Abstract

We demonstrate near-infrared autofluorescence (NIRAF) imaging of retinal pigment epithelial (RPE) cells in vivo in healthy volunteers and patients using a 757 nm excitation source in adaptive optics scanning laser ophthalmoscopy (AOSLO). NIRAF excited at 757 nm and collected in an emission band from 778 to 810 nm produced a robust NIRAF signal, presumably arising from melanin, and revealed the typical hexagonal mosaic of RPE cells at most eccentricities imaged within the macula of normal eyes. Several patterns of altered NIRAF structure were seen in patients, including disruption of the NIRAF over a drusen, diffuse hyper NIRAF signal with loss of individual cell delineation in a case of non-neovascular age-related macular degeneration (AMD), and increased visibility of the RPE mosaic under an area showing loss of photoreceptors. In some participants, a superposed cone mosaic was clearly visible in the fluorescence channel at eccentricities between 2 and 6° from the fovea. This was reproducible in these participants and existed despite the use of emission filters with an optical attenuation density of 12 at the excitation wavelength, minimizing the possibility that this was due to bleed through of the excitation light. This cone signal may be a consequence of cone waveguiding on either the ingoing excitation light and/or the outgoing NIRAF emitted by fluorophores within the RPE and/or choroid and warrants further investigation. NIRAF imaging at 757 nm offers efficient signal excitation and detection, revealing structural alterations in retinal disease with good contrast and shows promise as a tool for monitoring future therapies at the level of single RPE cells.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo imaging of retinal pigment epithelium cells in age related macular degeneration

Ethan A. Rossi, Piero Rangel-Fonseca, Keith Parkins, William Fischer, Lisa R. Latchney, Margaret A. Folwell, David R. Williams, Alfredo Dubra, and Mina M. Chung
Biomed. Opt. Express 4(11) 2527-2539 (2013)

Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics

Tao Liu, HaeWon Jung, Jianfei Liu, Michael Droettboom, and Johnny Tam
Biomed. Opt. Express 8(10) 4348-4360 (2017)

Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations

Artur V. Cideciyan, Malgorzata Swider, Tomas S. Aleman, Marisa I. Roman, Alexander Sumaroka, Sharon B. Schwartz, Edwin M. Stone, and Samuel G. Jacobson
J. Opt. Soc. Am. A 24(5) 1457-1467 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
    [PubMed]
  2. J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
    [Crossref] [PubMed]
  3. J. R. Sparrow and T. Duncker, “Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration,” J. Clin. Med. 3(4), 1302–1321 (2014).
    [Crossref] [PubMed]
  4. C. N. Keilhauer and F. C. Delori, “Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
    [Crossref] [PubMed]
  5. U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
    [Crossref] [PubMed]
  6. S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
    [Crossref] [PubMed]
  7. L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25(2), 195–200 (1984).
    [PubMed]
  8. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
    [PubMed]
  9. A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
    [Crossref] [PubMed]
  10. J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
    [Crossref] [PubMed]
  11. J. R. Sparrow, D. Hicks, and C. P. Hamel, “The retinal pigment epithelium in health and disease,” Curr. Mol. Med. 10(9), 802–823 (2010).
    [Crossref] [PubMed]
  12. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  13. D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. P. Chui, J. D. Akula, and A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A 29(12), 2598–2607 (2012).
    [Crossref] [PubMed]
  14. P. Xiao, V. Mazlin, K. Grieve, J. A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT,” Optica 5(4), 409–412 (2018).
    [Crossref]
  15. A. Roorda, Y. Zhang, and J. L. Duncan, “High-Resolution In Vivo Imaging of the RPE Mosaic in Eyes with Retinal Disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
    [Crossref] [PubMed]
  16. T. Liu, H. Jung, J. Liu, M. Droettboom, and J. Tam, “Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics,” Biomed. Opt. Express 8(10), 4348–4360 (2017).
    [Crossref] [PubMed]
  17. D. Scoles, Y. N. Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express 4(9), 1710–1723 (2013).
    [Crossref] [PubMed]
  18. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
    [Crossref] [PubMed]
  19. C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
    [Crossref] [PubMed]
  20. A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref] [PubMed]
  21. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009).
    [Crossref] [PubMed]
  22. E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
    [Crossref] [PubMed]
  23. C. E. Granger, D. R. Williams, and E. A. Rossi, “Near-infrared autofluorescence imaging reveals the retinal pigment epithelial mosaic in the living human eye,” Invest. Ophthalmol. Vis. Sci. 58, 3429 (2017).
  24. C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).
  25. J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 57(10), 4376–4384 (2016).
    [Crossref] [PubMed]
  26. Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
    [Crossref] [PubMed]
  27. K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
    [Crossref] [PubMed]
  28. Laser Institute of America, ANSI Z136.1 - 2014, American National Standard for Safe Use of Lasers. Orlando, FL: Laser Institute of America; (2014).
  29. B. D. Masella, D. R. Williams, W. S. Fischer, E. A. Rossi, and J. J. Hunter, “Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure,” Invest. Ophthalmol. Vis. Sci. 55(6), 3929–3938 (2014).
    [Crossref] [PubMed]
  30. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
    [Crossref] [PubMed]
  31. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007).
    [Crossref] [PubMed]
  32. Q. X. Zhang, R. W. Lu, J. D. Messinger, C. A. Curcio, V. Guarcello, and X. C. Yao, “In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium,” Sci. Rep. 3(1), 2644 (2013).
    [Crossref] [PubMed]
  33. R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
    [Crossref] [PubMed]
  34. J. I. Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982).
    [Crossref] [PubMed]
  35. O. Strauss, “The Retinal Pigment Epithelium,” 2011. In: K. H. Fernandez E. Nelson R, editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. Figure 2. [Transmission electron micrograph of the...]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK54392/figure/StraussRPE.F2/ , Accessed 12 October 2018.
  36. S. Panda-Jonas, J. B. Jonas, and M. Jakobczyk-Zmija, “Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes,” Am. J. Ophthalmol. 121(2), 181–189 (1996).
    [Crossref] [PubMed]
  37. P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45(15), 1957–1965 (2005).
    [Crossref] [PubMed]
  38. G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26(3), 485–494 (1986).
    [Crossref] [PubMed]
  39. J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35(7), 999–1010 (1995).
    [Crossref] [PubMed]
  40. S. A. Burns, J. C. He, and F. C. Delori, “Do the cones see light scattered from the deep retinal layers?” http://www.opt.indiana.edu/people/faculty/burns/navs97steve.htm , Accessed 23 July 2018.
  41. E. C. Zanzottera, J. D. Messinger, T. Ach, R. T. Smith, and C. A. Curcio, “Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 56(5), 3269–3278 (2015).
    [Crossref] [PubMed]
  42. K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
    [Crossref] [PubMed]
  43. M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

2018 (3)

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

P. Xiao, V. Mazlin, K. Grieve, J. A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT,” Optica 5(4), 409–412 (2018).
[Crossref]

M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

2017 (2)

T. Liu, H. Jung, J. Liu, M. Droettboom, and J. Tam, “Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics,” Biomed. Opt. Express 8(10), 4348–4360 (2017).
[Crossref] [PubMed]

C. E. Granger, D. R. Williams, and E. A. Rossi, “Near-infrared autofluorescence imaging reveals the retinal pigment epithelial mosaic in the living human eye,” Invest. Ophthalmol. Vis. Sci. 58, 3429 (2017).

