Abstract

We present a novel extended-focus optical coherence microscope (OCM) attaining 0.7 μm axial and 0.4 μm lateral resolution maintained over a depth of 40 μm, while preserving the advantages of Fourier domain OCM. Our system uses an ultra-broad spectrum from a supercontinuum laser source. As the spectrum spans from near-infrared to visible wavelengths (240 nm in bandwidth), we call the system visOCM. The combination of such a broad spectrum with a high-NA objective creates an almost isotropic 3D submicron resolution. We analyze the imaging performance of visOCM on microbead samples and demonstrate its image quality on cell cultures and ex-vivo brain tissue of both healthy and alzheimeric mice. In addition to neuronal cell bodies, fibers and plaques, visOCM imaging of brain tissue reveals fine vascular structures and sub-cellular features through its high spatial resolution. Sub-cellular structures were also observed in live cells and were further revealed through a protocol traditionally used for OCT angiography.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computed optical interferometric tomography for high-speed volumetric cellular imaging

Yuan-Zhi Liu, Nathan D. Shemonski, Steven G. Adie, Adeel Ahmad, Andrew J. Bower, P. Scott Carney, and Stephen A. Boppart
Biomed. Opt. Express 5(9) 2988-3000 (2014)

Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain

Szymon Tamborski, Hong Chou Lyu, Hubert Dolezyczek, Monika Malinowska, Grzegorz Wilczynski, Daniel Szlag, Theo Lasser, Maciej Wojtkowski, and Maciej Szkulmowski
Biomed. Opt. Express 7(11) 4400-4414 (2016)

Tri-modal microscopy with multiphoton and optical coherence microscopy/tomography for multi-scale and multi-contrast imaging

Shau Poh Chong, Tom Lai, Yifeng Zhou, and Shuo Tang
Biomed. Opt. Express 4(9) 1584-1594 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
    [Crossref]
  2. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [Crossref] [PubMed]
  3. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
    [Crossref]
  4. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
    [Crossref]
  5. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - development, principles, applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [Crossref]
  6. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  7. M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
    [Crossref] [PubMed]
  8. S. Broillet, D. Szlag, A. Bouwens, L. Maurizi, H. Hofmann, T. Lasser, and M. Leutenegger, “Visible light optical coherence correlation spectroscopy,” Opt. Express 22(18), 21944–21957 (2014).
    [Crossref] [PubMed]
  9. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5(12), 744–747 (2011).
    [Crossref]
  10. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
    [Crossref] [PubMed]
  11. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
    [Crossref] [PubMed]
  12. M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
    [Crossref] [PubMed]
  13. A. Oldenburg, X. Yu, T. Gilliss, O. Alabi, R. M. Taylor, and M. A. Troester, “Inverse-power-law behavior of cellular motility reveals stromal-epithelial cell interactions in 3D co-culture by OCT fluctuation spectroscopy,” Optica 2, 877–885 (2015).
    [Crossref]
  14. L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
    [Crossref] [PubMed]
  15. J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
    [Crossref] [PubMed]
  16. C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: sub-cellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
    [Crossref] [PubMed]
  17. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, Andrzej Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 707–709 (2004).
    [Crossref]
  18. N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLOS ONE 10(5), 1–13 (2015).
    [Crossref]
  19. T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
    [Crossref] [PubMed]
  20. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).
    [Crossref] [PubMed]
  21. C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast,” Biomed. Opt. Express 4(10), 1978–1990 (2013).
    [Crossref] [PubMed]
  22. C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
    [Crossref] [PubMed]
  23. O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
    [Crossref] [PubMed]
  24. S. Jawhar, A. Trawicka, C. Jenneckens, T. A. Bayer, and O. Wirths, “Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal A aggregation in the 5XFAD mouse model of Alzheimer’s disease,” Neurobiol. Aging 33(1), 196 (2012).
    [Crossref]
  25. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
    [Crossref] [PubMed]
  26. R. Leitgeb, C. K. Hitzerberger, and A. F. Fercher, “Performance of fourier domain vs time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  27. S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
    [Crossref] [PubMed]
  28. G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
    [Crossref]
  29. C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
    [Crossref]
  30. B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
    [Crossref]
  31. C.-E. Leroux, F. Bertillot, O. Thouvenin, and A. C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7(11), 4501 (2016).
    [Crossref] [PubMed]
  32. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
    [Crossref] [PubMed]
  33. H. Makhlouf, K. Perronet, G. Dupuis, S. Lévêque-Fort, and Arnaud Dubois, “Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination,” Opt. Lett. 37(10), 1613–1615 (2012).
    [Crossref] [PubMed]
  34. O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
    [Crossref]
  35. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
    [Crossref]

