Abstract

Due to the enormous dynamic range of human photoreceptors in response to light, studying their visual function in the intact retina challenges the stimulation hardware, specifically with regard to the displayable luminance contrast. The adaptive optics scanning laser ophthalmoscope (AOSLO) is an optical platform that focuses light to extremely small retinal extents, approaching the size of single photoreceptor cells. However, the current light modulation techniques produce spurious visible backgrounds which fundamentally limit experimental options. To remove unwanted background light and to improve contrast for high dynamic range visual stimulation in an AOSLO, we cascaded two commercial fiber-coupled acousto-optic modulators (AOMs) and measured their combined optical contrast. By compensating for zero-point differences in the individual AOMs, we demonstrate a multiplicative extinction ratio in the cascade that was in accordance with the extinction ratios of both single AOMs. When latency differences in the AOM response functions were individually corrected, single switch events as short as 50 ns with radiant power contrasts up to 1:1010 were achieved. This is the highest visual contrast reported for any display system so far. We show psychophysically that this contrast ratio is sufficient to stimulate single foveal photoreceptor cells with small and bright enough visible targets that do not contain a detectable background. Background-free stimulation will enable photoreceptor testing with custom adaptation lights. Furthermore, a larger dynamic range in displayable light levels can drive photoreceptor responses in cones as well as in rods.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noise and its effects on photoreceptor temporal contrast sensitivity at low light levels

Eric P. Hornstein, David R. Pope, and Theodore E. Cohn
J. Opt. Soc. Am. A 16(3) 705-717 (1999)

Perifoveal L- and M-cone-driven temporal contrast sensitivities at different retinal illuminances

Cord Huchzermeyer and Jan Kremers
J. Opt. Soc. Am. A 33(10) 1989-1998 (2016)

Non-invasive assessment of human cone photoreceptor function

Robert F. Cooper, William S. Tuten, Alfredo Dubra, David H. Brainard, and Jessica I. W. Morgan
Biomed. Opt. Express 8(11) 5098-5112 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  2. D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
    [Crossref] [PubMed]
  3. A. Roorda, “Adaptive optics for studying visual function: A comprehensive review,” J. Vis. 11(5), 6 (2011) doi:.
    [Crossref] [PubMed]
  4. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
    [Crossref] [PubMed]
  5. E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
    [Crossref] [PubMed]
  6. W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
    [Crossref] [PubMed]
  7. M. A. Mainster, G. T. Timberlake, R. H. Webb, and G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89(7), 852–857 (1982).
    [Crossref] [PubMed]
  8. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
    [Crossref] [PubMed]
  9. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
    [Crossref] [PubMed]
  10. A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26(3), 225–239 (2006).
    [Crossref] [PubMed]
  11. B. E. A. Saleh and M. C. Teich, “Acousto-optics,” in Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).
  12. S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
    [PubMed]
  13. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
    [Crossref] [PubMed]
  14. A. B. Watson and D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33(2), 113–120 (1983).
    [Crossref] [PubMed]
  15. K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
    [Crossref] [PubMed]
  16. R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
    [Crossref] [PubMed]
  17. W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
    [Crossref] [PubMed]
  18. E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
    [Crossref] [PubMed]
  19. N. Domdei, F. G. Holz, A. Roorda, L. C. Sincich, and W. M. Harmening, “Characterization of an adaptive optics SLO based retinal display for cellular level visual psychophysics,” Perception 44, 1–415 (2015).
  20. M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
    [Crossref] [PubMed]
  21. M. Ghodrati, A. P. Morris, and N. S. C. Price, “The (un)suitability of modern liquid crystal displays (LCDs) for vision research,” Front. Psychol. 6, 303 (2015).
    [Crossref] [PubMed]
  22. H. Ito, M. Ogawa, and S. Sunaga, “Evaluation of an organic light-emitting diode display for precise visual stimulation,” J. Vis. 13(7), 6 (2013) doi:.
    [Crossref] [PubMed]
  23. E. Geissler, C. Nieten, G. Rudolph, and M. Pretorius, “Projektionssystem,” U.S. patent EP 2294483 B1 (2009).
  24. K. Petermann, “Laser diode modulation and noise,” in Advances in Optoelectronics (Kluwer Academic Publishers, 2012), pp. 78–114.
  25. A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10(12), 2491–2521 (1993).
    [Crossref] [PubMed]
  26. M. Roth, M. Tseitlin, and N. Angert, “Oxide Crystals for Electro-Optic Q -Switching of Lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
    [Crossref]
  27. D. Koenig and H. Hofer, “The absolute threshold of cone vision,” J. Vis. 11(1), 21 (2011) doi:.
    [Crossref] [PubMed]
  28. J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
    [Crossref] [PubMed]
  29. H. D. Crane and C. M. Steele, “Generation-V dual-Purkinje-image eyetracker,” Appl. Opt. 24(4), 527–537 (1985).
    [Crossref] [PubMed]
  30. D. H. Brainard, D. R. Williams, and H. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vis. 8(5), 15 (2008) doi:.
    [Crossref] [PubMed]
  31. Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
    [Crossref] [PubMed]
  32. W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
    [Crossref] [PubMed]
  33. R. W. Massof and D. Finkelstein, “Rod sensitivity relative to cone sensitivity in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 18(3), 263–272 (1979).
    [PubMed]
  34. R. G. Fraser, R. Tan, L. N. Ayton, E. Caruso, R. H. Guymer, and C. D. Luu, “Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(13), 5436–5442 (2016).
    [Crossref] [PubMed]
  35. R. W. Nygaard and R. A. Schuchard, “SLO radiant power and brightness,” J. Rehabil. Res. Dev. 38(1), 123–128 (2001).
    [PubMed]
  36. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
    [Crossref] [PubMed]

