Abstract

Laser speckle contrast imaging (LSCI) utilizes the speckle pattern of a laser to determine the blood flow in tissues. The current approaches for its use in a clinical setting require a camera system with a laser source on a separate optical axis making it unsuitable for minimally invasive surgery (MIS). With blood flow visualization, bowel viability, for example, can be determined. Thus, LSCI can be a valuable tool in gastrointestinal surgery. In this work, we develop the first-of-its-kind dual-display laparoscopic vision system integrating LSCI with a commercially available 10mm rigid laparoscope where the laser has the same optical axis as the laparoscope. Designed for MIS, our system permits standard color RGB, label-free vasculature imaging, and fused display modes. A graphics processing unit accelerated algorithm enables the real-time display of three different modes at the surgical site. We demonstrate the capability of our system for imaging relative flow rates in a microfluidic phantom with channels as small as 200 μm at a working distance of 1–5 cm from the laparoscope tip to the phantom surface. Using our system, we reveal early changes in bowel perfusion, which are invisible to standard color vision using a rat bowel occlusion model. Furthermore, we apply our system for the first time for imaging intestinal vasculature during MIS in a swine.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope

Neil T. Clancy, Shobhit Arya, Danail Stoyanov, Mohan Singh, George B. Hanna, and Daniel S. Elson
Biomed. Opt. Express 6(10) 4179-4190 (2015)

Dual-mode laparoscopic fluorescence image-guided surgery using a single camera

Daniel C. Gray, Evgenia M. Kim, Victoria E. Cotero, Anshika Bajaj, V. Paul Staudinger, Cristina A. Tan Hehir, and Siavash Yazdanfar
Biomed. Opt. Express 3(8) 1880-1890 (2012)

Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery

Neil T. Clancy, Danail Stoyanov, David R. C. James, Aimee Di Marco, Vincent Sauvage, James Clark, Guang-Zhong Yang, and Daniel S. Elson
Biomed. Opt. Express 3(10) 2567-2578 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. Urbanavičius, P. Pattyn, D. Van de Putte, and D. Venskutonis, “How to assess intestinal viability during surgery: a review of techniques,” World J. Gastrointest. Surg. 3, 59 (2011).
    [Crossref]
  2. R. J. Stoney and C. G. Cunningham, “Acute mesenteric ischemia,” Surgery 114, 489–490 (1993).
    [PubMed]
  3. A. Matsui, J. H. Winer, R. G. Laurence, and J. V. Frangioni, “Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography,” Br. J. Surg. 98, 1725–1734 (2011).
    [Crossref] [PubMed]
  4. N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. focus 27, E11 (2009).
    [Crossref] [PubMed]
  5. G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.
  6. R. Bray, K. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24, 1650–1659 (2006).
    [Crossref] [PubMed]
  7. T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PloS one 13, e0191978 (2018).
    [Crossref] [PubMed]
  8. A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18, 090501 (2013).
    [Crossref] [PubMed]
  9. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
    [Crossref] [PubMed]
  10. J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–180 (1996).
    [Crossref] [PubMed]
  11. T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
    [Crossref]
  12. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” JOSA A 25, 9–15 (2008).
    [Crossref]
  13. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
    [Crossref] [PubMed]
  14. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
    [Crossref]
  15. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25, 2088–2094 (2008).
    [Crossref]
  16. J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” in Saratov Fall Meeting 2000: Coherent Optics of Ordered and Random Media, vol. 4242 (International Society for Optics and Photonics, 2001), pp. 25–40.
    [Crossref]
  17. J. C. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G. Martinez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16, 3197–3203 (2008).
    [Crossref] [PubMed]
  18. J. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. optics express 4, 1883–1889 (2013).
    [Crossref]
  19. H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32, 2188–2190 (2007).
    [Crossref] [PubMed]
  20. J. Cha, A. Broch, S. Mudge, K. Kim, J.-M. Namgoong, E. Oh, and P. Kim, “Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques,” Biomed. Opt. Express 9, 1097–1110 (2018).
    [Crossref] [PubMed]
  21. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31, 1824–1826 (2006).
    [Crossref] [PubMed]
  22. L. Song and D. S. Elson, “Effect of signal intensity and camera quantization on laser speckle contrast analysis,” Biomed. Opt. Express 4, 89–104 (2013).
    [Crossref] [PubMed]
  23. S. Milnerowicz, A. Milnerowicz, and R. Taboła, “A middle mesenteric artery,” Surg. Radiol. Anat. 34, 973–975 (2012).
    [Crossref] [PubMed]
  24. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
    [Crossref] [PubMed]
  25. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.
    [Crossref]
  26. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine & Biol. 58, R37 (2013).
    [Crossref]
  27. N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29, 453–479 (2014).
    [Crossref]
  28. M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.
  29. G. Radegran, “Ultrasound doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans,” J. Appl. Physiol. 83, 1383–1388 (1997).
    [Crossref] [PubMed]
  30. Y. Qin, H. Hua, and M. Nguyen, “Characterization and in-vivo evaluation of a multi-resolution foveated laparoscope for minimally invasive surgery,” Biomed. Opt. Express 5, 2548–2562 (2014).
    [Crossref]
  31. A. Sadhwani, K. T. Schomacker, G. J. Tearney, and N. S. Nishioka, “Determination of teflon thickness with laser speckle. i. potential for burn depth diagnosis,” Appl. Opt. 35, 5727–5735 (1996).
    [Crossref] [PubMed]
  32. D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51, 1894–1904 (2012).
    [Crossref] [PubMed]
  33. P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Transactions on Biomed. Eng. 57, 1152–1157 (2010).
    [Crossref]
  34. P. Miao, S. Tong, H. Lu, Q. Liu, and Y. Li, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
    [Crossref] [PubMed]
  35. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow & Metab. 21, 195–201 (2001).
    [Crossref]
  36. L. M. Richards, S. S. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, “Low-cost laser speckle contrast imaging of blood flow using a webcam,” Biomed. Opt. Express 4, 2269–2283 (2013).
    [Crossref] [PubMed]
  37. R. Wu, Y. Qin, and H. Hua, “Improved illumination system of laparoscopes using an aspherical lens array,” Biomed. Opt. Express 7, 2237–2248 (2016).
    [Crossref] [PubMed]
  38. M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
    [Crossref] [PubMed]
  39. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
    [Crossref] [PubMed]
  40. T. Dragojević, D. Bronzi, H. M. Varma, C. P. Valdes, C. Castellvi, F. Villa, A. Tosi, C. Justicia, F. Zappa, and T. Durduran, “High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera,” Biomed. Opt. Express 6, 2865–2876 (2015).
    [Crossref]

2018 (2)

2016 (1)

2015 (1)

2014 (3)

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29, 453–479 (2014).
[Crossref]

Y. Qin, H. Hua, and M. Nguyen, “Characterization and in-vivo evaluation of a multi-resolution foveated laparoscope for minimally invasive surgery,” Biomed. Opt. Express 5, 2548–2562 (2014).
[Crossref]

2013 (5)

L. Song and D. S. Elson, “Effect of signal intensity and camera quantization on laser speckle contrast analysis,” Biomed. Opt. Express 4, 89–104 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine & Biol. 58, R37 (2013).
[Crossref]

L. M. Richards, S. S. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, “Low-cost laser speckle contrast imaging of blood flow using a webcam,” Biomed. Opt. Express 4, 2269–2283 (2013).
[Crossref] [PubMed]

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18, 090501 (2013).
[Crossref] [PubMed]

J. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. optics express 4, 1883–1889 (2013).
[Crossref]

2012 (2)

2011 (3)

P. Miao, S. Tong, H. Lu, Q. Liu, and Y. Li, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[Crossref] [PubMed]

L. Urbanavičius, P. Pattyn, D. Van de Putte, and D. Venskutonis, “How to assess intestinal viability during surgery: a review of techniques,” World J. Gastrointest. Surg. 3, 59 (2011).
[Crossref]

A. Matsui, J. H. Winer, R. G. Laurence, and J. V. Frangioni, “Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography,” Br. J. Surg. 98, 1725–1734 (2011).
[Crossref] [PubMed]