2017 (3)

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
[Crossref]

2016 (6)

C.-E. Leroux, F. Bertillot, O. Thouvenin, and A. C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7(11), 4501 (2016).
[Crossref] [PubMed]

S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref] [PubMed]

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: sub-cellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (2)

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
[Crossref]

S. Broillet, D. Szlag, A. Bouwens, L. Maurizi, H. Hofmann, T. Lasser, and M. Leutenegger, “Visible light optical coherence correlation spectroscopy,” Opt. Express 22(18), 21944–21957 (2014).
[Crossref] [PubMed]

2013 (4)

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast,” Biomed. Opt. Express 4(10), 1978–1990 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5(12), 744–747 (2011).
[Crossref]

2010 (2)

2006 (1)

2004 (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, Andrzej Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 707–709 (2004).
[Crossref]

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - development, principles, applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

R. Leitgeb, C. K. Hitzerberger, and A. F. Fercher, “Performance of fourier domain vs time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

2000 (1)

Alabi, O.

Apelian, C.

Aranda, J.

Arellano-Jiméanez, M. J.

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Assayag, O.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Augustin, M.

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

Augustinack, J. C.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Auksorius, E.

Ayata, C.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

Babacan, S. D.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
[Crossref]

Bachmann, A. H.

Backman, V.

Barry, S.

Baumann, B.

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

Bayer, T. A.

S. Jawhar, A. Trawicka, C. Jenneckens, T. A. Bayer, and O. Wirths, “Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal A aggregation in the 5XFAD mouse model of Alzheimer’s disease,” Neurobiol. Aging 33(1), 196 (2012).
[Crossref]

Becker, K.

N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLOS ONE 10(5), 1–13 (2015).
[Crossref]

Berclaz, C.

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

Bertillot, F.

Betancourt, I.

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Bhaduri, B.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Boas, D. A.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
[Crossref] [PubMed]

Boccara, A. C.

Boccara, C.

O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
[Crossref]

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Bolmont, T.

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

Bouma, B. E.

Bouwens, A.

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

S. Broillet, D. Szlag, A. Bouwens, L. Maurizi, H. Hofmann, T. Lasser, and M. Leutenegger, “Visible light optical coherence correlation spectroscopy,” Opt. Express 22(18), 21944–21957 (2014).
[Crossref] [PubMed]

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

Broillet, S.

Bromberg, Y.

Cable, A. E.

Carney, P. S.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
[Crossref]

Chakrabortty, S.

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

Chakraborty, A.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Chong, S. P.

Chretien, F.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Climov, M.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

Collingwood, J. F.

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Coron, E.

Daneshmand, A.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Devaux, B.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Dimitrov, M.

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

Dodt, H.-U.

N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLOS ONE 10(5), 1–13 (2015).
[Crossref]

Dolezyczek, H.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - development, principles, applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[Crossref]

Dubois, Arnaud

Duker, J. S.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, Andrzej Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 707–709 (2004).
[Crossref]

Dupuis, G.

Extermann, J.

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

Fercher, A. F.

R. Leitgeb, C. K. Hitzerberger, and A. F. Fercher, “Performance of fourier domain vs time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - development, principles, applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Fink, M.

O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
[Crossref]

Fischl, B.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Fraering, P. C.

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

Frosch, M. P.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, Andrzej Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 707–709 (2004).
[Crossref]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[Crossref]

Garcia, N.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Gillette, M. U.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Gilliss, T.

Goddard, L. L.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
[Crossref]

Goldstein, A. M.

Goulley, J.

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5(12), 744–747 (2011).
[Crossref]

Grapin-Botton, A.

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

Grathwohl, S. A.

N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLOS ONE 10(5), 1–13 (2015).
[Crossref]

Grieve, K.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Hansen, L.

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

Harms, F.

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: sub-cellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref] [PubMed]

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Hitzenberger, C. K.

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - development, principles, applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Hitzerberger, C. K.

Hofmann, H.

Holmberg, D.

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

Huisken, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Ippen, E. P.

Iyer, R.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Jährling, N.

N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLOS ONE 10(5), 1–13 (2015).
[Crossref]

Jawhar, S.

S. Jawhar, A. Trawicka, C. Jenneckens, T. A. Bayer, and O. Wirths, “Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal A aggregation in the 5XFAD mouse model of Alzheimer’s disease,” Neurobiol. Aging 33(1), 196 (2012).
[Crossref]

Jenneckens, C.

