, C. Wang, X. Chen, J. Liang, L. Zhao, G. Wang, and X. Intes, “Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues,” Curr. Mol. Imaging 3(2), 72–87 (2014).
[Crossref]

Lu, Y.

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

Meek, J. H.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

Miller, E. L.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Moore, R. H.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Niedre, M.

Nouizi, F.

Ochoa, M.

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Pian, Q.

M. Ochoa, Q. Pian, R. Yao, N. Ducros, and X. Intes, “Assessing patterns for compressive fluorescence lifetime imaging,” Opt. Lett. 43(18), 4370–4373 (2018).
[Crossref] [PubMed]

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40(3), 431–434 (2015).
[Crossref] [PubMed]

Q. Pian, C. Wang, X. Chen, J. Liang, L. Zhao, G. Wang, and X. Intes, “Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues,” Curr. Mol. Imaging 3(2), 72–87 (2014).
[Crossref]

Pifferi, A.

Pimpalkhare, M.

M. Pimpalkhare, J. Chen, V. Venugopal, and X. Intes, “Ex vivo fluorescence molecular tomography of the spine,” Int. J. Biomed. Imaging 2012, 942326 (2012).
[Crossref] [PubMed]

Pogue, B. W.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

Poulet, P.

Rinneberg, H.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Rudge, T.

Selb, J.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

Sinsuebphon, N.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

Snyder, A. Z.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Taroni, P.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Torregrossa, M.

Valdés, P. A.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

Valentini, G.

Venugopal, V.

Wang, C.

Q. Pian, C. Wang, X. Chen, J. Liang, L. Zhao, G. Wang, and X. Intes, “Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues,” Curr. Mol. Imaging 3(2), 72–87 (2014).
[Crossref]

Wang, G.

Q. Pian, C. Wang, X. Chen, J. Liang, L. Zhao, G. Wang, and X. Intes, “Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues,” Curr. Mol. Imaging 3(2), 72–87 (2014).
[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
[Crossref] [PubMed]

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Yang, H.

Yao, R.

Yusof, R. M.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

Zhao, L.

Biomed. Opt. Express (4)

Breast Cancer Res. Treat. (1)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Curr. Med. Imaging Rev. (1)

V. Venugopal and X. Intes, “Recent advances in optical mammography,” Curr. Med. Imaging Rev. 8(3), 244–259 (2012).
[Crossref]

Curr. Mol. Imaging (1)

Q. Pian, C. Wang, X. Chen, J. Liang, L. Zhao, G. Wang, and X. Intes, “Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues,” Curr. Mol. Imaging 3(2), 72–87 (2014).
[Crossref]

Int. J. Biomed. Imaging (1)

M. Pimpalkhare, J. Chen, V. Venugopal, and X. Intes, “Ex vivo fluorescence molecular tomography of the spine,” Int. J. Biomed. Imaging 2012, 942326 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref] [PubMed]

V. Venugopal and X. Intes, “Adaptive wide-field optical tomography,” J. Biomed. Opt. 18(3), 036006 (2013).
[Crossref] [PubMed]

J. Chen, Q. Fang, and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt. 17(10), 106009 (2012).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (7)

Phys. Med. Biol. (3)

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004).
[Crossref] [PubMed]

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

Radiology (1)

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Other (3)

F. S. Azar and X. Intes, Translational Multimodality Optical Imaging (Artech House Publishing, 2008).

Becker & Hickl GmbH, PML-16-C User Handbook (Berlin, Germany, 2006).

