Abstract

Current methods to measure intraocular scattering provide information on the total scattered light, which consists of the combined contributions originating from different ocular structures. In this work, we propose a technique for the objective and independent assessment of scattering caused by the cornea and the lens based on the analysis of the contrast of the third and fourth Purkinje images. The technique is preliminarily validated first by using artificial eyes with different levels of corneal and lens scattering; second, it is validated in eyes wearing customized contact lenses to simulate corneal scattering and eyes with nuclear cataracts. Finally, it is tested on a larger population of eyes with cataracts and corneal disorders to prove its clinical usefulness.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Purkinje imaging system to measure anterior segment scattering in the human eye

Juan M. Bueno, Dirk De Brouwere, Harilaos Ginis, Ioannis Sgouros, and Pablo Artal
Opt. Lett. 32(23) 3447-3449 (2007)

Instrument for measuring the misalignments of ocular surfaces

Juan Tabernero, Antonio Benito, Vincent Nourrit, and Pablo Artal
Opt. Express 14(22) 10945-10956 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87(9), E682–E696 (2010).
    [Crossref] [PubMed]
  2. J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99(6), 518–525 (2016).
    [Crossref] [PubMed]
  3. J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
    [Crossref] [PubMed]
  4. P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
    [Crossref] [PubMed]
  5. L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
    [Crossref] [PubMed]
  6. M. A. Vivino, S. Chintalagiri, B. Trus, and M. Datiles, “Development of a Scheimpflug slit lamp camera system for quantitative densitometric analysis,” Eye (Lond.) 7(Pt 6), 791–798 (1993).
    [Crossref] [PubMed]
  7. L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
    [Crossref] [PubMed]
  8. T. J. T. P. van den Berg and J. K. Ijspeert, “Clinical assessment of intraocular stray light,” Appl. Opt. 31(19), 3694–3696 (1992).
    [Crossref] [PubMed]
  9. G. Łabuz, F. Vargas-Martín, T. J. T. P. van den Berg, and N. López-Gil, “Method for in vitro assessment of straylight from intraocular lenses,” Biomed. Opt. Express 6(11), 4457–4464 (2015).
    [Crossref] [PubMed]
  10. F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Vis. Sci. 47(4), 1710–1716 (2006).
    [Crossref] [PubMed]
  11. M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
    [Crossref] [PubMed]
  12. D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiol. Opt. 37(3), 342–346 (2017).
    [Crossref] [PubMed]
  13. H. Ginis, O. Sahin, A. Pennos, and P. Artal, “Compact optical integration instrument to measure intraocular straylight,” Biomed. Opt. Express 5(9), 3036–3041 (2014).
    [Crossref] [PubMed]
  14. A. Pennos, H. Ginis, A. Arias, D. Christaras, and P. Artal, “Performance of a differential contrast sensitivity method to measure intraocular scattering,” Biomed. Opt. Express 8(3), 1382–1389 (2017).
    [Crossref] [PubMed]
  15. J. M. Bueno, D. De Brouwere, H. Ginis, I. Sgouros, and P. Artal, “Purkinje imaging system to measure anterior segment scattering in the human eye,” Opt. Lett. 32(23), 3447–3449 (2007).
    [Crossref] [PubMed]
  16. T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29(3), 345–350 (2009).
    [Crossref] [PubMed]
  17. ISO 15004–2:2007 “Ophthalmic instruments–Fundamental requirements and test methods–Part 2: Light hazard protection.”
  18. P. A. Barrionuevo, E. M. Colombo, M. Vilaseca, J. Pujol, and L. A. Issolio, “Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering,” J. Opt. Soc. Am. A 29(7), 1293–1299 (2012).
    [Crossref] [PubMed]
  19. G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
    [Crossref] [PubMed]
  20. M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Optical properties of the lens: an explanation for the zones of discontinuity,” Exp. Eye Res. 124, 93–99 (2014).
    [Crossref] [PubMed]
  21. A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
    [Crossref] [PubMed]
  22. R. Navarro, J. A. Méndez-Morales, and J. Santamaría, “Optical quality of the eye lens surfaces from roughness and diffusion measurements,” J. Opt. Soc. Am. A 3(2), 228–234 (1986).
    [Crossref] [PubMed]