2010 (2)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref] [PubMed]

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Transactions on Biomed. Eng. 57, 1152–1157 (2010).
[Crossref]

2009 (1)

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. focus 27, E11 (2009).
[Crossref] [PubMed]

2008 (5)

2007 (2)

H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32, 2188–2190 (2007).
[Crossref] [PubMed]

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

2006 (2)

R. Bray, K. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24, 1650–1659 (2006).
[Crossref] [PubMed]

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31, 1824–1826 (2006).
[Crossref] [PubMed]

2005 (1)

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow & Metab. 21, 195–201 (2001).
[Crossref]

1997 (1)

G. Radegran, “Ultrasound doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans,” J. Appl. Physiol. 83, 1383–1388 (1997).
[Crossref] [PubMed]

1996 (2)

A. Sadhwani, K. T. Schomacker, G. J. Tearney, and N. S. Nishioka, “Determination of teflon thickness with laser speckle. i. potential for burn depth diagnosis,” Appl. Opt. 35, 5727–5735 (1996).
[Crossref] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–180 (1996).
[Crossref] [PubMed]

1993 (1)

R. J. Stoney and C. G. Cunningham, “Acute mesenteric ischemia,” Surgery 114, 489–490 (1993).
[PubMed]

1981 (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Aalders, M. C.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29, 453–479 (2014).
[Crossref]

Agnus, V.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

Al-Nashash, H.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Barburas, A.

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow & Metab. 21, 195–201 (2001).
[Crossref]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow & Metab. 21, 195–201 (2001).
[Crossref]

Bosschaart, N.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29, 453–479 (2014).
[Crossref]

Bray, R.

R. Bray, K. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24, 1650–1659 (2006).
[Crossref] [PubMed]

Briers, J.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–180 (1996).
[Crossref] [PubMed]

J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” in Saratov Fall Meeting 2000: Coherent Optics of Ordered and Random Media, vol. 4242 (International Society for Optics and Photonics, 2001), pp. 25–40.
[Crossref]

Broch, A.

Bronzi, D.

Cardenas, D.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18, 090501 (2013).
[Crossref] [PubMed]

Castellvi, C.

Cha, J.

Charles, A.-L.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

Cheng, H.

Choi, B.

J. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. optics express 4, 1883–1889 (2013).
[Crossref]

J. C. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G. Martinez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16, 3197–3203 (2008).
[Crossref] [PubMed]

Choi, J. S.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PloS one 13, e0191978 (2018).
[Crossref] [PubMed]

Cunningham, C. G.

R. J. Stoney and C. G. Cunningham, “Acute mesenteric ischemia,” Surgery 114, 489–490 (1993).
[PubMed]

Dallemagne, B.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

David, A. L.

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

Davis, J. L.

Demartines, N.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

Deprest, J.

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

Desjardins, A.

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

Devor, A.

Diana, M.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

Diemunsch, P.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

dos Santos, G. S.

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

Dragojevic, T.

Dreier, J. P.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. focus 27, E11 (2009).
[Crossref] [PubMed]

Duncan, D. D.

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” JOSA A 25, 9–15 (2008).
[Crossref]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25, 2088–2094 (2008).
[Crossref]

Dunn, A. K.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18, 090501 (2013).
[Crossref] [PubMed]

L. M. Richards, S. S. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, “Low-cost laser speckle contrast imaging of blood flow using a webcam,” Biomed. Opt. Express 4, 2269–2283 (2013).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
[Crossref] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow & Metab. 21, 195–201 (2001).
[Crossref]

Duong, T. Q.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18, 090501 (2013).
[Crossref] [PubMed]

H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32, 2188–2190 (2007).
[Crossref] [PubMed]

Durduran, T.

Edelman, G. J.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29, 453–479 (2014).
[Crossref]

Elson, D. S.

Faber, D. J.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29, 453–479 (2014).
[Crossref]

Fercher, A.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Forrester, K.

R. Bray, K. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24, 1650–1659 (2006).
[Crossref] [PubMed]

Foschum, F.

Frangioni, J. V.