2017 (1)

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

2016 (3)

J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

R. G. Fraser, R. Tan, L. N. Ayton, E. Caruso, R. H. Guymer, and C. D. Luu, “Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(13), 5436–5442 (2016).
[Crossref] [PubMed]

2015 (4)

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

M. Ghodrati, A. P. Morris, and N. S. C. Price, “The (un)suitability of modern liquid crystal displays (LCDs) for vision research,” Front. Psychol. 6, 303 (2015).
[Crossref] [PubMed]

N. Domdei, F. G. Holz, A. Roorda, L. C. Sincich, and W. M. Harmening, “Characterization of an adaptive optics SLO based retinal display for cellular level visual psychophysics,” Perception 44, 1–415 (2015).

2014 (1)

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

2013 (2)

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
[Crossref] [PubMed]

H. Ito, M. Ogawa, and S. Sunaga, “Evaluation of an organic light-emitting diode display for precise visual stimulation,” J. Vis. 13(7), 6 (2013) doi:.
[Crossref] [PubMed]

2012 (1)

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref] [PubMed]

2011 (3)

D. Koenig and H. Hofer, “The absolute threshold of cone vision,” J. Vis. 11(1), 21 (2011) doi:.
[Crossref] [PubMed]

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[Crossref] [PubMed]

A. Roorda, “Adaptive optics for studying visual function: A comprehensive review,” J. Vis. 11(5), 6 (2011) doi:.
[Crossref] [PubMed]

2010 (2)

2009 (1)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

2008 (1)

D. H. Brainard, D. R. Williams, and H. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vis. 8(5), 15 (2008) doi:.
[Crossref] [PubMed]

2007 (1)

2006 (2)

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
[Crossref] [PubMed]

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26(3), 225–239 (2006).
[Crossref] [PubMed]

2005 (2)

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

M. Roth, M. Tseitlin, and N. Angert, “Oxide Crystals for Electro-Optic Q -Switching of Lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

2001 (1)

R. W. Nygaard and R. A. Schuchard, “SLO radiant power and brightness,” J. Rehabil. Res. Dev. 38(1), 123–128 (2001).
[PubMed]

2000 (1)

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
[Crossref] [PubMed]

1997 (2)

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[Crossref] [PubMed]

1993 (1)

1985 (1)

1983 (1)

A. B. Watson and D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33(2), 113–120 (1983).
[Crossref] [PubMed]

1982 (1)

M. A. Mainster, G. T. Timberlake, R. H. Webb, and G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89(7), 852–857 (1982).
[Crossref] [PubMed]

1979 (1)

R. W. Massof and D. Finkelstein, “Rod sensitivity relative to cone sensitivity in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 18(3), 263–272 (1979).
[PubMed]

Achtman, R. L.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
[Crossref] [PubMed]

Angert, N.