2018 (1)

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

2017 (2)

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiol. Opt. 37(3), 342–346 (2017).
[Crossref] [PubMed]

A. Pennos, H. Ginis, A. Arias, D. Christaras, and P. Artal, “Performance of a differential contrast sensitivity method to measure intraocular scattering,” Biomed. Opt. Express 8(3), 1382–1389 (2017).
[Crossref] [PubMed]

2016 (1)

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99(6), 518–525 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

H. Ginis, O. Sahin, A. Pennos, and P. Artal, “Compact optical integration instrument to measure intraocular straylight,” Biomed. Opt. Express 5(9), 3036–3041 (2014).
[Crossref] [PubMed]

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Optical properties of the lens: an explanation for the zones of discontinuity,” Exp. Eye Res. 124, 93–99 (2014).
[Crossref] [PubMed]

2012 (3)

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

P. A. Barrionuevo, E. M. Colombo, M. Vilaseca, J. Pujol, and L. A. Issolio, “Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering,” J. Opt. Soc. Am. A 29(7), 1293–1299 (2012).
[Crossref] [PubMed]

J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
[Crossref] [PubMed]

2011 (1)

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

2010 (1)

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87(9), E682–E696 (2010).
[Crossref] [PubMed]

2009 (1)

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29(3), 345–350 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (3)

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Vis. Sci. 47(4), 1710–1716 (2006).
[Crossref] [PubMed]

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

1993 (2)

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

M. A. Vivino, S. Chintalagiri, B. Trus, and M. Datiles, “Development of a Scheimpflug slit lamp camera system for quantitative densitometric analysis,” Eye (Lond.) 7(Pt 6), 791–798 (1993).
[Crossref] [PubMed]

1992 (1)

1986 (1)

Aguirre, M.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99(6), 518–525 (2016).
[Crossref] [PubMed]

Alcón, E.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Alio, J. L.

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87(9), E682–E696 (2010).
[Crossref] [PubMed]

Arias, A.

Arjona, M.

J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
[Crossref] [PubMed]

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Vis. Sci. 47(4), 1710–1716 (2006).
[Crossref] [PubMed]

Artal, P.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

A. Pennos, H. Ginis, A. Arias, D. Christaras, and P. Artal, “Performance of a differential contrast sensitivity method to measure intraocular scattering,” Biomed. Opt. Express 8(3), 1382–1389 (2017).
[Crossref] [PubMed]

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiol. Opt. 37(3), 342–346 (2017).
[Crossref] [PubMed]

H. Ginis, O. Sahin, A. Pennos, and P. Artal, “Compact optical integration instrument to measure intraocular straylight,” Biomed. Opt. Express 5(9), 3036–3041 (2014).
[Crossref] [PubMed]

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

J. M. Bueno, D. De Brouwere, H. Ginis, I. Sgouros, and P. Artal, “Purkinje imaging system to measure anterior segment scattering in the human eye,” Opt. Lett. 32(23), 3447–3449 (2007).
[Crossref] [PubMed]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Vis. Sci. 47(4), 1710–1716 (2006).
[Crossref] [PubMed]

Bahrami, M.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Optical properties of the lens: an explanation for the zones of discontinuity,” Exp. Eye Res. 124, 93–99 (2014).
[Crossref] [PubMed]

Bailey, I. L.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Barrionuevo, P. A.

Benito, A.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Vis. Sci. 47(4), 1710–1716 (2006).
[Crossref] [PubMed]

Bueno, J. M.

Bullimore, M. A.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Cañizares, B.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

Cardona, G.

J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
[Crossref] [PubMed]

Chintalagiri, S.

