Abstract

Phase-resolved imaging of swept-source optical coherence tomography (SS-OCT) is subject to phase measurement instabilities involved with the sweep variation of a frequency-swept source. In general, optically generated timing references are utilized to track the variations imposed on OCT signals. But they might not be accurately synchronized due to relative time delays. In this research, we investigated the impact of the signal delays on the timing instabilities and the consequent deviations of the measured phases. We considered two types of timing signals utilized in a popular digitizer operation mode: a sweep trigger from a fiber Bragg grating (FBG) that initiates a series of signal sampling actions clocked by an auxiliary Mach-Zehnder interferometer (MZI) signal. We found that significant instabilities were brought by the relative delays through incoherent timing corrections and timing collisions between the timing references. The best-to-worst ratio of the measured phase errors was higher than 200 while only the signal delays varied. Noise-limited phase stability was achieved with a wide dynamic range of OCT signals above 50 dB in optimized delays. This demonstrated that delay optimization is very effective in phase stabilization of SS-OCT.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly phase-stable 200 kHz swept-source optical coherence tomography based on KTN electro-optic deflector

Yuye Ling, Xinwen Yao, and Christine P. Hendon
Biomed. Opt. Express 8(8) 3687-3699 (2017)

Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography

Jiefeng Xi, Li Huo, Jiasong Li, and Xingde Li
Opt. Express 18(9) 9511-9517 (2010)

High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization

Young-Joo Hong, Shuichi Makita, Franck Jaillon, Myeong Jin Ju, Eun Jung Min, Byeong Ha Lee, Masahide Itoh, Masahiro Miura, and Yoshiaki Yasuno
Opt. Express 20(3) 2740-2760 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer, R. Leitgeb, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited],” Biomed. Opt. Express 8(7), 3248–3280 (2017).
    [Crossref] [PubMed]
  2. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref] [PubMed]
  3. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  4. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39(1), 173–182 (2000).
    [Crossref] [PubMed]
  5. S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Express 15(23), 15129–15146 (2007).
    [Crossref] [PubMed]
  6. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
    [Crossref] [PubMed]
  7. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  8. J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005).
    [Crossref] [PubMed]
  9. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref] [PubMed]
  10. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [Crossref] [PubMed]
  11. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
    [Crossref] [PubMed]
  12. S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
    [Crossref] [PubMed]
  13. J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
    [Crossref] [PubMed]
  14. M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40(11), 2588–2591 (2015).
    [Crossref] [PubMed]
  15. S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1430–1444 (2016).
    [Crossref] [PubMed]
  16. A. Oldenburg, F. Toublan, K. Suslick, A. Wei, and S. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).
    [Crossref] [PubMed]
  17. S. Makita and Y. Yasuno, “Detection of local tissue alteration during retinal laser photocoagulation of ex vivo porcine eyes using phase-resolved optical coherence tomography,” Biomed. Opt. Express 8(6), 3067–3080 (2017).
    [Crossref] [PubMed]
  18. H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express 2(8), 2175–2188 (2011).
    [Crossref] [PubMed]
  19. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
    [Crossref] [PubMed]
  20. Z. Chen, M. Liu, M. Minneman, L. Ginner, E. Hoover, H. Sattmann, M. Bonesi, W. Drexler, and R. A. Leitgeb, “Phase-stable swept source OCT angiography in human skin using an akinetic source,” Biomed. Opt. Express 7(8), 3032–3048 (2016).
    [Crossref] [PubMed]
  21. S. Moon and E. S. Choi, “VCSEL-based swept source for low-cost optical coherence tomography,” Biomed. Opt. Express 8(2), 1110–1121 (2017).
    [Crossref] [PubMed]
  22. J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
    [Crossref] [PubMed]
  23. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).
    [Crossref] [PubMed]
  24. J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010).
    [Crossref] [PubMed]
  25. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
    [Crossref] [PubMed]
  26. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
    [Crossref] [PubMed]
  27. S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1430–1444 (2016).
    [Crossref] [PubMed]
  28. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [Crossref] [PubMed]
  29. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
    [Crossref] [PubMed]
  30. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref] [PubMed]
  31. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  32. S. Moon, Y. Qu, and Z. Chen, “Characterization of spectral-domain OCT with autocorrelation interference response for axial resolution performance,” Opt. Express 26(6), 7253–7269 (2018).
    [Crossref] [PubMed]
  33. Y. Ling, Y. Gan, X. Yao, and C. P. Hendon, “Phase-noise analysis of swept-source optical coherence tomography systems,” Opt. Lett. 42(7), 1333–1336 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (5)

2016 (4)

2015 (2)

2014 (1)

2013 (1)

2012 (1)

2011 (2)

2010 (2)

2009 (1)

2008 (1)

2007 (2)

2006 (2)

2005 (5)

2003 (2)

2000 (1)

An, L.

Applegate, B. E.

Baumann, B.

Biedermann, B. R.

Bonesi, M.

Boppart, S.

Bouma, B.

Braaf, B.

Cable, A. E.

Cense, B.

Chen, L.

Chen, Z.

Choi, E. S.

Choi, W.

Choma, M.

Choma, M. A.

Creazzo, T. L.

de Boer, J.

de Boer, J. F.

Dhalla, A.-H.

Doerr, C.

Drexler, W.

Du, Y.

Duker, J. S.

Eigenwillig, C. M.

Ellerbee, A. K.

Fingler, J.

Fraser, S. E.

Fujimoto, J. G.

Gan, Y.

Ginner, L.

Gora, M.

Grulkowski, I.

Hendargo, H. C.

Hendon, C. P.

Hong, Y.