M. Roth, M. Tseitlin, and N. Angert, “Oxide Crystals for Electro-Optic Q -Switching of Lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

Arathorn, D. W.

Ayton, L. N.

R. G. Fraser, R. Tan, L. N. Ayton, E. Caruso, R. H. Guymer, and C. D. Luu, “Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(13), 5436–5442 (2016).
[Crossref] [PubMed]

Bach, M.

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[Crossref] [PubMed]

Bavelier, D.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
[Crossref] [PubMed]

Bernstein, P. S.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Brainard, D. H.

D. H. Brainard, D. R. Williams, and H. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vis. 8(5), 15 (2008) doi:.
[Crossref] [PubMed]

Bruce, K. S.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Carroll, J.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
[Crossref] [PubMed]

Caruso, E.

R. G. Fraser, R. Tan, L. N. Ayton, E. Caruso, R. H. Guymer, and C. D. Luu, “Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(13), 5436–5442 (2016).
[Crossref] [PubMed]

Crane, H. D.

Domdei, N.

N. Domdei, F. G. Holz, A. Roorda, L. C. Sincich, and W. M. Harmening, “Characterization of an adaptive optics SLO based retinal display for cellular level visual psychophysics,” Perception 44, 1–415 (2015).

Duncan, J. L.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Espigulé-Pons, J.

J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
[Crossref] [PubMed]

Finkelstein, D.

R. W. Massof and D. Finkelstein, “Rod sensitivity relative to cone sensitivity in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 18(3), 263–272 (1979).
[PubMed]

Fraser, R. G.

R. G. Fraser, R. Tan, L. N. Ayton, E. Caruso, R. H. Guymer, and C. D. Luu, “Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(13), 5436–5442 (2016).
[Crossref] [PubMed]

Ghodrati, M.

M. Ghodrati, A. P. Morris, and N. S. C. Price, “The (un)suitability of modern liquid crystal displays (LCDs) for vision research,” Front. Psychol. 6, 303 (2015).
[Crossref] [PubMed]

Grieve, K.

Guidon, A.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
[Crossref] [PubMed]

Guymer, R. H.

R. G. Fraser, R. Tan, L. N. Ayton, E. Caruso, R. H. Guymer, and C. D. Luu, “Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(13), 5436–5442 (2016).
[Crossref] [PubMed]

Harmening, W. M.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

N. Domdei, F. G. Holz, A. Roorda, L. C. Sincich, and W. M. Harmening, “Characterization of an adaptive optics SLO based retinal display for cellular level visual psychophysics,” Perception 44, 1–415 (2015).

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

Henry, L.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Hofer, H.

D. Koenig and H. Hofer, “The absolute threshold of cone vision,” J. Vis. 11(1), 21 (2011) doi:.
[Crossref] [PubMed]

D. H. Brainard, D. R. Williams, and H. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vis. 8(5), 15 (2008) doi:.
[Crossref] [PubMed]

Holland, J.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Holz, F. G.

N. Domdei, F. G. Holz, A. Roorda, L. C. Sincich, and W. M. Harmening, “Characterization of an adaptive optics SLO based retinal display for cellular level visual psychophysics,” Perception 44, 1–415 (2015).

Horton, J. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Hughes, G. W.

M. A. Mainster, G. T. Timberlake, R. H. Webb, and G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89(7), 852–857 (1982).
[Crossref] [PubMed]

Ito, H.