A. Matsui, J. H. Winer, R. G. Laurence, and J. V. Frangioni, “Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography,” Br. J. Surg. 98, 1725–1734 (2011).
[Crossref] [PubMed]

Fuentes-Garcia, A.

J. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. optics express 4, 1883–1889 (2013).
[Crossref]

Goldbach, T.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.
[Crossref]

Gopal, A.

Guizar-Iturbide, I.

Halvax, P.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

Hecht, N.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. focus 27, E11 (2009).
[Crossref] [PubMed]

Hua, H.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine & Biol. 58, R37 (2013).
[Crossref]

Julie, J. M.

M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.

Jung, B.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PloS one 13, e0191978 (2018).
[Crossref] [PubMed]

Justicia, C.

Kadirgama, K.

M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.

Kazmi, S. S.

Kienle, A.

Kim, K.

Kim, P.

Kirkpatrick, S. J.

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25, 2088–2094 (2008).
[Crossref]

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” JOSA A 25, 9–15 (2008).
[Crossref]

Kong, T. H.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PloS one 13, e0191978 (2018).
[Crossref] [PubMed]

Laurence, R. G.

A. Matsui, J. H. Winer, R. G. Laurence, and J. V. Frangioni, “Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography,” Br. J. Surg. 98, 1725–1734 (2011).
[Crossref] [PubMed]

Le, T. M.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Leonard, C.

R. Bray, K. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24, 1650–1659 (2006).
[Crossref] [PubMed]

Li, N.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Transactions on Biomed. Eng. 57, 1152–1157 (2010).
[Crossref]

Li, P.

Li, Y.

P. Miao, S. Tong, H. Lu, Q. Liu, and Y. Li, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[Crossref] [PubMed]

Lindner, V.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

Liu, Q.

P. Miao, S. Tong, H. Lu, Q. Liu, and Y. Li, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[Crossref] [PubMed]

Lu, H.

P. Miao, S. Tong, H. Lu, Q. Liu, and Y. Li, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[Crossref] [PubMed]

Luft, A. R.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Luo, Q.

Maneas, E.

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

Martinez-Niconoff, G.

Matsui, A.

A. Matsui, J. H. Winer, R. G. Laurence, and J. V. Frangioni, “Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography,” Br. J. Surg. 98, 1725–1734 (2011).
[Crossref] [PubMed]

Mehta, D. S.

Mendez-Aguilar, E.

J. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. optics express 4, 1883–1889 (2013).
[Crossref]

Miao, P.

P. Miao, S. Tong, H. Lu, Q. Liu, and Y. Li, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[Crossref] [PubMed]

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Transactions on Biomed. Eng. 57, 1152–1157 (2010).
[Crossref]

Michels, R.

Milnerowicz, A.

S. Milnerowicz, A. Milnerowicz, and R. Taboła, “A middle mesenteric artery,” Surg. Radiol. Anat. 34, 973–975 (2012).
[Crossref] [PubMed]

Milnerowicz, S.

S. Milnerowicz, A. Milnerowicz, and R. Taboła, “A middle mesenteric artery,” Surg. Radiol. Anat. 34, 973–975 (2012).
[Crossref] [PubMed]

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow & Metab. 21, 195–201 (2001).
[Crossref]

Mudge, S.

Muhamad, K. F.

M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.

Nagao, Y.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

Naik, D. N.

Namgoong, J.-M.

Nguyen, M.

Ni, S.

Nikitichev, D.

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

Nishioka, N. S.

Noor, M.

M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.

Oh, E.

Olin, K. E.

Ong, S.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Ourselin, S.

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

Parthasarathy, A. B.

Pattyn, P.

L. Urbanavičius, P. Pattyn, D. Van de Putte, and D. Venskutonis, “How to assess intestinal viability during surgery: a review of techniques,” World J. Gastrointest. Surg. 3, 59 (2011).
[Crossref]

Paul, J. S.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Ponticorvo, A.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18, 090501 (2013).
[Crossref] [PubMed]

Qin, Y.

Radegran, G.

