Abstract

The chemical basis for the alteration of the refractive properties of an intraocular lens with a femtosecond laser was investigated. Three different microscope setups have been used for the study: Laser Induced Fluorescence (LIF) microscopy, Raman microscopy and coherent anti-Stokes Raman Scattering (CARS) microscopy. Photo-induced hydrolysis of polymeric material in aqueous media produces two hydrophilic functional groups: acid group and alcohol group. The spectral signatures identify two of the hydrophilic polar molecules as N-phenyl-4-(phenylazo)-benzenamine (C18H15N3) and phenazine-1-carboxylic acid (C13H8N2O2). The change in hydrophilicity results in a negative refractive index change in the laser-treated areas.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of the mechanisms leading to the formation of glistenings in intraocular lenses by Raman spectroscopy

Giulia Rusciano, Angela Capaccio, Giuseppe Pesce, and Antonio Sasso
Biomed. Opt. Express 10(4) 1870-1881 (2019)

Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy

Mamoru Hashimoto and Tsutomu Araki
J. Opt. Soc. Am. A 18(4) 771-776 (2001)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ohmachi and T. Igo, “Laser‐Induced Refractive‐Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
    [Crossref]
  2. L. Ding, R. Blackwell, J. F. Kunzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
    [Crossref] [PubMed]
  3. L. Ding, “Micro-processing of Polymers and Biological Materials Using High Repetition Rate Femtosecond Laser Pulses,” (Ph.D. Thesis), University of Rochester, New York, United States (2009).
  4. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12(17), 4019–4024 (2004).
    [Crossref] [PubMed]
  5. S. Katayama and M. Horiike, “Plastic Object,”U.S. Patent Application Publication 2002/0117624 (2002).
  6. R. Sahler, S. Q. Zhou, and J. F. Bille, “Hydrophilicity alteration system and method,”U.S patent 9186242 B2 (2015).
  7. R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
    [Crossref] [PubMed]
  8. R. Sahler, J. F. Bille, and D. Schanzlin, “In Vivo IOL modification,” https://millennialeye.com/articles/2016-nov-dec/in-vivo-iol-modification
  9. G. Bracco and B. Holst, Surface Science Techniques (Springer-Verlag Berlin Heidelberg, 2013).
  10. F. Görlitz, “P. Hoyer P, HJ Falk,L. Kastrup, J Engelhardt, and SW Hell, “A STED Microscope Designed for Routine Biomedical Applications,” Prog. Electromagnetics Res. 147(April), 57–68 (2014).
    [Crossref]
  11. Technical Manual, “XploRATM Plus System,” http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/Brochure_XploRA_Series-062016-B.pdf
  12. Leica MicroSystems CMS GmbH, “TCS SP8 Confocal Microscope,” http://passthrough.fw-notify.net/download/857371/http://www.well.ox.ac.uk/_asset/file/lecia-sp8-confocal-user-manual.pdf
  13. Carl Zeiss Meditec, Jena, “Hydrophilic IOLs,” http://www.zeiss.ph/C125679E00525939/EmbedTitelIntern/hydrophil_acryl_hapticdesign_eng/$File/hydrophil_acryl_hapticdesign_eng.pdf
  14. Carl Zeiss Meditec, Jena, “Hydrophobic IOLs,” https://www.zeiss.com/meditec/int/products/ophthalmology-optometry/cataract/iol-implantation/hydrophobic-c-loop-iols/ct-lucia.html#technical-data
  15. AMO, Santa Ana, “Hydrophobic IOLs,” https://www.abbottmedicaloptics.com/pdf/TECNIS_One_Piece_Insert.pdf
  16. Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
    [Crossref]
  17. C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
    [Crossref]
  18. E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
    [Crossref]
  19. T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
    [Crossref]
  20. A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Molecular Structure 143(1–2), 469–472 (1986).
    [Crossref]
  21. T. Werner, “Triplet Deactivation in Benzotriazole-Type Ultraviolet Stabilizers,” The Journal of Physical Chemistry, Vol. 83(3), 320–325 (1979).
    [Crossref]
  22. P. M. Miladinova and T. N. Konstantinova, “Photostabilizers for Polymers - New Trends,” J. Chemical Technology and Metallurgy 50(3), 229–239 (2015).
  23. G. Mabilleau, C. Cincu, M. F. Baslé, and D. Chappard, “Polymerization of 2-(hydroxyethyl) methacrylate by two different initiator/accelerator systems: a Raman spectroscopic monitoring,” J. Raman Spectrosc. 39(7), 767–771 (2008).
    [Crossref]
  24. J. B. Lonzaga, S. M. Avaneysyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
    [Crossref]
  25. S. M. Avanesyan, S. Orlando, C. Langford, and J. T. Dickinson, “Generation of color centers by femtosecond laser pulses in wide band gap materials,” Proc. SPIE 5352, 169–179 (2004).
    [Crossref]
  26. S. M. Eaton, G. Cerullo, and R. Osellame, “Fundamentals of Femtosecond Laser Modification of Bulk Dielectrics (Chapter 1),” in R. Osellame et al (Eds.), Femtosecond Laser Micromachining, Topics in Applied Physics123, (Springer-Verlag Berlin Heidelberg, 2012) pp. 3–18.
  27. L. Courrol, R. Samad, L. Gomez, I. Ranieri, S. Baldochi, A. Zanardi de Freitas, and N. Vieira, “Color center production by femtosecond pulse laser irradiation in LiF crystals,” Opt. Express 12(2), 288–293 (2004).
    [Crossref] [PubMed]
  28. F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
    [Crossref]
  29. R.R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics 2, 219–225 (2008).
  30. K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]