S. Jawhar, A. Trawicka, C. Jenneckens, T. A. Bayer, and O. Wirths, “Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal A aggregation in the 5XFAD mouse model of Alzheimer’s disease,” Neurobiol. Aging 33(1), 196 (2012).
[Crossref]

Jiang, J. Y.

José-Yacamán, M.

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Jucker, M.

N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLOS ONE 10(5), 1–13 (2015).
[Crossref]

Kärtner, F. X.

Kazlauskas, A.

Kim, T.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
[Crossref]

Ko, T. H.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, Andrzej Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 707–709 (2004).
[Crossref]

Konukoglu, E.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Kovacs, G. G.

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

Kowalczyk, Andrzej

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, Andrzej Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 707–709 (2004).
[Crossref]

Lasser, T.

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref] [PubMed]

S. Broillet, D. Szlag, A. Bouwens, L. Maurizi, H. Hofmann, T. Lasser, and M. Leutenegger, “Visible light optical coherence correlation spectroscopy,” Opt. Express 22(18), 21944–21957 (2014).
[Crossref] [PubMed]

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
[Crossref] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - development, principles, applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Leahy, C.

Lee, J.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Leroux, C.-E.

Leutenegger, M.

Lévêque-Fort, S.

Li, X. D.

Liu, L.

Liu, W.

Lopez, A.

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

Lyu, H. C.

Ma, L.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Magnain, C.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Makhlouf, H.

Malinowska, M.

Marchand, P. J.

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

Maurizi, L.

Merkle, C. W.

Millet, L.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Mir, M.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
[Crossref]

Mitter, C.

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

Morgner, U.

Motiejunaite, R.

Nahas, A.

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

Oldenburg, A.

Pache, C.

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
[Crossref] [PubMed]

Pallud, J.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Pawley, J.

J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
[Crossref]

Perronet, K.

Perry, G.

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Pieretti, A.

Pircher, M.

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

Pitris, C.

Plascencia-Villa, G.

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Ponce, A.

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Popescu, G.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
[Crossref]

Prasanth, S.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Radhakrishnan, H.

Rajshekhar, G.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Ricken, G.

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5(12), 744–747 (2011).
[Crossref]

Rogers, J. T.

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Sakadzic, S.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Schmidt-Christensen, A.

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

Schuit, F.

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

Sison, M.

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

Sridharan, S.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Srinivasan, V. J.

Steinmann, L.

Stelzer, E. H. K.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Szkulmowski, M.

Szlag, D.

Tamborski, S.

Taylor, R. M.

Tearney, G. J.

Thouvenin, O.

Tian, L.

Trawicka, A.

S. Jawhar, A. Trawicka, C. Jenneckens, T. A. Bayer, and O. Wirths, “Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal A aggregation in the 5XFAD mouse model of Alzheimer’s disease,” Neurobiol. Aging 33(1), 196 (2012).
[Crossref]

Troester, M. A.

Varjabedian, A.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Varlet, P.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Villiger, M.

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
[Crossref] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

Waller, L.

Wang, R.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5(12), 744–747 (2011).
[Crossref]

Wedeen, V. J.

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Wegenast-Braun, B. M.

N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLOS ONE 10(5), 1–13 (2015).
[Crossref]

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

Wei, Q.

Weil, T.

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

Wilczynski, G.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5(12), 744–747 (2011).
[Crossref]

Wirths, O.

S. Jawhar, A. Trawicka, C. Jenneckens, T. A. Bayer, and O. Wirths, “Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal A aggregation in the 5XFAD mouse model of Alzheimer’s disease,” Neurobiol. Aging 33(1), 196 (2012).
[Crossref]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Woehrer, A.

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

Wojtkowski, M.

S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, Andrzej Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 707–709 (2004).
[Crossref]

Wu, W.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
[Crossref] [PubMed]

Yaseen, M. A.

Yi, J.

Yu, X.

Zhang, H. F.

Zhou, R.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
[Crossref]

Zhu, X.