G. Radegran, “Ultrasound doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans,” J. Appl. Physiol. 83, 1383–1388 (1997).
[Crossref] [PubMed]

Rahman, M.

M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.

Ramirez-San-Juan, J.

J. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. optics express 4, 1883–1889 (2013).
[Crossref]

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

J. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. optics express 4, 1883–1889 (2013).
[Crossref]

J. C. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G. Martinez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16, 3197–3203 (2008).
[Crossref] [PubMed]

Reed, J.

R. Bray, K. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24, 1650–1659 (2006).
[Crossref] [PubMed]

Rege, A.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Transactions on Biomed. Eng. 57, 1152–1157 (2010).
[Crossref]

Rejab, M.

M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.

Richards, L. M.

Ruzaimi, M.

M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.

Sadhwani, A.

Salazar-Hermenegildo, N.

J. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. optics express 4, 1883–1889 (2013).
[Crossref]

Schomacker, K. T.

Schwarzmaier, H.-J.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.
[Crossref]

Seo, Y. J.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PloS one 13, e0191978 (2018).
[Crossref] [PubMed]

Sheu, F.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Singh, R. K.

Soler, L.

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

Song, L.

Stoney, R. J.

R. J. Stoney and C. G. Cunningham, “Acute mesenteric ischemia,” Surgery 114, 489–490 (1993).
[PubMed]

Tabola, R.

S. Milnerowicz, A. Milnerowicz, and R. Taboła, “A middle mesenteric artery,” Surg. Radiol. Anat. 34, 973–975 (2012).
[Crossref] [PubMed]

Takeda, M.

Tan, A.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Tearney, G. J.

Thakor, N. V.

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Transactions on Biomed. Eng. 57, 1152–1157 (2010).
[Crossref]

Tom, W. J.

Tong, S.

P. Miao, S. Tong, H. Lu, Q. Liu, and Y. Li, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[Crossref] [PubMed]

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Transactions on Biomed. Eng. 57, 1152–1157 (2010).
[Crossref]

Tosi, A.

Ts’o, D.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18, 090501 (2013).
[Crossref] [PubMed]

Tulip, J.

R. Bray, K. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24, 1650–1659 (2006).
[Crossref] [PubMed]

Urbanavicius, L.

L. Urbanavičius, P. Pattyn, D. Van de Putte, and D. Venskutonis, “How to assess intestinal viability during surgery: a review of techniques,” World J. Gastrointest. Surg. 3, 59 (2011).
[Crossref]

Vajkoczy, P.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. focus 27, E11 (2009).
[Crossref] [PubMed]

Valdes, C. P.

Van de Putte, D.

L. Urbanavičius, P. Pattyn, D. Van de Putte, and D. Venskutonis, “How to assess intestinal viability during surgery: a review of techniques,” World J. Gastrointest. Surg. 3, 59 (2011).
[Crossref]

van Leeuwen, T. G.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29, 453–479 (2014).
[Crossref]

Varma, H. M.

Venskutonis, D.

L. Urbanavičius, P. Pattyn, D. Van de Putte, and D. Venskutonis, “How to assess intestinal viability during surgery: a review of techniques,” World J. Gastrointest. Surg. 3, 59 (2011).
[Crossref]

Vercauteren, T.

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

Villa, F.

Wang, R. K.

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” JOSA A 25, 9–15 (2008).
[Crossref]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–180 (1996).
[Crossref] [PubMed]

Winer, J. H.

A. Matsui, J. H. Winer, R. G. Laurence, and J. V. Frangioni, “Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography,” Br. J. Surg. 98, 1725–1734 (2011).
[Crossref] [PubMed]

Woitzik, J.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. focus 27, E11 (2009).
[Crossref] [PubMed]

Wu, R.

Yaroslavsky, A. N.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.
[Crossref]

Yaroslavsky, I. V.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.
[Crossref]

Yu, S.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PloS one 13, e0191978 (2018).
[Crossref] [PubMed]

Yuan, S.

Zappa, F.

Zeng, S.

Zhang, L.

Zhang, X.

Zuki, N.

M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.