2016 (2)

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 57(10), 4376–4384 (2016).
[Crossref] [PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

2015 (1)

E. C. Zanzottera, J. D. Messinger, T. Ach, R. T. Smith, and C. A. Curcio, “Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 56(5), 3269–3278 (2015).
[Crossref] [PubMed]

2014 (3)

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
[Crossref] [PubMed]

B. D. Masella, D. R. Williams, W. S. Fischer, E. A. Rossi, and J. J. Hunter, “Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure,” Invest. Ophthalmol. Vis. Sci. 55(6), 3929–3938 (2014).
[Crossref] [PubMed]

J. R. Sparrow and T. Duncker, “Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration,” J. Clin. Med. 3(4), 1302–1321 (2014).
[Crossref] [PubMed]

2013 (5)

D. Scoles, Y. N. Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express 4(9), 1710–1723 (2013).
[Crossref] [PubMed]

E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
[Crossref] [PubMed]

Q. X. Zhang, R. W. Lu, J. D. Messinger, C. A. Curcio, V. Guarcello, and X. C. Yao, “In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium,” Sci. Rep. 3(1), 2644 (2013).
[Crossref] [PubMed]

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

2012 (2)

D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. P. Chui, J. D. Akula, and A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A 29(12), 2598–2607 (2012).
[Crossref] [PubMed]

J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
[Crossref] [PubMed]

2011 (1)

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

2010 (2)

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

J. R. Sparrow, D. Hicks, and C. P. Hamel, “The retinal pigment epithelium in health and disease,” Curr. Mol. Med. 10(9), 802–823 (2010).
[Crossref] [PubMed]

2009 (2)

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009).
[Crossref] [PubMed]

C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[Crossref] [PubMed]

2008 (1)

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

2007 (2)

A. Roorda, Y. Zhang, and J. L. Duncan, “High-Resolution In Vivo Imaging of the RPE Mosaic in Eyes with Retinal Disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
[Crossref] [PubMed]

K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (1)

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45(15), 1957–1965 (2005).
[Crossref] [PubMed]

2004 (1)

K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[Crossref] [PubMed]

2002 (1)

1997 (2)

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

1996 (1)

S. Panda-Jonas, J. B. Jonas, and M. Jakobczyk-Zmija, “Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes,” Am. J. Ophthalmol. 121(2), 181–189 (1996).
[Crossref] [PubMed]

1995 (1)

J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35(7), 999–1010 (1995).
[Crossref] [PubMed]

1986 (2)

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26(3), 485–494 (1986).
[Crossref] [PubMed]

1984 (1)

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25(2), 195–200 (1984).
[PubMed]

1982 (1)

J. I. Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982).
[Crossref] [PubMed]

Ach, T.

E. C. Zanzottera, J. D. Messinger, T. Ach, R. T. Smith, and C. A. Curcio, “Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 56(5), 3269–3278 (2015).
[Crossref] [PubMed]

Ahamd, K.

Ahnelt, P. K.

Akula, J. D.

Benchaboune, M.

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

Benson, E. K.

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

Bird, A. C.

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

Blonska, A.

J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
[Crossref] [PubMed]

Boccara, A. C.

Burns, S. A.

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45(15), 1957–1965 (2005).
[Crossref] [PubMed]

Campbell, M.

Carroll, J.

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[Crossref] [PubMed]

Chui, T. Y. P.

Chung, M. M.

E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
[Crossref] [PubMed]

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Cooper, R. F.

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

Cordeiro, M. F.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Curcio, C. A.

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

E. C. Zanzottera, J. D. Messinger, T. Ach, R. T. Smith, and C. A. Curcio, “Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 56(5), 3269–3278 (2015).
[Crossref] [PubMed]

Q. X. Zhang, R. W. Lu, J. D. Messinger, C. A. Curcio, V. Guarcello, and X. C. Yao, “In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium,” Sci. Rep. 3(1), 2644 (2013).
[Crossref] [PubMed]

Delori, F.

J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35(7), 999–1010 (1995).
[Crossref] [PubMed]

Delori, F. C.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

C. N. Keilhauer and F. C. Delori, “Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[Crossref] [PubMed]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

Donnelly III, W.

Drexler, W.

Droettboom, M.

Dubra, A.

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 57(10), 4376–4384 (2016).
[Crossref] [PubMed]

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
[Crossref] [PubMed]

D. Scoles, Y. N. Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express 4(9), 1710–1723 (2013).
[Crossref] [PubMed]

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009).
[Crossref] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[Crossref] [PubMed]

Duncan, J. L.