2016 (1)

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

2015 (1)

P. M. Miladinova and T. N. Konstantinova, “Photostabilizers for Polymers - New Trends,” J. Chemical Technology and Metallurgy 50(3), 229–239 (2015).

2014 (2)

F. Görlitz, “P. Hoyer P, HJ Falk,L. Kastrup, J Engelhardt, and SW Hell, “A STED Microscope Designed for Routine Biomedical Applications,” Prog. Electromagnetics Res. 147(April), 57–68 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

2012 (1)

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
[Crossref]

2009 (1)

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

2008 (2)

G. Mabilleau, C. Cincu, M. F. Baslé, and D. Chappard, “Polymerization of 2-(hydroxyethyl) methacrylate by two different initiator/accelerator systems: a Raman spectroscopic monitoring,” J. Raman Spectrosc. 39(7), 767–771 (2008).
[Crossref]

R.R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics 2, 219–225 (2008).

2006 (1)

2005 (2)

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

2004 (3)

2003 (1)

J. B. Lonzaga, S. M. Avaneysyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

1997 (1)

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

1986 (1)

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Molecular Structure 143(1–2), 469–472 (1986).
[Crossref]

1979 (1)

T. Werner, “Triplet Deactivation in Benzotriazole-Type Ultraviolet Stabilizers,” The Journal of Physical Chemistry, Vol. 83(3), 320–325 (1979).
[Crossref]

1972 (1)

Y. Ohmachi and T. Igo, “Laser‐Induced Refractive‐Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
[Crossref]

Armengol, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

Avanesyan, S. M.

S. M. Avanesyan, S. Orlando, C. Langford, and J. T. Dickinson, “Generation of color centers by femtosecond laser pulses in wide band gap materials,” Proc. SPIE 5352, 169–179 (2004).
[Crossref]

Avaneysyan, S. M.

J. B. Lonzaga, S. M. Avaneysyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

Baldochi, S.

Barcones, B.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

Baslé, M. F.

G. Mabilleau, C. Cincu, M. F. Baslé, and D. Chappard, “Polymerization of 2-(hydroxyethyl) methacrylate by two different initiator/accelerator systems: a Raman spectroscopic monitoring,” J. Raman Spectrosc. 39(7), 767–771 (2008).
[Crossref]

Bertoluzza, A.

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Molecular Structure 143(1–2), 469–472 (1986).
[Crossref]

Bille, J. F.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Blackwell, R.

Calzavara, A.

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Molecular Structure 143(1–2), 469–472 (1986).
[Crossref]

Caramazza, R.

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Molecular Structure 143(1–2), 469–472 (1986).
[Crossref]

Chan, K.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Chappard, D.

G. Mabilleau, C. Cincu, M. F. Baslé, and D. Chappard, “Polymerization of 2-(hydroxyethyl) methacrylate by two different initiator/accelerator systems: a Raman spectroscopic monitoring,” J. Raman Spectrosc. 39(7), 767–771 (2008).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Chhoeung, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Cincu, C.