M. A. Vivino, S. Chintalagiri, B. Trus, and M. Datiles, “Development of a Scheimpflug slit lamp camera system for quantitative densitometric analysis,” Eye (Lond.) 7(Pt 6), 791–798 (1993).
[Crossref] [PubMed]

Christaras, D.

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiol. Opt. 37(3), 342–346 (2017).
[Crossref] [PubMed]

A. Pennos, H. Ginis, A. Arias, D. Christaras, and P. Artal, “Performance of a differential contrast sensitivity method to measure intraocular scattering,” Biomed. Opt. Express 8(3), 1382–1389 (2017).
[Crossref] [PubMed]

Chylack, L. T.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Colombo, E. M.

Coppens, J. E.

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29(3), 345–350 (2009).
[Crossref] [PubMed]

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

Datiles, M.

M. A. Vivino, S. Chintalagiri, B. Trus, and M. Datiles, “Development of a Scheimpflug slit lamp camera system for quantitative densitometric analysis,” Eye (Lond.) 7(Pt 6), 791–798 (1993).
[Crossref] [PubMed]

De Brouwere, D.

De Casas, A.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

de Castro, A.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

de Wit, G. C.

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

Díaz-Doutón, F.

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Vis. Sci. 47(4), 1710–1716 (2006).
[Crossref] [PubMed]

Franssen, L.

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29(3), 345–350 (2009).
[Crossref] [PubMed]

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

Friend, J.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Ginis, H.

Grulkowski, I.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

Güell, J. L.

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
[Crossref] [PubMed]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Vis. Sci. 47(4), 1710–1716 (2006).
[Crossref] [PubMed]

Hoshino, M.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Optical properties of the lens: an explanation for the zones of discontinuity,” Exp. Eye Res. 124, 93–99 (2014).
[Crossref] [PubMed]

Ijspeert, J. K.

Issolio, L. A.

Labuz, G.

Leske, M. C.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

López-Gil, N.

Luque, S. O.

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

Manzanera, S.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

Marín, J. M.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Martínez, D.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

Martínez-Roda, J. A.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99(6), 518–525 (2016).
[Crossref] [PubMed]

McCarthy, D.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Méndez-Morales, J. A.

Mompeán, J.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

Montasell, A.

J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
[Crossref] [PubMed]

Navarro, R.

Ondategui, J. C.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99(6), 518–525 (2016).
[Crossref] [PubMed]

J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
[Crossref] [PubMed]

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

Ortiz, D.

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87(9), E682–E696 (2010).
[Crossref] [PubMed]

Pennos, A.

Pérez, G. M.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Pierscionek, B.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Optical properties of the lens: an explanation for the zones of discontinuity,” Exp. Eye Res. 124, 93–99 (2014).
[Crossref] [PubMed]

Piñero, D. P.

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87(9), E682–E696 (2010).
[Crossref] [PubMed]

Pujol, J.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99(6), 518–525 (2016).
[Crossref] [PubMed]

J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
[Crossref] [PubMed]

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

P. A. Barrionuevo, E. M. Colombo, M. Vilaseca, J. Pujol, and L. A. Issolio, “Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering,” J. Opt. Soc. Am. A 29(7), 1293–1299 (2012).
[Crossref] [PubMed]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Vis. Sci. 47(4), 1710–1716 (2006).
[Crossref] [PubMed]

Regini, J.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Optical properties of the lens: an explanation for the zones of discontinuity,” Exp. Eye Res. 124, 93–99 (2014).
[Crossref] [PubMed]

Romero, M. J.

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

Sahin, O.

Salvador, A.

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

Santamaría, J.

Sgouros, I.

Singer, D. M.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Trus, B.

M. A. Vivino, S. Chintalagiri, B. Trus, and M. Datiles, “Development of a Scheimpflug slit lamp camera system for quantitative densitometric analysis,” Eye (Lond.) 7(Pt 6), 791–798 (1993).
[Crossref] [PubMed]

Uesugi, K.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Optical properties of the lens: an explanation for the zones of discontinuity,” Exp. Eye Res. 124, 93–99 (2014).
[Crossref] [PubMed]

van den Berg, T. J. T. P.