A. Roorda, Y. Zhang, and J. L. Duncan, “High-Resolution In Vivo Imaging of the RPE Mosaic in Eyes with Retinal Disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
[Crossref] [PubMed]

Duncker, T.

J. R. Sparrow and T. Duncker, “Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration,” J. Clin. Med. 3(4), 1302–1321 (2014).
[Crossref] [PubMed]

Eldridge, S.

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25(2), 195–200 (1984).
[PubMed]

Falah, S.

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

Fariss, R.

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 57(10), 4376–4384 (2016).
[Crossref] [PubMed]

Feeney-Burns, L.

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25(2), 195–200 (1984).
[PubMed]

Ferguson, R. D.

Fink, M.

Fischer, W.

Fischer, W. S.

B. D. Masella, D. R. Williams, W. S. Fischer, E. A. Rossi, and J. J. Hunter, “Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure,” Invest. Ophthalmol. Vis. Sci. 55(6), 3929–3938 (2014).
[Crossref] [PubMed]

Fitch, K. A.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

Fitzke, F. W.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

Folwell, M. A.

Fulton, A. B.

Gee, B. P.

Ghosh, S. K.

J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
[Crossref] [PubMed]

Gocho, K.

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

Gorrand, J.-M.

J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35(7), 999–1010 (1995).
[Crossref] [PubMed]

Granger, C. E.

C. E. Granger, D. R. Williams, and E. A. Rossi, “Near-infrared autofluorescence imaging reveals the retinal pigment epithelial mosaic in the living human eye,” Invest. Ophthalmol. Vis. Sci. 58, 3429 (2017).

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Gray, D. C.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[Crossref] [PubMed]

Gregory-Roberts, E.

J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
[Crossref] [PubMed]

Grieve, K.

M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

P. Xiao, V. Mazlin, K. Grieve, J. A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT,” Optica 5(4), 409–412 (2018).
[Crossref]

Guarcello, V.

Q. X. Zhang, R. W. Lu, J. D. Messinger, C. A. Curcio, V. Guarcello, and X. C. Yao, “In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium,” Sci. Rep. 3(1), 2644 (2013).
[Crossref] [PubMed]

Guo, L.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Hamel, C. P.

J. R. Sparrow, D. Hicks, and C. P. Hamel, “The retinal pigment epithelium in health and disease,” Curr. Mol. Med. 10(9), 802–823 (2010).
[Crossref] [PubMed]

Hammer, D. X.

Hebert, T.

Hicks, D.

J. R. Sparrow, D. Hicks, and C. P. Hamel, “The retinal pigment epithelium in health and disease,” Curr. Mol. Med. 10(9), 802–823 (2010).
[Crossref] [PubMed]

Hilderbrand, E. S.

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25(2), 195–200 (1984).
[PubMed]

Hofer, B.

Holz, F. G.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Hunter, J. J.

B. D. Masella, D. R. Williams, W. S. Fischer, E. A. Rossi, and J. J. Hunter, “Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure,” Invest. Ophthalmol. Vis. Sci. 55(6), 3929–3938 (2014).
[Crossref] [PubMed]

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Iftimia, N.

Jakobczyk-Zmija, M.

S. Panda-Jonas, J. B. Jonas, and M. Jakobczyk-Zmija, “Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes,” Am. J. Ophthalmol. 121(2), 181–189 (1996).
[Crossref] [PubMed]

Jonas, J. B.

S. Panda-Jonas, J. B. Jonas, and M. Jakobczyk-Zmija, “Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes,” Am. J. Ophthalmol. 121(2), 181–189 (1996).
[Crossref] [PubMed]

Jung, H.

Keilhauer, C. N.

C. N. Keilhauer and F. C. Delori, “Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[Crossref] [PubMed]

Kellner, S.

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

Kellner, U.

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

Kidd, G. J.

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

Kocaoglu, O. P.

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

Langlo, C. S.

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

Lara, D.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Latchney, L. R.