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Biomed. Opt. Express (6)

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
[Crossref] [PubMed]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: sub-cellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref] [PubMed]

C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast,” Biomed. Opt. Express 4(10), 1978–1990 (2013).
[Crossref] [PubMed]

S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref] [PubMed]

C.-E. Leroux, F. Bertillot, O. Thouvenin, and A. C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7(11), 4501 (2016).
[Crossref] [PubMed]

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref] [PubMed]

Diabetologia (1)

C. Berclaz, A. Schmidt-Christensen, D. Szlag, J. Extermann, L. Hansen, A. Bouwens, M. Villiger, J. Goulley, F. Schuit, A. Grapin-Botton, T. Lasser, and D. Holmberg, “Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging,” Diabetologia 59(3), 550–559 (2016).
[Crossref]

J. Biomed. Opt. (1)

O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

J. Neurosci. (1)

T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref] [PubMed]

Nat. Photon. (2)

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon. 8, 256–263 (2014).
[Crossref]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5(12), 744–747 (2011).
[Crossref]

Neurobiol. Aging (1)

S. Jawhar, A. Trawicka, C. Jenneckens, T. A. Bayer, and O. Wirths, “Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal A aggregation in the 5XFAD mouse model of Alzheimer’s disease,” Neurobiol. Aging 33(1), 196 (2012).
[Crossref]

Neuroimage Clin. (1)

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Neurophotonics (1)

C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic, A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl, “Optical coherence tomography visualizes neurons in human entorhinal cortex,” Neurophotonics 2(1), 015004 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (6)

Optica (2)

PLOS ONE (1)

N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLOS ONE 10(5), 1–13 (2015).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - development, principles, applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Sci. Rep. (4)

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6, 32702 (2016).
[Crossref] [PubMed]

M. Sison, S. Chakrabortty, J. Extermann, A. Nahas, P. J. Marchand, A. Lopez, T. Weil, and T. Lasser, “3D time-lapse imaging and quantification of mitochondrial dynamics,” Sci. Rep. 7, 43275 (2017).
[Crossref] [PubMed]

B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]

G. Plascencia-Villa, A. Ponce, J. F. Collingwood, M. J. Arellano-Jiméanez, X. Zhu, J. T. Rogers, I. Betancourt, M. José-Yacamán, and G. Perry, “High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease,” Sci. Rep. 6, 24873 (2016).
[Crossref]

Science (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Other (1)

J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: AVI (8704 KB)      Scan in depth of a brain slice acquired with visOCM containing large cells. Scalebar: 50 um
» Visualization 2: AVI (3622 KB)      Scan in depth of a brain slice acquired with visOCM containing a large vessel caliber. Scalebar: 50 um
» Visualization 3: AVI (10428 KB)      Scan in depth of a brain slice acquired with visOCM containing amyloid plaques. Scalebar: 50 um

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the extended-focus OCM using a broad spectrum in the visible wavelength range and a high NA objective for high axial and lateral resolution. By combining a Bessel illumination, generated by an axicon lens, and a Gaussian detection, a dark-field extended-focus system can be obtained. P: Polarizer, BBDM: Broadband dielectric mirror, BS: Beamsplitter, PBS: Polarizing beamsplitter.

Fig. 2
Fig. 2

Dispersion compensation strategies: (a) Prior to aligning the optical setup, a first estimation of the dispersion mismatch in the system is performed by modelling the optical path length of the different arms of the interferometer. The thicknesses and dispersion curves of the different glasses are used to model the OPD between the arms of the system. The OPD is then fit with a multivariate regression using the dispersion curves of SF10 and BK7 as set of regressors to obtain the respective thicknesses to fully balance the dispersion in the interferometer. (b) In order to match the dispersion, a compensation unit was devised allowing a fine control of the thickness of the glass. A mechanism comprising a stepper motor and cogwheels allows changing the angle of a pair of glass windows to vary the length of glass traversed by light. (c) During the alignment, the dispersion was matched by observing and minimizing the residual dispersion present in the system, obtained by a simple set of processing steps: The interferogram first undergoes a λ-k mapping step from which the phase is then extracted by a Hilbert transform. The linear component of this phase is then extracted and removed to reveal the residual dispersion.

Fig. 3
Fig. 3

Characterization of the visOCM system: (a) Illumination spectrum spanning from the visible to the near-infrared range, centred at 647 nm and 246 nm wide. (b)The ultra-broad spectrum leads to a submicrometric optical sectioning capability. (c) Plots and heatmaps (in linear scale) displaying the lateral PSF along the depth of focus of the objective, illustrating that the diameter of the central lobe is maintained at ∼400 nm over 40 μm in depth. Scalebar: 500 nm