Appl. Opt. (3)

Biomed. Opt. Express (6)

Biomed. optics express (1)

J. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. optics express 4, 1883–1889 (2013).
[Crossref]

Br. J. Surg. (1)

A. Matsui, J. H. Winer, R. G. Laurence, and J. V. Frangioni, “Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography,” Br. J. Surg. 98, 1725–1734 (2011).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. Sheu, and S. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

IEEE Transactions on Biomed. Eng. (1)

P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High resolution cerebral blood flow imaging by registered laser speckle contrast analysis,” IEEE Transactions on Biomed. Eng. 57, 1152–1157 (2010).
[Crossref]

J. Appl. Physiol. (1)

G. Radegran, “Ultrasound doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans,” J. Appl. Physiol. 83, 1383–1388 (1997).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

P. Miao, S. Tong, H. Lu, Q. Liu, and Y. Li, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref] [PubMed]

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18, 090501 (2013).
[Crossref] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–180 (1996).
[Crossref] [PubMed]

J. Cereb. Blood Flow & Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow & Metab. 21, 195–201 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Orthop. Res. (1)

R. Bray, K. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24, 1650–1659 (2006).
[Crossref] [PubMed]

JOSA A (1)

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” JOSA A 25, 9–15 (2008).
[Crossref]

Lasers Med. Sci. (1)

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29, 453–479 (2014).
[Crossref]

Neurosurg. focus (1)

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. focus 27, E11 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Medicine & Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine & Biol. 58, R37 (2013).
[Crossref]

PloS one (1)

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PloS one 13, e0191978 (2018).
[Crossref] [PubMed]

Surg. Endosc. (1)

M. Diana, P. Halvax, B. Dallemagne, Y. Nagao, P. Diemunsch, A.-L. Charles, V. Agnus, L. Soler, N. Demartines, V. Lindner, and et al., “Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery,” Surg. Endosc. 28, 3108–3118 (2014).
[Crossref] [PubMed]

Surg. Radiol. Anat. (1)

S. Milnerowicz, A. Milnerowicz, and R. Taboła, “A middle mesenteric artery,” Surg. Radiol. Anat. 34, 973–975 (2012).
[Crossref] [PubMed]

Surgery (1)

R. J. Stoney and C. G. Cunningham, “Acute mesenteric ischemia,” Surgery 114, 489–490 (1993).
[PubMed]

World J. Gastrointest. Surg. (1)

L. Urbanavičius, P. Pattyn, D. Van de Putte, and D. Venskutonis, “How to assess intestinal viability during surgery: a review of techniques,” World J. Gastrointest. Surg. 3, 59 (2011).
[Crossref]

Other (4)

G. S. dos Santos, E. Maneas, D. Nikitichev, A. Barburas, A. L. David, J. Deprest, A. Desjardins, T. Vercauteren, and S. Ourselin, “A registration approach to endoscopic laser speckle contrast imaging for intrauterine visualisation of placental vessels,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2015), pp. 455–462.

J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” in Saratov Fall Meeting 2000: Coherent Optics of Ordered and Random Media, vol. 4242 (International Society for Optics and Photonics, 2001), pp. 25–40.
[Crossref]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.
[Crossref]

M. Noor, K. Kadirgama, M. Rahman, N. Zuki, M. Rejab, M. Ruzaimi, K. F. Muhamad, J. M. Julie, and et al., “Prediction modelling of surface roughness for laser beam cutting on acrylic sheets,” in Advanced Materials Research, vol. 83 (Trans Tech Publ, 2010), pp. 793–800.

Supplementary Material (4)

NameDescription
» Visualization 1       Visualization of small bowel perfusion in a rat model
» Visualization 2       Visualization of clamped and unclamped bowel in a rat model
» Visualization 3       Visualization of blood vessels in minimally invasive surgery using a swine model
» Visualization 4       Visualization of bowel mesentery in minimally invasive surgery using a swine model