H. Ito, M. Ogawa, and S. Sunaga, “Evaluation of an organic light-emitting diode display for precise visual stimulation,” J. Vis. 13(7), 6 (2013) doi:.
[Crossref] [PubMed]

Johnson, N. E.

Koenig, D.

D. Koenig and H. Hofer, “The absolute threshold of cone vision,” J. Vis. 11(1), 21 (2011) doi:.
[Crossref] [PubMed]

Langston, B. R.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Lauwers, M.

J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
[Crossref] [PubMed]

Liang, J.

Lujan, B. J.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Luu, C. D.

R. G. Fraser, R. Tan, L. N. Ayton, E. Caruso, R. H. Guymer, and C. D. Luu, “Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(13), 5436–5442 (2016).
[Crossref] [PubMed]

MacLeod, D. I. A.

Mainster, M. A.

M. A. Mainster, G. T. Timberlake, R. H. Webb, and G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89(7), 852–857 (1982).
[Crossref] [PubMed]

Massof, R. W.

R. W. Massof and D. Finkelstein, “Rod sensitivity relative to cone sensitivity in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 18(3), 263–272 (1979).
[PubMed]

Meigen, T.

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[Crossref] [PubMed]

Miller, D. T.

Molodtsov, M. I.

J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
[Crossref] [PubMed]

Morris, A. P.

M. Ghodrati, A. P. Morris, and N. S. C. Price, “The (un)suitability of modern liquid crystal displays (LCDs) for vision research,” Front. Psychol. 6, 303 (2015).
[Crossref] [PubMed]

Nygaard, R. W.

R. W. Nygaard and R. A. Schuchard, “SLO radiant power and brightness,” J. Rehabil. Res. Dev. 38(1), 123–128 (2001).
[PubMed]

Ogawa, M.

H. Ito, M. Ogawa, and S. Sunaga, “Evaluation of an organic light-emitting diode display for precise visual stimulation,” J. Vis. 13(7), 6 (2013) doi:.
[Crossref] [PubMed]

Patel, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Pelli, D. G.

A. B. Watson and D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33(2), 113–120 (1983).
[Crossref] [PubMed]

Poonja, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Prevedel, R.

J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
[Crossref] [PubMed]

Price, N. S. C.

M. Ghodrati, A. P. Morris, and N. S. C. Price, “The (un)suitability of modern liquid crystal displays (LCDs) for vision research,” Front. Psychol. 6, 303 (2015).
[Crossref] [PubMed]

Roorda, A.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

N. Domdei, F. G. Holz, A. Roorda, L. C. Sincich, and W. M. Harmening, “Characterization of an adaptive optics SLO based retinal display for cellular level visual psychophysics,” Perception 44, 1–415 (2015).

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
[Crossref] [PubMed]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref] [PubMed]

A. Roorda, “Adaptive optics for studying visual function: A comprehensive review,” J. Vis. 11(5), 6 (2011) doi:.
[Crossref] [PubMed]

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[Crossref] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
[Crossref] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
[Crossref] [PubMed]

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Rossi, E. A.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
[Crossref] [PubMed]

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[Crossref] [PubMed]

Roth, M.

M. Roth, M. Tseitlin, and N. Angert, “Oxide Crystals for Electro-Optic Q -Switching of Lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

Sabesan, R.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Schmidt, B. P.

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Schuchard, R. A.

R. W. Nygaard and R. A. Schuchard, “SLO radiant power and brightness,” J. Rehabil. Res. Dev. 38(1), 123–128 (2001).
[PubMed]

Schwartz, S. D.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26(3), 225–239 (2006).
[Crossref] [PubMed]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
[Crossref] [PubMed]

Sincich, L. C.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

N. Domdei, F. G. Holz, A. Roorda, L. C. Sincich, and W. M. Harmening, “Characterization of an adaptive optics SLO based retinal display for cellular level visual psychophysics,” Perception 44, 1–415 (2015).

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Steele, C. M.

Stockman, A.

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26(3), 225–239 (2006).
[Crossref] [PubMed]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
[Crossref] [PubMed]

A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10(12), 2491–2521 (1993).
[Crossref] [PubMed]

Strasburger, H.