Fig. 4
Fig. 4

ex-vivo visOCM imaging of the PTLp cortex in a B6SJL/f1 mouse brain slice. (a) A transmission image of the entire mouse hemisphere was first acquired to locate the desired area (green rectangle), which was then imaged with visOCM (b). The mosaic of part of the PTLp cortex, acquired with visOCM, reveals a variety of cortical structures, such as fibers, cell bodies and vascular entities (en-face view). In the mosaic, mainly two types of cells can be visualized, large cells as shown in (c) and smaller darker cells as pointed by arrowheads in (d). A depth scan of (c) is shown in Visualization 1. The orthogonal views in (c–d) highlight the three-dimensional repartition of these cell types within the depth of the slice. Capillary vessels can be discriminated from the tissue as either dark or bright structures as shown in (e) and (f) respectively. These different contrasts are further revealed in the orthogonal slices accompanying the close-ups, where one can trace the path of the hollow dark lumen or the bright vessel border, pointed by the arrowheads. En-face images at different depths show that visOCM can perform imaging over >20 μm (g). Scalebars: 150 μm (b), 50 μm for the en-face and 20 μm for the orthogonal views (c–g).

Fig. 5
Fig. 5

ex-vivo visOCM imaging of the RSPd cortex in a B6SJL/f1 mouse brain slice. (a) A transmission image of the entire half hemisphere was performed to locate part of the RSPd cortex (blue rectangle). A mosaic of the area of interest was then obtained with visOCM (b), where one can appreciate the presence of fibers, vessels and cells. A large penetrating vessel (c) can be observed through the difference in contrast between its hollow lumen and the back-scattering of the surrounding tissue. Examples of bifurcations and potential clogging of the vessel are pointed by arrowheads in the orthogonal view (a depth scan is shown in Visualization 2). Fibers appear as thin oriented bright structures and are present in the cortex and in the corpus callosum (d). Finally, sub-cellular features can also be observed as darker spots within the cell bodies, as shown in (e–h) and pointed by arrowheads in (e). Scalebars: 150 μm in (b), 50 μm in the en-face view of (c–d), 20 μm in the orthogonal views of (c–d) and in the en-face view of (e), 10 μm in the en-face and orthogonal views of (f–g).

Fig. 6
Fig. 6

ex-vivo imaging of cortical and subcortical structures in a 5xFAD mouse brain slice. (a) A transmission image shows the location of the area where a visOCM image mosaic was obtained (b). The visOCM mosaic reveals fibers, cells and amyloid plaques in both cortical and subcortical structures. Close-ups of areas of interest containing amyloid plaques, in both cortical and subcortical regions, are displayed with their en-face views and corresponding fluorescence image (c–d). Both images are overlayed with the visOCM and the fluorescence in green and red respectively. In the visOCM image, plaques can be seen as irregular high intensity regions (a depth scan of (c) is shown in Visualization 3). Scalebars: 150 μm in (b), 50 μm in the en-face and 20 μm m in the orthogonal views of (c–d).

Fig. 7
Fig. 7

visOCM imaging of murine macrophages. (a) A mosaic of macrophages obtained with visOCM with its orthogonal views reveals the three-dimensional organisation of cells in a culture. Cellular components can be observed such as the filopodia (pointed by the red arrow), the nucleus (pointed by the green arrow) and the cytoplasm (pink arrow). We further explored the capabilities of visOCM by applying a protocol similar to OCT angiography (b). The protocol entails imaging each lateral position along the slow axis 32 times (32 repeated B-scans per location). These 32 B-scans are either averaged or undergo a point-wise complex subtraction to obtain an averaged image (c) or a view of the dynamic components of the tomogram (d) respectively. The averaged image is identical in contrast to (a), whereas the dynamic signal image further reveals compartments within the cell (cytoplasm pointed in pink and nucleus in green), as either darker or brighter subregions (d) Close-ups of a selected cell in (c) and (d) are shown in (e) and (f) respectively, highlighting the differences in contrast between the averaged and dynamic images. Scalebars: 50 μm in the en-face view in (a), 20 μm in the orthogonal views in (a) and in the en-face views of (c–d), 10 μm in the orthogonal views in (c–d) and in the en-face views of (e–f), 5 μm in the orthogonal views in (e–f).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

OPD ( k ) = [ n sample , SF 5 ( k ) , , n sample , UVFS ( k ) ] [ d sample , SF 5 d sample , UVFS ] + [ n ill , SF 5 ( k ) , , n ill , UVFS ( k ) ] [ d ill , SF 5 d ill , UVFS ] [ n ref , SF 5 ( k ) , , n ref , UVFS ( k ) ] [ d ref , SF 5 d ref , UVFS ]
OPD ( k ) = [ n BK 7 ( k ) , n SF 10 ( k ) ] [ d BK 7 d SF 10 ] + ( k )

Metrics