G. Łabuz, F. Vargas-Martín, T. J. T. P. van den Berg, and N. López-Gil, “Method for in vitro assessment of straylight from intraocular lenses,” Biomed. Opt. Express 6(11), 4457–4464 (2015).
[Crossref] [PubMed]

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29(3), 345–350 (2009).
[Crossref] [PubMed]

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

T. J. T. P. van den Berg and J. K. Ijspeert, “Clinical assessment of intraocular stray light,” Appl. Opt. 31(19), 3694–3696 (1992).
[Crossref] [PubMed]

Vargas-Martín, F.

Vilaseca, M.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99(6), 518–525 (2016).
[Crossref] [PubMed]

J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
[Crossref] [PubMed]

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

P. A. Barrionuevo, E. M. Colombo, M. Vilaseca, J. Pujol, and L. A. Issolio, “Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering,” J. Opt. Soc. Am. A 29(7), 1293–1299 (2012).
[Crossref] [PubMed]

Vivino, M. A.

M. A. Vivino, S. Chintalagiri, B. Trus, and M. Datiles, “Development of a Scheimpflug slit lamp camera system for quantitative densitometric analysis,” Eye (Lond.) 7(Pt 6), 791–798 (1993).
[Crossref] [PubMed]

Wolfe, J. K.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Wu, S. Y.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Yagi, N.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Optical properties of the lens: an explanation for the zones of discontinuity,” Exp. Eye Res. 124, 93–99 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The Lens Opacities Classification System III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Br. J. Ophthalmol. (1)

M. Vilaseca, M. J. Romero, M. Arjona, S. O. Luque, J. C. Ondategui, A. Salvador, J. L. Güell, P. Artal, and J. Pujol, “Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system,” Br. J. Ophthalmol. 96(9), 1204–1210 (2012).
[Crossref] [PubMed]

Clin. Exp. Optom. (1)

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99(6), 518–525 (2016).
[Crossref] [PubMed]

Exp. Eye Res. (1)

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Optical properties of the lens: an explanation for the zones of discontinuity,” Exp. Eye Res. 124, 93–99 (2014).
[Crossref] [PubMed]

Eye (Lond.) (1)

M. A. Vivino, S. Chintalagiri, B. Trus, and M. Datiles, “Development of a Scheimpflug slit lamp camera system for quantitative densitometric analysis,” Eye (Lond.) 7(Pt 6), 791–798 (1993).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Vis. Sci. 47(4), 1710–1716 (2006).
[Crossref] [PubMed]

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (2)

J. C. Ondategui, M. Vilaseca, M. Arjona, A. Montasell, G. Cardona, J. L. Güell, and J. Pujol, “Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system,” J. Cataract Refract. Surg. 38(1), 16–27 (2012).
[Crossref] [PubMed]

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Ophthalmic Physiol. Opt. (2)

T. J. T. P. van den Berg, L. Franssen, and J. E. Coppens, “Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement,” Ophthalmic Physiol. Opt. 29(3), 345–350 (2009).
[Crossref] [PubMed]

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiol. Opt. 37(3), 342–346 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Optom. Vis. Sci. (1)

D. P. Piñero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87(9), E682–E696 (2010).
[Crossref] [PubMed]

PLoS One (1)

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Other (1)