Hoover, E.

Huang, D.

Huang, S.

Huber, R.

Huo, L.

Iftimia, N.

Izatt, J.

Izatt, J. A.

Jayaraman, V.

Jiang, J.

Kaluzny, B. J.

Karnowski, K.

Kim, D. Y.

Kim, S.

Kowalczyk, A.

Larin, K. V.

Lee, H.-C.

Leitgeb, R.

Leitgeb, R. A.

Li, J.

Li, R.

Li, X.

Ling, Y.

Liu, C.-H.

Liu, J. J.

Liu, M.

Lu, C. D.

Ma, T.

Makita, S.

McNabb, R. P.

Men, S.

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

Minneman, M.

Moon, S.

Mujat, M.

Nair, A.

Nielson, T.

Oghalai, J. S.

Oldenburg, A.

Palte, G.

Park, B.

Pierce, M. C.

Podoleanu, A. G.

Potsaid, B.

Qin, J.

Qu, Y.

Raphael, P. D.

Sarunic, M.

Sattmann, H.

Schill, A.

Schwartz, D.

Shen, T. T.

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

Shepherd, N.

Shung, K. K.

Sicam, V. A. D. P.

Singh, M.

Song, S.

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

Suslick, K.

Swanson, E.

Szkulmowski, M.

Tearney, G.

Toublan, F.

Tsia, K. K.

Vakoc, B.

van Meurs, J. C.

van Zeeburg, E.

Vermeer, K. A.

Wang, R. K.

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

Wang, Z.

Wei, A.

Wojtkowski, M.

Wong, K. K. Y.

Wu, C.

Xi, J.

Xu, J.

Yamanari, M.

Yang, C.

Yao, X.

Yasuno, Y.

Yatagai, T.

Yun, S.

Yun, S.-H.

Zhang, C.

Zhang, J.

Zhou, Q.

Zhu, J.

Appl. Opt. (1)

Biomed. Opt. Express (8)

J. F. de Boer, R. Leitgeb, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited],” Biomed. Opt. Express 8(7), 3248–3280 (2017).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1430–1444 (2016).
[Crossref] [PubMed]

S. Makita and Y. Yasuno, “Detection of local tissue alteration during retinal laser photocoagulation of ex vivo porcine eyes using phase-resolved optical coherence tomography,” Biomed. Opt. Express 8(6), 3067–3080 (2017).
[Crossref] [PubMed]

H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express 2(8), 2175–2188 (2011).
[Crossref] [PubMed]

Z. Chen, M. Liu, M. Minneman, L. Ginner, E. Hoover, H. Sattmann, M. Bonesi, W. Drexler, and R. A. Leitgeb, “Phase-stable swept source OCT angiography in human skin using an akinetic source,” Biomed. Opt. Express 7(8), 3032–3048 (2016).
[Crossref] [PubMed]

S. Moon and E. S. Choi, “VCSEL-based swept source for low-cost optical coherence tomography,” Biomed. Opt. Express 8(2), 1110–1121 (2017).
[Crossref] [PubMed]

S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1430–1444 (2016).
[Crossref] [PubMed]

J. Biophotonics (1)

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

Opt. Express (16)

A. Oldenburg, F. Toublan, K. Suslick, A. Wei, and S. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).
[Crossref] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[Crossref] [PubMed]

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005).
[Crossref] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Express 15(23), 15129–15146 (2007).
[Crossref] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[Crossref] [PubMed]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).
[Crossref] [PubMed]

J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

S. Moon, Y. Qu, and Z. Chen, “Characterization of spectral-domain OCT with autocorrelation interference response for axial resolution performance,” Opt. Express 26(6), 7253–7269 (2018).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic timing chart of the acquisition operation with OCT light, k-clock and λ-trigger signals. The OCT signal is sampled synchronously at the k-clock edges while the first edge was determined by the trigger event of the λ-trigger.
Fig. 2
Fig. 2 Mechanism of the edge collision effect (a) and the definition of relative time delays between the signals (b), graphically described in timing charts.
Fig. 3
Fig. 3 Schematic diagram of test setup in a common-path interferometer configuration.
Fig. 4
Fig. 4 Traces of the acquired k-clock signals at λ-trigger edges for different delay compensations. Fifteen traces are overlaid in each plot.
Fig. 5
Fig. 5 Timing jitters of the k-clock edges to the λ-trigger edges (a), and timing jitters of the interferogram’s zero-crossing points to the k-clock edges (b), all measured in standard deviation at different delay compensations of ΔTg and ΔTf, respectively.
Fig. 6
Fig. 6 Timing jitters of the OCT interferogram measured with different delay adjustments of the λ-trigger signal (a) and the OCT signal (b) obtained from the digitizer-based test.
Fig. 7
Fig. 7 OCT interferograms consecutively acquired in the digitizer-based test (a), their transformed A-lines (b), the histograms of the measured phases for the two peaks of the A-line data (c), and the histogram of the phase measurements for a case of severe edge collisions (d).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ total = ( σ SNR ) 2 + ( σ elec ) 2 + ( σ opt ) 2
δϕ=δk( 2z )( 4πγδt λ c 2 )z
χ δt Δt δ γ γ = δγ γ
SNR | s | 2 | N | 2 = a s 2 2 N i 2
δΦ=arg{ s+N }=arg{ ( a s + N r )+i N i } =arctan( N i a s + N r ) N i a s + N r ( a s N r ) N i a s
σ 2 [ δΦ ]= N i 2 a s 2
δ ϕ SNR σ 2 [ δΦ ] = 1 2SNR
R δϕ = 1 2δ ϕ elec 2 = 1 2 ( αz ) 2