G. Mabilleau, C. Cincu, M. F. Baslé, and D. Chappard, “Polymerization of 2-(hydroxyethyl) methacrylate by two different initiator/accelerator systems: a Raman spectroscopic monitoring,” J. Raman Spectrosc. 39(7), 767–771 (2008).
[Crossref]

Courrol, L.

Deb, S.

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
[Crossref]

Dickinson, J. T.

S. M. Avanesyan, S. Orlando, C. Langford, and J. T. Dickinson, “Generation of color centers by femtosecond laser pulses in wide band gap materials,” Proc. SPIE 5352, 169–179 (2004).
[Crossref]

J. B. Lonzaga, S. M. Avaneysyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

Diez-Blanco, V.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

Ding, L.

Enright, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Garcia-Ramos, J. V.

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Molecular Structure 143(1–2), 469–472 (1986).
[Crossref]

Gattas, R.R.

R.R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics 2, 219–225 (2008).

Gomez, L.

Görlitz, F.

F. Görlitz, “P. Hoyer P, HJ Falk,L. Kastrup, J Engelhardt, and SW Hell, “A STED Microscope Designed for Routine Biomedical Applications,” Prog. Electromagnetics Res. 147(April), 57–68 (2014).
[Crossref]

Hirao, K.

Igo, T.

Y. Ohmachi and T. Igo, “Laser‐Induced Refractive‐Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
[Crossref]

Kemal, E.

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
[Crossref]

Knox, W. H.

Konstantinova, T. N.

P. M. Miladinova and T. N. Konstantinova, “Photostabilizers for Polymers - New Trends,” J. Chemical Technology and Metallurgy 50(3), 229–239 (2015).

Kunzler, J. F.

Kuroiwa, Y.

Lam, Y. C.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Langford, C.

S. M. Avanesyan, S. Orlando, C. Langford, and J. T. Dickinson, “Generation of color centers by femtosecond laser pulses in wide band gap materials,” Proc. SPIE 5352, 169–179 (2004).
[Crossref]

Langford, S. C.

J. B. Lonzaga, S. M. Avaneysyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

Lim, C. P.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Lonzaga, J. B.

J. B. Lonzaga, S. M. Avaneysyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

Loza-Alvarez, P.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

Mabilleau, G.

G. Mabilleau, C. Cincu, M. F. Baslé, and D. Chappard, “Polymerization of 2-(hydroxyethyl) methacrylate by two different initiator/accelerator systems: a Raman spectroscopic monitoring,” J. Raman Spectrosc. 39(7), 767–771 (2008).
[Crossref]

Mazur, E.

R.R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics 2, 219–225 (2008).

Metev, S.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Miladinova, P. M.

P. M. Miladinova and T. N. Konstantinova, “Photostabilizers for Polymers - New Trends,” J. Chemical Technology and Metallurgy 50(3), 229–239 (2015).

Monti, P.

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Molecular Structure 143(1–2), 469–472 (1986).
[Crossref]

Narita, Y.

Ohmachi, Y.

Y. Ohmachi and T. Igo, “Laser‐Induced Refractive‐Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
[Crossref]

Orlando, S.

S. M. Avanesyan, S. Orlando, C. Langford, and J. T. Dickinson, “Generation of color centers by femtosecond laser pulses in wide band gap materials,” Proc. SPIE 5352, 169–179 (2004).
[Crossref]

Pérez-Rodriguez, A.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

Perova, T. S.

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

Ranieri, I.

Sahler, R.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Samad, R.

Shams Eldin, M. A.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Siegel, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

Simoni, R.

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Molecular Structure 143(1–2), 469–472 (1986).
[Crossref]

Solis, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Takeshima, N.

Tanaka, S.

Vega, F.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

Vieira, N.

Vij, J. K.

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

Wang, Z. K.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Werner, T.

T. Werner, “Triplet Deactivation in Benzotriazole-Type Ultraviolet Stabilizers,” The Journal of Physical Chemistry, Vol. 83(3), 320–325 (1979).
[Crossref]

Wochnowski, C.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Xu, H.

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

Zanardi de Freitas, A.