ISO 15004–2:2007 “Ophthalmic instruments–Fundamental requirements and test methods–Part 2: Light hazard protection.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (Left) Layout of the Purkinje system. XL: xenon lamp; F1, F2: long-pass filters; OP: opaque plate with 2-fringe pattern; TO: telecentric objective lens; EMCCD: electron multiplying CCD; FT: fixation target. (Right) Schematic of the 2-fringes pattern stimulus.
Fig. 2
Fig. 2 Several views of the system showing the stimulus (white) and fixation target (blue).
Fig. 3
Fig. 3 (Left) Four Purkinje images of an artificial eye. The yellow rectangle is the ROI selected to compute the intensity profile of the fourth image. (Right) Intensity profile of the fourth Purkinje image in arbitrary units [a. u.].
Fig. 4
Fig. 4 (Left) Artificial eye OEMI-7. (Right) Front and top view of the customized eye model.
Fig. 5
Fig. 5 Purkinje images for the naked OEMI-7 eye (top left) and with one single sheet of the c3020 filter (top right). The same images for the customized artificial eye (bottom). In the customized artificial eye a tilt was introduced to separate the reflexes of the planar surfaces of the plano-convex lenses and the other Purkinje images. These reflexes can be seen on the right of the images while P1 + P2 were not registered in this specific case.
Fig. 6
Fig. 6 P3 and P4 contrasts obtained with the OEMI-7 eye model for different levels of corneal scattering (left), and with the customized artificial eye for different levels of lens scattering (right). Error bars are the standard deviation of the mean (SD) of 3 consecutive measurements. Contrasts corresponding to c3020 and double c3020 are different in the left and right plots as different eye models were used to simulate corneal and lens scattring.
Fig. 7
Fig. 7 Scattering outcomes for different levels of corneal scattering simulated with CLs. The dark line in the middle is the median, the top and bottom of the box are the third and first quartiles. The T-bars extend to 1.5 times the height of the box or, if no case has a value in that range, to the minimum or maximum. Each box is based on 12 observations (4 observers, 3 times each), except in the case of the P3 contrast, for which only 3 observers were available.
Fig. 8
Fig. 8 Scattering outcomes as a function of the LOCS III classification for eyes included in the in-vivo preliminary validation: NO1(1), NO2(2), and NO3(3); and control group (0). The dark line in the middle is the median, the top and bottom of the box are the third and first quartiles. The T-bars extend to 1.5 times the height of the box or, if no case has a value in that range, to the minimum or maximum. The points are outliers. Boxes are based on 15 (0), 21 (1), 15 (2), and 12 (3) observations (5, 7, 5, and 4 observers, 3 times each).
Fig. 9
Fig. 9 Purkinje images from an eye without (left) and with (middle) GPI. Intensity profile of the GPI corresponding to the red dashed line in arbitrary units [a. u.] (right). The maximum value of this profile is used to correct the P3 contrast.
Fig. 10
Fig. 10 P3 contrast vs. GPImax for eyes with GPI (left) and P4 vs. corrected P3′ contrast (right). Eyes with cataracts in blue and eyes wearing scatter-customized CLs in orange.
Fig. 11
Fig. 11 P3′ contrast as a function of the LOCS III classification: NO1(1), NO2(2), and NO3(3); and control group (0). The dark line in the middle is the median, the top and bottom of the box are the third and first quartiles. The T-bars extend to 1.5 times the height of the box or, if no case has a value in that range, to the minimum or maximum. The points are outliers.
Fig. 12
Fig. 12 Boxplots showing P3 (left), P3′ (middle) and P4 (right) contrasts for eyes of the control group (25), with cataracts (45), with corneal disorders (CD) (11) and eyes wearing scatter-customized CLs. The dark line in the middle is the median, the top and bottom of the box are the third and first quartiles. The T-bars extend to 1.5 times the height of the box or, if no case has a value in that range, to the minimum or maximum. The points are outliers.

Tables (2)

Tables Icon

Table 1 Correlation coefficients (p-value) between pairs of variables for eyes wearing scatter-customized CLs. Pearson’s† and Spearman’s‡ values are used for normal and non-normal distributions of data, respectively.

Tables Icon

Table 2 Correlation coefficients (p-value) between pairs of variables for eyes with cataracts included in the preliminary validation. Since variables were normally distributed, Pearson’s values are shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Contras t i =  I maxi I min   I maxi + I min , i=1 and 2
P 3 ' =P3a·(GP I max )

Metrics