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[Crossref] [PubMed]

Sunaga, S.

H. Ito, M. Ogawa, and S. Sunaga, “Evaluation of an organic light-emitting diode display for precise visual stimulation,” J. Vis. 13(7), 6 (2013) doi:.
[Crossref] [PubMed]

Tan, R.

R. G. Fraser, R. Tan, L. N. Ayton, E. Caruso, R. H. Guymer, and C. D. Luu, “Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(13), 5436–5442 (2016).
[Crossref] [PubMed]

Timberlake, G. T.

M. A. Mainster, G. T. Timberlake, R. H. Webb, and G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89(7), 852–857 (1982).
[Crossref] [PubMed]

Tinsley, J. N.

J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
[Crossref] [PubMed]

Tiruveedhula, P.

Tseitlin, M.

M. Roth, M. Tseitlin, and N. Angert, “Oxide Crystals for Electro-Optic Q -Switching of Lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

Tuten, W. S.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref] [PubMed]

Vaziri, A.

J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
[Crossref] [PubMed]

Vogel, C. R.

Wang, Q.

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

Wartmann, D.

J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
[Crossref] [PubMed]

Watson, A. B.

A. B. Watson and D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33(2), 113–120 (1983).
[Crossref] [PubMed]

Webb, R. H.

M. A. Mainster, G. T. Timberlake, R. H. Webb, and G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89(7), 852–857 (1982).
[Crossref] [PubMed]

Williams, D. R.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
[Crossref] [PubMed]

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[Crossref] [PubMed]

D. H. Brainard, D. R. Williams, and H. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vis. 8(5), 15 (2008) doi:.
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

Yang, Q.

Zhang, Y.

Appl. Opt. (1)

Front. Psychol. (1)

M. Ghodrati, A. P. Morris, and N. S. C. Price, “The (un)suitability of modern liquid crystal displays (LCDs) for vision research,” Front. Psychol. 6, 303 (2015).
[Crossref] [PubMed]

Glass Phys. Chem. (1)

M. Roth, M. Tseitlin, and N. Angert, “Oxide Crystals for Electro-Optic Q -Switching of Lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (4)

R. W. Massof and D. Finkelstein, “Rod sensitivity relative to cone sensitivity in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 18(3), 263–272 (1979).
[PubMed]

R. G. Fraser, R. Tan, L. N. Ayton, E. Caruso, R. H. Guymer, and C. D. Luu, “Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(13), 5436–5442 (2016).
[Crossref] [PubMed]

Q. Wang, W. S. Tuten, B. J. Lujan, J. Holland, P. S. Bernstein, S. D. Schwartz, J. L. Duncan, and A. Roorda, “Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions,” Invest. Ophthalmol. Vis. Sci. 56(2), 778–786 (2015).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

J. Neurosci. (2)

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina,” J. Neurosci. 37(39), 9498–9509 (2017).
[Crossref] [PubMed]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (1)

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

J. Rehabil. Res. Dev. (1)

R. W. Nygaard and R. A. Schuchard, “SLO radiant power and brightness,” J. Rehabil. Res. Dev. 38(1), 123–128 (2001).
[PubMed]

J. Vis. (4)

D. Koenig and H. Hofer, “The absolute threshold of cone vision,” J. Vis. 11(1), 21 (2011) doi:.
[Crossref] [PubMed]

A. Roorda, “Adaptive optics for studying visual function: A comprehensive review,” J. Vis. 11(5), 6 (2011) doi:.
[Crossref] [PubMed]

H. Ito, M. Ogawa, and S. Sunaga, “Evaluation of an organic light-emitting diode display for precise visual stimulation,” J. Vis. 13(7), 6 (2013) doi:.
[Crossref] [PubMed]

D. H. Brainard, D. R. Williams, and H. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vis. 8(5), 15 (2008) doi:.
[Crossref] [PubMed]

Nat. Commun. (1)