E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
[Crossref] [PubMed]

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Leonard, B. T.

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Li, K. Y.

Liang, J.

Liu, J.

T. Liu, H. Jung, J. Liu, M. Droettboom, and J. Tam, “Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics,” Biomed. Opt. Express 8(10), 4348–4360 (2017).
[Crossref] [PubMed]

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 57(10), 4376–4384 (2016).
[Crossref] [PubMed]

Liu, T.

Liu, Z.

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

Lu, R. W.

Q. X. Zhang, R. W. Lu, J. D. Messinger, C. A. Curcio, V. Guarcello, and X. C. Yao, “In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium,” Sci. Rep. 3(1), 2644 (2013).
[Crossref] [PubMed]

Masella, B.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Masella, B. D.

B. D. Masella, D. R. Williams, W. S. Fischer, E. A. Rossi, and J. J. Hunter, “Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure,” Invest. Ophthalmol. Vis. Sci. 55(6), 3929–3938 (2014).
[Crossref] [PubMed]

Mazlin, V.

McLellan, J. S.

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45(15), 1957–1965 (2005).
[Crossref] [PubMed]

Meimon, S.

M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

Merigan, W.

Merigan, W. H.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009).
[Crossref] [PubMed]

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Messinger, J. D.

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

E. C. Zanzottera, J. D. Messinger, T. Ach, R. T. Smith, and C. A. Curcio, “Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 56(5), 3269–3278 (2015).
[Crossref] [PubMed]

Q. X. Zhang, R. W. Lu, J. D. Messinger, C. A. Curcio, V. Guarcello, and X. C. Yao, “In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium,” Sci. Rep. 3(1), 2644 (2013).
[Crossref] [PubMed]

Miller, D. T.

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

Mittermueller, T. J.

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

Morgan, J. I.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Morgan, J. I. W.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009).
[Crossref] [PubMed]

Mrejen, S.

M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

Mujat, M.

Nizari, S.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Normando, E. M.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Nozato, K.

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
[Crossref] [PubMed]

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Panda-Jonas, S.

S. Panda-Jonas, J. B. Jonas, and M. Jakobczyk-Zmija, “Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes,” Am. J. Ophthalmol. 121(2), 181–189 (1996).
[Crossref] [PubMed]

Paques, M.

M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

Parkins, K.

Patel, A.

Plumb, E.

Pollreisz, A.

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

Porter, J.

Považay, B.

Prieto, P. M.

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45(15), 1957–1965 (2005).
[Crossref] [PubMed]

Queener, H.

Rangel-Fonseca, P.

Reinholz, F.

Romero-Borja, F.

K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Roorda, A.

Rosenbaum, D.

M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

Rossant, F.

M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

Rossi, E. A.

C. E. Granger, D. R. Williams, and E. A. Rossi, “Near-infrared autofluorescence imaging reveals the retinal pigment epithelial mosaic in the living human eye,” Invest. Ophthalmol. Vis. Sci. 58, 3429 (2017).

B. D. Masella, D. R. Williams, W. S. Fischer, E. A. Rossi, and J. J. Hunter, “Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure,” Invest. Ophthalmol. Vis. Sci. 55(6), 3929–3938 (2014).
[Crossref] [PubMed]

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
[Crossref] [PubMed]

E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
[Crossref] [PubMed]

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Sahel, J. A.

P. Xiao, V. Mazlin, K. Grieve, J. A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT,” Optica 5(4), 409–412 (2018).
[Crossref]

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

Saito, K.

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
[Crossref] [PubMed]

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Sarda, V.

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

Schmitz-Valckenberg, S.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Scoles, D.

Sennlaub, F.

M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

Sloan, K. R.

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

Smith, R. T.

E. C. Zanzottera, J. D. Messinger, T. Ach, R. T. Smith, and C. A. Curcio, “Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 56(5), 3269–3278 (2015).
[Crossref] [PubMed]

Song, H.

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Sparrow, J. R.