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Overview of the laparoscopic LSCI system. (a) Schematic of the laparoscope system. (b) Image of the laparoscope with the cameras attached. (c) InTheSmart(ITS) dual light source. (d) Rotatable linear polarizer cap.
Fig. 2
Fig. 2 Processing flowchart for our real-time GPU-based LSCI visualization system.
Fig. 3
Fig. 3 Laser power output from laparoscope measured at a 5 cm distance for each corresponding ITS laser source power setting.
Fig. 4
Fig. 4 Characteristics of system illumination. The laparoscope was placed normal to the paper at a 5 cm distance. (a) Raw NIR image of white paper. The laparoscope axis is marked and compared to the center of illumination. The line along which profiles of intensity and contrast is labeled as “Sampling line”. (b) Surface plot of normalized illumination intensity. (c) Surface plot of normalized contrast values using a 7×7 spatial window. (d) Plot of the normalized illumination intensity for a line sampled across the center of illumination which is marked in Fig 4(a). (e) Plot of the normalized contrast values along the sampling line.
Fig. 5
Fig. 5 Images of the LSCI flow phantom and experimental setup. (a) Microfluidic phantom schematic. Channel widths range from 0.2–1.8 mm in increments of 0.2 mm. (b) Fabricated acrylic flow phantom infused with Intralipid. (c) in vitro phantom experimental setup.
Fig. 6
Fig. 6 CFD simulation results for a microfluidic phantom at an inlet volumetric flow of 0.2 mL/min.
Fig. 7
Fig. 7 Visualization of all channels at a 5 cm range at 0.2mL/min.
Fig. 8
Fig. 8 Relative flow rates compared to the expected relative flow rates at all the channel sizes and volumetric flow rate inputs.
Fig. 9
Fig. 9 Left axis: Normalized edge intensity values resulting from the convolution of a 5×5 Gaussian derivative filter in the x-direction. Right axis: Normalized measured flow profile along the width of the image.
Fig. 10
Fig. 10 Display of the LSCI-processed images in the 0.2, 0.6, and 1.0-mm channels at all the six flow rates using a linear colormap. For each channel width, the increasing flow rate can be clearly distinguished.
Fig. 11
Fig. 11 Normalized relative flows calculated from LSCI and Eq. (4) compared to the actual flow rates for 0.2, 0.6, and 1.0mm wide channels.
Fig. 12
Fig. 12 Images captured of the small bowel and mesentery. Shown are color, LSCI-processed, and LSCI overlay images for the samples taken both with and without polarization control. Note the presence of grainy shadow spots distributed in the laser-speckle processed-images captured without polarization control circled in red. With polarization control, the shadows are absent. The small bowel visualization is presented in Visualization 1. Note that the transparency of the overlay is not factored into the display of the color bar.
Fig. 13
Fig. 13 Comparison of the raw RGB and LSCI overlay of the clamped and unclamped bowel mesentery. A distinct difference in perfusion is seen in the LSCI overlay images before and after vascular clamping (see Visualization 2). (a) Experimental set-up showing clamp locations. (b) & (c) show unclamped bowel in RGB and LSCI overlay, respectively. In the LSCI overlay, notice the perfusing vessels indicated by the arrows are highlighted in the overlay. (d) During clamping, there are no visual differences in the vessels or tissue indicating ischemia. (e) However, on the LSCI overlay image, the chosen blood vessels have disappeared, and a general decrease LSCI intensity indicates a decrease in the perfusion. (f) & (g) Clamp removal and tissue reperfusion are seen in RGB and LSCI. Blood vessels are re-highlighted in LSCI. Note that the transparency of the overlay is not factored into the display of the color bar.
Fig. 14
Fig. 14 Various pig organs imaged by the real-time laparoscopic LSCI system. The real-time gallbladder visualization is shown in Visualization 3, and the mesentery in Visualization 4. (a) Mounted set-up with an inserted laparoscope. (b) Color images acquired during handheld operation of the system. (c) LSCI bowel. (d) LSCI gallbladder. (e) LSCI mesentery. The colorbar is shared for c–e.

Tables (1)

Tables Icon

Table 1 Calculated flow speed (mm/s) in each channel for each of the 6 volumetric flow rates.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K = σ I
v 1 τ c
K 2 = β ( τ c T + τ c 2 2 T 2 [ exp ( 2 T τ c ) 1 ] )
1 K 2 v