J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, “Direct detection of a single photon by humans,” Nat. Commun. 7, 12172 (2016).
[Crossref] [PubMed]

Nat. Neurosci. (2)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26(3), 225–239 (2006).
[Crossref] [PubMed]

Ophthalmology (1)

M. A. Mainster, G. T. Timberlake, R. H. Webb, and G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89(7), 852–857 (1982).
[Crossref] [PubMed]

Opt. Express (3)

Optom. Vis. Sci. (1)

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref] [PubMed]

Percept. Psychophys. (1)

A. B. Watson and D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33(2), 113–120 (1983).
[Crossref] [PubMed]

Perception (1)

N. Domdei, F. G. Holz, A. Roorda, L. C. Sincich, and W. M. Harmening, “Characterization of an adaptive optics SLO based retinal display for cellular level visual psychophysics,” Perception 44, 1–415 (2015).

PLoS One (1)

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual function and cortical organization in carriers of blue cone monochromacy,” PLoS One 8(2), e57956 (2013).
[Crossref] [PubMed]

Sci. Adv. (1)

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2(9), e1600797 (2016).
[Crossref] [PubMed]

Spat. Vis. (1)

M. Bach, T. Meigen, and H. Strasburger, “Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions,” Spat. Vis. 10(4), 403–414 (1997).
[Crossref] [PubMed]

Vision Res. (2)

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[Crossref] [PubMed]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
[Crossref] [PubMed]

Other (3)