J. R. Sparrow and T. Duncker, “Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration,” J. Clin. Med. 3(4), 1302–1321 (2014).
[Crossref] [PubMed]

J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
[Crossref] [PubMed]

J. R. Sparrow, D. Hicks, and C. P. Hamel, “The retinal pigment epithelium in health and disease,” Curr. Mol. Med. 10(9), 802–823 (2010).
[Crossref] [PubMed]

Sulai, Y. N.

Tam, J.

T. Liu, H. Jung, J. Liu, M. Droettboom, and J. Tam, “Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics,” Biomed. Opt. Express 8(10), 4348–4360 (2017).
[Crossref] [PubMed]

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 57(10), 4376–4384 (2016).
[Crossref] [PubMed]

Torti, C.

Tufail, A.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Tumbar, R.

Twietmeyer, T. H.

Ueda, K.

J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
[Crossref] [PubMed]

Ullern, M.

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

Unterhuber, A.

van Blokland, G. J.

G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26(3), 485–494 (1986).
[Crossref] [PubMed]

van Norren, D.

G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26(3), 485–494 (1986).
[Crossref] [PubMed]

Venkateswaran, K.

K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[Crossref] [PubMed]

von Rückmann, A.

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

Wegener, A. R.

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Weinhandl, A. S.

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

Weinitz, S.

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

Weiter, J. J.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

Williams, D. R.

C. E. Granger, D. R. Williams, and E. A. Rossi, “Near-infrared autofluorescence imaging reveals the retinal pigment epithelial mosaic in the living human eye,” Invest. Ophthalmol. Vis. Sci. 58, 3429 (2017).

B. D. Masella, D. R. Williams, W. S. Fischer, E. A. Rossi, and J. J. Hunter, “Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure,” Invest. Ophthalmol. Vis. Sci. 55(6), 3929–3938 (2014).
[Crossref] [PubMed]

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
[Crossref] [PubMed]

E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
[Crossref] [PubMed]

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009).
[Crossref] [PubMed]

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Wing, G. L.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

Wolfe, R.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009).
[Crossref] [PubMed]

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Wolfing, J. I.

Xiao, P.

Yamamoto, K.

J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
[Crossref] [PubMed]

Yang, Q.

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
[Crossref] [PubMed]

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Yao, X. C.

Q. X. Zhang, R. W. Lu, J. D. Messinger, C. A. Curcio, V. Guarcello, and X. C. Yao, “In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium,” Sci. Rep. 3(1), 2644 (2013).
[Crossref] [PubMed]

Yellott, J. I.

J. I. Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982).
[Crossref] [PubMed]

Zanzottera, E. C.

E. C. Zanzottera, J. D. Messinger, T. Ach, R. T. Smith, and C. A. Curcio, “Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 56(5), 3269–3278 (2015).
[Crossref] [PubMed]

Zhang, J.

Zhang, Q. X.

Q. X. Zhang, R. W. Lu, J. D. Messinger, C. A. Curcio, V. Guarcello, and X. C. Yao, “In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium,” Sci. Rep. 3(1), 2644 (2013).
[Crossref] [PubMed]

Zhang, Y.

A. Roorda, Y. Zhang, and J. L. Duncan, “High-Resolution In Vivo Imaging of the RPE Mosaic in Eyes with Retinal Disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
[Crossref] [PubMed]

Zhou, J.

J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

S. Panda-Jonas, J. B. Jonas, and M. Jakobczyk-Zmija, “Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes,” Am. J. Ophthalmol. 121(2), 181–189 (1996).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Br. J. Ophthalmol. (1)

S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol. 95(8), 1134–1139 (2011).
[Crossref] [PubMed]

Curr. Mol. Med. (1)

J. R. Sparrow, D. Hicks, and C. P. Hamel, “The retinal pigment epithelium in health and disease,” Curr. Mol. Med. 10(9), 802–823 (2010).
[Crossref] [PubMed]

Exp. Eye Res. (1)