Zheng, H. Y.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Appl. Phys. Lett. (3)

Y. Ohmachi and T. Igo, “Laser‐Induced Refractive‐Index Change in As–S–Ge Glasses,” Appl. Phys. Lett. 20(12), 506–508 (1972).
[Crossref]

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodriguez, and P. Loza-Alvarez, “Mechanism of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[Crossref]

Colloid Polym. Sci. (1)

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

J. Appl. Phys. (1)

J. B. Lonzaga, S. M. Avaneysyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003).
[Crossref]

J. Cataract Refract. Surg. (1)

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

J. Chemical Technology and Metallurgy (1)

P. M. Miladinova and T. N. Konstantinova, “Photostabilizers for Polymers - New Trends,” J. Chemical Technology and Metallurgy 50(3), 229–239 (2015).

J. Mater. Chem. (1)

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
[Crossref]

J. Molecular Structure (1)

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Molecular Structure 143(1–2), 469–472 (1986).
[Crossref]

J. Raman Spectrosc. (1)

G. Mabilleau, C. Cincu, M. F. Baslé, and D. Chappard, “Polymerization of 2-(hydroxyethyl) methacrylate by two different initiator/accelerator systems: a Raman spectroscopic monitoring,” J. Raman Spectrosc. 39(7), 767–771 (2008).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Nature Photonics (1)

R.R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics 2, 219–225 (2008).

Opt. Express (3)

Polym. Degrad. Stabil. (1)

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Proc. SPIE (1)

S. M. Avanesyan, S. Orlando, C. Langford, and J. T. Dickinson, “Generation of color centers by femtosecond laser pulses in wide band gap materials,” Proc. SPIE 5352, 169–179 (2004).
[Crossref]

Prog. Electromagnetics Res. (1)

F. Görlitz, “P. Hoyer P, HJ Falk,L. Kastrup, J Engelhardt, and SW Hell, “A STED Microscope Designed for Routine Biomedical Applications,” Prog. Electromagnetics Res. 147(April), 57–68 (2014).
[Crossref]

The Journal of Physical Chemistry, Vol. (1)

T. Werner, “Triplet Deactivation in Benzotriazole-Type Ultraviolet Stabilizers,” The Journal of Physical Chemistry, Vol. 83(3), 320–325 (1979).
[Crossref]

Other (11)

R. Sahler, J. F. Bille, and D. Schanzlin, “In Vivo IOL modification,” https://millennialeye.com/articles/2016-nov-dec/in-vivo-iol-modification

G. Bracco and B. Holst, Surface Science Techniques (Springer-Verlag Berlin Heidelberg, 2013).

Technical Manual, “XploRATM Plus System,” http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/Brochure_XploRA_Series-062016-B.pdf

Leica MicroSystems CMS GmbH, “TCS SP8 Confocal Microscope,” http://passthrough.fw-notify.net/download/857371/http://www.well.ox.ac.uk/_asset/file/lecia-sp8-confocal-user-manual.pdf

Carl Zeiss Meditec, Jena, “Hydrophilic IOLs,” http://www.zeiss.ph/C125679E00525939/EmbedTitelIntern/hydrophil_acryl_hapticdesign_eng/$File/hydrophil_acryl_hapticdesign_eng.pdf

Carl Zeiss Meditec, Jena, “Hydrophobic IOLs,” https://www.zeiss.com/meditec/int/products/ophthalmology-optometry/cataract/iol-implantation/hydrophobic-c-loop-iols/ct-lucia.html#technical-data

AMO, Santa Ana, “Hydrophobic IOLs,” https://www.abbottmedicaloptics.com/pdf/TECNIS_One_Piece_Insert.pdf

S. Katayama and M. Horiike, “Plastic Object,”U.S. Patent Application Publication 2002/0117624 (2002).

R. Sahler, S. Q. Zhou, and J. F. Bille, “Hydrophilicity alteration system and method,”U.S patent 9186242 B2 (2015).

L. Ding, “Micro-processing of Polymers and Biological Materials Using High Repetition Rate Femtosecond Laser Pulses,” (Ph.D. Thesis), University of Rochester, New York, United States (2009).