B. E. A. Saleh and M. C. Teich, “Acousto-optics,” in Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).

E. Geissler, C. Nieten, G. Rudolph, and M. Pretorius, “Projektionssystem,” U.S. patent EP 2294483 B1 (2009).

K. Petermann, “Laser diode modulation and noise,” in Advances in Optoelectronics (Kluwer Academic Publishers, 2012), pp. 78–114.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 High-contrast in vivo micro-stimulation for visual psychophysics. A: With AOSLO, single photoreceptors can be imaged and targeted for small spot stimulation. During scanning (horizontal and vertical arrows), incomplete extinction of stimulus light modulation will produce stimuli on the subject’s retina that contain a visible background, limiting experimental options. B: Acousto-optic modulation exhibits finite extinction, i.e. the ratio of light transmitted during full ON and OFF is limited by light leak caused by incomplete optical isolation between the undiffracted (black) and the modulated diffracted beam (green, gray area in power plot, not to scale). C: AOM cascading schematic. Intensity of a visible stimulation light is controlled by fiber-coupled acousto-optic modulation (AOM) in single (solid) or cascaded (dashed) configuration to produce diffraction limited spatially resolved stimuli on the retina of a human observer. Temporal alignment is realized by delaying drive signals (∆t) for AOM1. We analyzed visual contrast of the stimulus light either radiometrically or psychophysically at the locations marked with an asterisk. Cascading increased contrast multiplicatively and removed unwanted backgrounds.
Fig. 2
Fig. 2 Single and cascaded AOM optical contrast. A: Radiant output power as a function of drive voltage measured with individual AOMs (blue markers) were best fitted by a sin2 or sin4 function (grey lines, fit parameters given), respectively. Minimal power was found at non-zero drive signals. In the cascade, maximum absolute output power is lower (amber markers), and the characteristic closely follows multiplication of the single AOM measurement points (amber line). Our setup did not allow power measurements below 10−6 mW, resulting in a plateau at low drive voltages (lightly colored +’s). B: AOM contrast ratios yielded by normalization and zero-point correction of data from A after drive signal linearization. A drive signal of 1.0 a.u. produces maximum output power for each AOM, a signal of 0 the minimum. The y-axis shows the contrast ratio relative to minimum output. C: Cascading two AOMs results in a superior contrast ratio relative to single AOMs. Due to about 90% insertion loss of absolute output power in the cascade, the range of displayable light levels is shifted towards lower intensities. The effective contrast ratio of the AOM cascade was about  1: 10 10 .
Fig. 3
Fig. 3 AOM latency and temporal alignment. A: Single AOM response functions (middle and lower row, grey: single measurement, blue: average) measured after repeated (n = 7) square wave drive signal onsets (upper row). Mean latency (± STD) values are shown in the plot, latency difference between the two AOMs was 240 ± 6 ns. B: To temporally align AOM switching events for small visual stimuli, drive signals for AOM1 were delayed in 50 ns increments, to a close-to-optimal delay at around 250 ns. C: Average of 90 frames captured with a CCD-camera at a retinal plane of the AOSLO with varying AOM delays for a 50 ns stimulus (2x2 pixel). D: Optimal delay analysis with different stimulus sizes based on image intensity as in C. Cross markers are data points (connecting solid lines added for visibility), exponential fit functions (power of two, dotted lines) locate the optimal offset to be 236 ± 3 ns, in agreement with the measured delay from A.
Fig. 4
Fig. 4 Background elimination and stimulus visibility in AOSLO micro-stimulation. A: Light attenuation necessary to eliminate the AOM background leak for two dark adapted subjects (S1, S2), inspected foveally and at 10° nasal eccentricity. With single AOM modulation (blue bars), light leak was removed with an attenuation of 4.5-5.5 log units at the fovea. The background was never visible with cascaded modulation. With eccentric fixation, attenuation of 6.6-7 log units was required to remove the background for single AOM, and 0.6 log units for cascaded AOM light modulation (amber bar). B: Residual modulation range for small visible stimuli with eliminated background (i.e. viewing conditions found in A). Different sized stimuli were flashed at 3 Hz, subjects reported detection under foveal or eccentric fixation. With single AOM switching, stimuli had to be large to be visible, at both foveal and eccentric fixation (blue markers and lines). The smallest stimuli were not visible or required maximal modulation to be seen. With AOM cascading, even the smallest stimuli were easily seen, leaving a much greater dynamic range of stimulus modulation for psychophysical testing (amber markers and lines).
Fig. 5
Fig. 5 Psychophysical detection thresholds using single and cascaded AOMs. A: Foveal stimulus locations plotted on S1’s AOSLO retinal image in repeated increment sensitivity measurements. Square markers show the exact position and approximate size of the stimulus (3x3 image pixel) for a total of 280 trials. Polygons encompass the area where 50% of all trials hit. Subjects had little fixational eye motion, reflected here by the size of the 50% area. B: Raw psychophysical threshold estimates from the example in A given in arbitrary units of power modulation after 20 trials using QUEST staircases for both single and cascaded AOM switching. Thresholds and variability are similar in both cases. C: Threshold comparison for both single and cascaded switching converted to absolute stimulus power at the cornea in two subjects (S1,S2). We found no significant differences between conditions within subjects (p = 0.77 and 0.29, t-test for paired data). Values indicate mean threshold power in fW ± standard deviation. For all panels, colors denote single (blue) and cascaded (amber) AOM switching, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

 P( U )= P max sin ( U U min U max U min π 2 ) 2 + P min
P AOM1 ( U )=5.50sin ( U+4.2 1100+4.2 π 2 ) 2 + 1.0  10 4
P AOM2 ( U )=2.74sin ( U38 105038 π 2 ) 4 + 1.2  10 5
P cone = hc n γ tλ ,
 Φ= K m [ lm W ]   P min [W]  V(λ)
E R = Φ[lm] A R [ m 2 ]
A R = ( 2tan( θ 2 ) f e [m] ) 2
  L v = E R [ lm m 2 ] ( f e [ m ] ) 2 A P [ m 2 ] ,
T= L v [ cd m 2 ] A P [ m m 2 ]
L v = K ' m [ lm W ]   P min [W]  V'(λ=543 nm) ( 2tan( θ 2 ) f e [m] ) 2 ( f e [m]) 2 A P [ m 2 ] =4,82 10 6 cd m 2
L v = K m [ lm W ]  P[W]  V(λ=840 nm) ( 2tan( θ 2 ) f e [m] ) 2 ( f e [m]) 2 A P [ m 2 ] =3.14 cd m 2

Metrics