A. Pollreisz, J. D. Messinger, K. R. Sloan, T. J. Mittermueller, A. S. Weinhandl, E. K. Benson, G. J. Kidd, U. Schmidt-Erfurth, and C. A. Curcio, “Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy,” Exp. Eye Res. 166, 131–139 (2018).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (13)

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25(2), 195–200 (1984).
[PubMed]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

C. N. Keilhauer and F. C. Delori, “Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[Crossref] [PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

B. D. Masella, D. R. Williams, W. S. Fischer, E. A. Rossi, and J. J. Hunter, “Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure,” Invest. Ophthalmol. Vis. Sci. 55(6), 3929–3938 (2014).
[Crossref] [PubMed]

C. E. Granger, D. R. Williams, and E. A. Rossi, “Near-infrared autofluorescence imaging reveals the retinal pigment epithelial mosaic in the living human eye,” Invest. Ophthalmol. Vis. Sci. 58, 3429 (2017).

A. Roorda, Y. Zhang, and J. L. Duncan, “High-Resolution In Vivo Imaging of the RPE Mosaic in Eyes with Retinal Disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
[Crossref] [PubMed]

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009).
[Crossref] [PubMed]

E. C. Zanzottera, J. D. Messinger, T. Ach, R. T. Smith, and C. A. Curcio, “Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 56(5), 3269–3278 (2015).
[Crossref] [PubMed]

K. Gocho, V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern, and M. Paques, “Adaptive optics imaging of geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 54(5), 3673–3680 (2013).
[Crossref] [PubMed]

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 57(10), 4376–4384 (2016).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[Crossref] [PubMed]

J. Clin. Med. (1)

J. R. Sparrow and T. Duncker, “Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration,” J. Clin. Med. 3(4), 1302–1321 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Ophthalmic Physiol. Opt. (1)

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Optica (1)

Prog. Ret. Eye Res. (1)

M. Paques, S. Meimon, F. Rossant, D. Rosenbaum, S. Mrejen, F. Sennlaub, and K. Grieve, “Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases,” Prog. Ret. Eye Res. 66, 1–16 (2018).

Prog. Retin. Eye Res. (1)

J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, and J. Zhou, “The bisretinoids of retinal pigment epithelium,” Prog. Retin. Eye Res. 31(2), 121–135 (2012).
[Crossref] [PubMed]

Retina (1)

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

Q. X. Zhang, R. W. Lu, J. D. Messinger, C. A. Curcio, V. Guarcello, and X. C. Yao, “In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium,” Sci. Rep. 3(1), 2644 (2013).
[Crossref] [PubMed]

Vision Res. (4)

J. I. Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982).
[Crossref] [PubMed]

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45(15), 1957–1965 (2005).
[Crossref] [PubMed]

G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26(3), 485–494 (1986).
[Crossref] [PubMed]

J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35(7), 999–1010 (1995).
[Crossref] [PubMed]

Other (4)

S. A. Burns, J. C. He, and F. C. Delori, “Do the cones see light scattered from the deep retinal layers?” http://www.opt.indiana.edu/people/faculty/burns/navs97steve.htm , Accessed 23 July 2018.

O. Strauss, “The Retinal Pigment Epithelium,” 2011. In: K. H. Fernandez E. Nelson R, editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. Figure 2. [Transmission electron micrograph of the...]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK54392/figure/StraussRPE.F2/ , Accessed 12 October 2018.

Laser Institute of America, ANSI Z136.1 - 2014, American National Standard for Safe Use of Lasers. Orlando, FL: Laser Institute of America; (2014).