S. M. Eaton, G. Cerullo, and R. Osellame, “Fundamentals of Femtosecond Laser Modification of Bulk Dielectrics (Chapter 1),” in R. Osellame et al (Eds.), Femtosecond Laser Micromachining, Topics in Applied Physics123, (Springer-Verlag Berlin Heidelberg, 2012) pp. 3–18.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Refractive Index Shaping (RIS), Femtosecond (FS) laser, refractive index of IOL (n1) and refractive index of RIS lens (n2). (b) Phase Wrapping. (c) Multifocal IOL to Monofocal, before (left) and after (right) RIS-modification. (d) Hydrophilicity based Δn change.
Fig. 2
Fig. 2 Photo-induced Hydrolysis.
Fig. 3
Fig. 3 (a) Schematic sketch of hydrophilic acrylic lens (5 diopters), RIS treated area 4mm circle in the center of the intraocular lens. (b) Fluorescence Image of a RIS-lens, inscribed in the hydrophilic acrylic lens, sketched in Fig. 3(a).
Fig. 4
Fig. 4 (a) Hydrophilic Strip: transmission image (top) and fluorescence image (bottom) and the RIS-pattern indicated by arrows. (b) RIS-Pattern in Hydrophilic Strip (detail of left pattern of Fig. 4(a) bottom). (c) Edge of RIS-Pattern in Hydrophilic Strip (Zone boundary of Fresnel lens). (d) Simultaneous scans at 600 nm, resp. 650 nm excitation.
Fig. 5
Fig. 5 (a) Excitation/Emission Spectra of fluorescent molecule. (b) Identification of fluorescent molecule.
Fig. 6
Fig. 6 Raman spectra of the hydrophilic strip: a) High-frequency part, b) Low-frequency part. Dashed dotted horizontal lines represent the zero signal base lines of the respective Raman spectra, which were shifted vertically for the sake of clarity.
Fig. 7
Fig. 7 (a) Hydrophobic Strip: transmission image (top) and fluorescence image (bottom) and the RIS- patterns are indicated by arrows. (b) Fluorescence spectra, excitation at 405 nm and emission max. at 500 nm (left), excitation at 488 nm and emission max. at 535 nm (right). (Sample: Yellow hydrophobic strip [14]). (c) Top: Magnified a few µm sized confocal xz- slice (side view) across a bright part of the Fresnel pattern. The samples physical boundary is where the intensity changes from bright (inside the sample) to dark region (outside the sample). Bottom: Magnified confocal xy-slice (top view, inside the sample) at a bright part of the Fresnel pattern. The fluorescence images were taken simultaneously at 470 nm, resp. 650 nm, resp. 650 nm excitation. Please note the scale bars.
Fig. 8
Fig. 8 (a) CARS-Spectrum yellow hydrophobic lens (1700-1750 cm−1), max. at 1735 cm−1 (C = O molecular vibration (stretching mode)). (b) CARS (2954 cm−1) and fluorescence images (TCS SP8 CARS, Leica Microsystems GmbH). (c) Correlation CARS and fluorescence cross-sections, yellow hydrophobic lens.
Fig. 9
Fig. 9 (a) Hydrophobic clear strip (birdview): transmission image (top), fluorescence image (bottom) and the RIS-patterns indicated by arrows. (b) Hydrophobic clear strip (sideview): transmission image (top), fluorescence image (bottom). (c) Fluorescence spectra, excitation at 405 nm and emission max. at 500 nm (top), excitation at 488 nm and emission max. at 535 nm (bottom) (Sample: Clear hydrophobic strip [15]). (d) Left: Magnified a few µm sized confocal xz-slice (side view) across a bright part of the Fresnel pattern. Right: Magnified confocal xy- slice (top view, at the samples surface) at a bright part of the Fresnel pattern. The fluorescence images were taken simultaneously at 470 nm, resp. 605 nm, resp. 650 nm excitation. (e) High resolution fluorescence xy- images (top view) of clear hydrophobic strip. Left: The darker squared field shows an area which was previously scanned and gradually bleached. Right: The bright band indicates an area where the STED beam was switched off temporarily while the full image was scanned. Thus, the newly created fluorophores show analogous behavior (bleaching and stimulated emission) like regular fluorescent dyes. Please note the scale bars.
Fig. 10
Fig. 10 (a) CARS-Spectrum clear hydrophobic lens (1700-1750 cm−1), max. at 1735 cm−1 (C = O molecular vibration). (b) CARS (1720 cm−1) and fluorescence images (TCS SP8 CARS, Leica Microsystems GmbH). (c) CARS (2954 cm−1, CH/CH2 vibrational mode) and fluorescence images (TCS SP8 X (Leica Microsystems GmbH)). (d) Correlation CARS (C = O mode) and fluorescence cross-sections, clear hydrophobic lens. (e) Correlation CARS (CH/CH2 mode) and fluorescence cross-sections, clear hydrophobic lens.

Tables (1)

Tables Icon

Table 1 Spectral band assignments

Metrics