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation, Dept. Phys., Univ. of Pennsylvania, Philadelphia, PA, 1996, pp. 58–59.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) The scheme of the proposed hyperspectral wide-field time-resolved diffuse optical tomography platform (Laser and its coupling optics are not shown here). L1: lens, f = 25.4 mm; L2: lens, f = 25.4 mm; L3: lens, f = 40 mm; L4: lens, f = 30 mm; M1: plane mirror; M2, M3: concave mirrors; G: ruled reflective blazed grating, 750 nm blaze, 1200 lines/mm. (b) A photo that shows the physical implementation of the proposed system (Laser is not included).
Fig. 2
Fig. 2 SC-Pro supercontinuum fiber laser coupling. (a) The physical implementation of the coupling optics setup for the SC-Pro laser. (b) A typical output spectrum of the laser before injecting into the illumination DMD.
Fig. 3
Fig. 3 The setup of DMD-based illumination and detection modules. (a) The physical implementation of the illumination module. (b) The internal structure and light propagation path inside the illumination DMD. (c) Physical implementation of the detection module. (d) Internal structure and light path inside the detection module.
Fig. 4
Fig. 4 Examples of illumination and detection optical masks recorded using an NIR camera. (a)-(c) Spatial distribution of QLSF illumination masks #1, #2 and #3. (d) Full set of 36 illumination masks for TD-DOT. (e)-(g) Spatial distribution of QLSF detection masks #1, #2 and #3. (h) Full set of 36 detection masks for TD-DOT.
Fig. 5
Fig. 5 Light intensity coding linearity test and results for 0.7” DMD. (a) Computer fed calibration mask for light intensity coding linearity test. (b) Recorded calibration mask normalized by recorded full-field illumination mask using the 0.7” DMD. (c) Output intensity coding level distribution (blue dashed line) from linear input (red line) for 0.7” DMD.
Fig. 6
Fig. 6 Temporal characteristics of the system. (a) IRFs captured using Mai Tai laser from 700 nm to 810 nm. (b) IRFs recorded using SC-Pro fiber laser from 740 nm to 810 nm. (c) FWHMs of the IRFs recorded using two light sources. (d) IRF FWHM stability measured using Mai Tai laser over 2-hour operation time at 750 nm. (e) IRF peak position t0 variation measured using Mai Tai laser over 2-hour operation time at 750 nm.
Fig. 7
Fig. 7 Spectral characterization results of the platform. Output powers obtained for different input powers with (a) D4110 VIS optical module, (b) D4110 NIR optical module, (c) The comparison of power transmission efficiency for the three DMD optical modules. (d) Spectral resolution test result of the PMT detector. Green line: input spectrum at 700 nm with FWHM = 1.88 nm. Blue dotted line: detected spectrum by the multi-anode PMT. Red dashed line: interpolated spectrum for analysis.
Fig. 8
Fig. 8 Liquid phantom structure and optical property calibration results for the hyperspectral functional DOT study. (a) A photo of the liquid phantom used. (b) The absorption coefficients of the medium and materials within the two tubes retrieved using time-resolved spectroscopy. (c) The calibrated absorption coefficients of Epolight 2735 (0.0008%) and India ink (0.0024%) over the detection wavelength range.
Fig. 9
Fig. 9 Examples of the TPSFs and phase shifts obtained by the system in the phantom study. (a) TPSFs obtained in the absence of absorption perturbation under the 1st source-detector pair. (b) TPSFs obtained in the presence of absorption perturbation under the 1st source-detector pair. (c) Phase shift obtained from the 10th source-detector pair measurement (Epolight 2735 absorption perturbation dominates). (d) Phase shift obtained from the 325th source-detector pair measurement (Indian ink absorption perturbation dominates).
Fig. 10
Fig. 10 Reconstructed absorber concentration distributions using data from four time-gates (50% rising gate, peak gate, 80% decaying gate, and 60% decaying gate) and multiple wavelength channels. (a) Reconstruction using 2 wavelength channels (740 nm – 745 nm) (maximum crosstalk = 95.85%). (b) Reconstruction using 4 wavelength channels (740 nm – 756 nm) (maximum crosstalk = 52.29%). (c) Reconstruction using 12 wavelength channels (740 nm – 797 nm) (maximum crosstalk = 35.76%). (d) Reconstruction of absorber concentrations by linear decomposition at each node using data from 12 wavelength channels. (maximum crosstalk = 51.78%). All plots are 50% isovolumic surfaces of individual absorber concentrations.
Fig. 11
Fig. 11 The effects of spectral information on unmixing performance and quantification accuracy. (a) The relationship between spectral information and maximum reconstruction crosstalk. (b) The relationship between spectral information and retrieved concentration ratio of two absorbers.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

linearity= (δ/ 255 )×100%
U λ k ( r s,l , r d,m ,t)= U 0 λ k ( r s,l , r d,m ,t)·exp[ Φ pert λ k ( r s,l , r d,m ,t)]
Φ pert λ k ( r s,l , r d,m ,t)=ln( U λ k ( r s,l , r d,m ,t) U 0 λ k ( r s,l , r d,m ,t) )
Φ pert λ k ( r s,l , r d,m ,t)= Ω w λ k ( r s,l , r d,m ,r,t)·δ μ a λ k d 3 r
w λ k ( r s,l , r d,m ,r,t)= α λ k G λ k ( r s,l , r d,m ,t) 0 t d t G λ k ( r s,l ,r,t t )· G λ k (r, r d,m , t )
b λ k = W Ω, λ k x λ k
w n λ k ( r s,l , r d,m ,r,t)= ε n,k · w λ k ( r s,l , r d,m ,r,t)
[ b λ 1 b λ N ]=[ W 1 Ω, λ 1 W L Ω, λ 1 W 1 Ω, λ N W L Ω, λ N ][ C 1 Ω C L Ω ]
γ i λ k =ln[ U λ k ( r s,l , r d,m ,t)/ U 0 λ k ( r s,l , r d,m ,t) ]=ln s l +ln d m + Ω w λ k ( r s,l , r d,m ,r,t)·δ μ a λ k d 3 r
b λ k = W ^ Ω, λ k x ^ λ k =[ μ a λ k W Ω, λ k W S W D ] [ x λ k / μ a λ k s d ] T
[ b ^ λ 1 b ^ λ N ]=[ W 1 Ω, λ 1 W L Ω, λ 1 W 1 Ω, λ N W L Ω, λ N ][ C 1 Ω C L Ω ]
Crosstal k 1 = max[ C ˜ 2 ( Ω 1 )] max[ C ˜ 1 ( Ω 1 )] ×100%
Crosstal k 2 = max[ C ˜ 1 ( Ω 2 )] max[ C ˜ 2 ( Ω 2 )] ×100%
Max_Crosstalk=max(Crosstal k 1 ,Crosstal k 2 )