C. E. Granger, Q. Yang, H. Song, K. Saito, K. Nozato, L. R. Latchney, B. T. Leonard, M. M. Chung, D. R. Williams, and E. A. Rossi, “Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic,” Invest. Ophthalmol. Vis. Sci.In Press (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 System diagram. WFS, wavefront sensor, DM, deformable mirror, NIRAF PMT, near infrared photomultiplier tube, PSF CAM, point spread function camera, AOSLO APDs, adaptive optics scanning laser ophthalmoscope avalanche photodiodes, OCT, optical coherence tomography, SLO, scanning laser ophthalmoscope, BS, beamsplitter, SLO/OCT LP DC, scanning laser ophthalmoscope/optical coherence tomography long pass dichroic, SLO/NIRAF SP DC, scanning laser ophthalmoscope near infrared short pass dichroic, RS resonant scanner, MMF, multimode fiber.
Fig. 2
Fig. 2 Photoreceptors in reflectance (left) and RPE cells in NIRAF (right) in healthy volunteer #1; location is 10° temporal; scale bar is 100 µm.
Fig. 3
Fig. 3 Variation in appearance of RPE in healthy volunteers. Top and center row: mosaics from 10° temporal to the fovea in subjects #1 and #4. Note the dimmed ring containing a few hyper AF cells from 3 to 5° in subject #4. Bottom row: zooms on 10° temporal (left box), 5° temporal (center panel) and fovea (right box) of subjects #1, #3 and #4; inset yellow squares in images above denote locations shown for subjects #1 and #4. Contrast and brightness have been altered in the zoomed panel on the 5° temporal location in subject #4 as this region of the retina gave dimmer images than elsewhere. Note the diffuse fluorescence with hyper AF cells in #4 at 10°. Scale bars are 100µm.
Fig. 4
Fig. 4 The discrete Fourier transform of the reflectance (top left) and NIRAF (top center) images produces Yellott’s rings in the power spectrum corresponding to the modal frequencies of the photoreceptor and RPE spacing (bottom). The NIRAF power spectrum contains peaks in two frequency bands corresponding to that of the photoreceptors (outer ring) and that of the RPE (inner ring). Applying a bandpass filter can suppress the cone signal to enhance visibility of the RPE mosaic (right). Scale bar is 100 µm.
Fig. 5
Fig. 5 Small drusen. Top, IR SLO and OCT imaging. Bottom, NIRAF which shows local disruption of an otherwise normal RPE mosaic. Scale bars, 200 µm.
Fig. 6
Fig. 6 Case of non-neovascular age-related macular degeneration with foveal sparing. From top to bottom, OCT, IR SLO, NIRAF SLO, and NIRAF-AOSLO. In the periphery (lower left) the contrast appears higher in NIRAF AOSLO, across a band of hyper-AF. In the fovea the NIRAF contrast in AOSLO (lower right) is higher than that in the NIRAF SLO image. This area showed no recognizable RPE mosaic but rather a diffuse fluorescence with some granularity. This is similar to what is observed in our oldest control (compare with #4, Fig. 2 zoom at 10° temporal). Scale bar is 100 µm.
Fig. 7
Fig. 7 Case of radiation retinopathy with sequelaes of macular edema that caused loss of foveal photoreceptors. Top, IR SLO image with overlaid NIRAF mosaic; center shows a zoom on the NIRAF AOSLO mosaic and corresponding OCT; bottom shows magnifications in the fovea in reflectance flood adaptive optics ophthalmoscopy, reflectance scan AOLSO and NIRAF AOSLO. Note by NIRAF AOSLO the visualization of the RPE mosaic within the area lacking outer segments. Note also the shadowing from microaneurysms in the top and center panel views. Scale bar, 200 µm.
Fig. 8
Fig. 8 Average image intensity at cone locations demonstrates that a cone signature persists in the images even when it is not visible by eye. Cone positions in the reflectance images at 4 degrees (a) and 10 degrees (c) were used to compute average cone intensity profiles across a 30 x 30 µm area centered on each cone (e,g). When applied to the corresponding NIRAF images (b, d), signatures of the cones were also visible (f, h). Radial averages of the images shown in (e & f and g & h) are plotted in i and j, respectively (red lines are from the reflectance images and blue dashed lines are from the NIRAF images). These plots demonstrate that the cone signature is nearly identical in both images at 4 degrees but that the NIRAF signature is narrower than the cone intensity profile from the reflectance image at 10 degrees. Control images generated by using the transposed cone positions showed no cellular signatures in any image (k-n). Scale bar in (d) is 100 μm and applies to (a-d).