Abstract

The refractive index (RI) is an important optical characteristic that is often exploited in label-free microscopy for analysis of biological objects. A technique for 3D RI reconstruction of living cells has to be fast enough to capture the cell dynamics and preferably needs to be compatible with standard wide-field microscopes. To solve this challenging problem, we present a technique that provides fast measurement and processing of data required for real-time 3D visualization of the object RI. Specifically, the 3D RI is reconstructed from the measurement of bright-field intensity images, axially scanned by a high-speed focus tunable lens mounted in front of a sCMOS camera, by using a direct deconvolution approach designed for partially coherent light microscopy in the non-paraxial regime. Both the measurement system and the partially coherent illumination, that provides optical sectioning and speckle-noise suppression, enable compatibility with wide-field microscopes resulting in a competitive and affordable alternative to the current holographic laser microscopes. Our experimental demonstrations show video-rate 3D RI visualization of living bacteria both freely swimming and optically manipulated by using freestyle laser traps allowing for their trapping and transport along 3D trajectories. These results prove that is possible to conduct simultaneous 4D label-free quantitative imaging and optical manipulation of living cells, which is promising for the study of the cell biophysics and biology.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Label-free quantitative 3D tomographic imaging for partially coherent light microscopy

Juan M. Soto, José A. Rodrigo, and Tatiana Alieva
Opt. Express 25(14) 15699-15712 (2017)

Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging

Kyoohyun Kim, Wei Sun Park, Sangchan Na, Sangbum Kim, Taehong Kim, Won Do Heo, and YongKeun Park
Biomed. Opt. Express 8(12) 5688-5697 (2017)

Label-free characterization of living human induced pluripotent stem cells by subcellular topographic imaging technique using full-field quantitative phase microscopy coupled with interference reflection microscopy

Norikazu Sugiyama, Yasuyuki Asai, Toyohiko Yamauchi, Takuji Kataoka, Takahiro Ikeda, Hidenao Iwai, Takashi Sakurai, and Yoshinori Mizuguchi
Biomed. Opt. Express 3(9) 2175-2183 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).
  2. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36, 4677–4679 (2011).
    [Crossref] [PubMed]
  3. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
    [Crossref]
  4. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [Crossref] [PubMed]
  5. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [Crossref] [PubMed]
  6. Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–118 (2013).
    [Crossref]
  7. B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
    [Crossref]
  8. K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).
    [Crossref]
  9. J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3D tomographic imaging for partially coherent light microscopy,” Opt. Express 25, 15699 (2017).
    [Crossref] [PubMed]
  10. N. Streibl, “Three-dimensional imaging by a microscope,” JOSA A 2, 121–127 (1985).
    [Crossref]
  11. M. H. Jenkins and T. K. Gaylord, “Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy,” Appl. Opt. 54, 9213 (2015).
    [Crossref] [PubMed]
  12. M. Chen, L. Tian, and L. Waller, “3D differential phase contrast microscopy,” Biomed. Opt. Express 7, 3940–3950 (2016).
    [Crossref] [PubMed]
  13. S. Bianchi, F. Saglimbeni, and R. Di Leonardo, “Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria,” Phys. Rev. X 71 (2017).
  14. Y. Bao and T. K. Gaylord, “Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function,” J. Opt. Soc. Am. A 33, 2125 (2016).
    [Crossref]
  15. C. S. Hoffman, V. Wood, and P. A. Fantes, “An ancient yeast for young geneticists: A primer on the schizosaccharomyces pombe model system,” Genetics 201, 403–423 (2015).
    [Crossref] [PubMed]
  16. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33, 744–746 (2008).
    [Crossref] [PubMed]
  17. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
    [Crossref]
  18. S. L. Forsburg and N. Rhind, “Basic methods for fission yeast,” Yeast 23, 173–183 (2006).
    [Crossref] [PubMed]
  19. D. R. Rines, D. Thomann, J. F. Dorn, P. Goodwin, and P. K. Sorger, “Live cell imaging of yeast,” Cold Spring Harbor Protocols 2011, 065482 (2011).
    [Crossref] [PubMed]
  20. J. A. Rodrigo and T. Alieva, “Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond,” Optica 2, 812–815 (2015).
    [Crossref]
  21. J. A. Rodrigo and T. Alieva, “Polymorphic beams and Nature inspired circuits for optical current,” Sci. Rep. 6, 35341 (2016).
    [Crossref] [PubMed]
  22. J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6, 1–6 (2016).
    [Crossref]
  23. E. Streiblová, I. Málek, and K. Beran, “Structural changes in the cell wall of Schizosaccharomyces pombe during cell division,” Journal of Bacteriology 91, 428–435 (1966).
    [PubMed]
  24. J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
    [Crossref]
  25. Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
    [Crossref] [PubMed]
  26. N. C. Pegard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).
    [Crossref] [PubMed]
  27. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
    [Crossref]
  28. M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
    [Crossref]
  29. J. A. Rodrigo and T. Alieva, “Rapid quantitative phase imaging for partially coherent light microscopy,” Opt. Express 22, 13472–13483 (2014).
    [Crossref] [PubMed]
  30. W. M. bin Mat Yunus and A. bin Abdul Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt. 27, 3341–3343 (1988).
    [Crossref]

2017 (5)

S. Bianchi, F. Saglimbeni, and R. Di Leonardo, “Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria,” Phys. Rev. X 71 (2017).

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]

J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3D tomographic imaging for partially coherent light microscopy,” Opt. Express 25, 15699 (2017).
[Crossref] [PubMed]

2016 (5)

M. Chen, L. Tian, and L. Waller, “3D differential phase contrast microscopy,” Biomed. Opt. Express 7, 3940–3950 (2016).
[Crossref] [PubMed]

Y. Bao and T. K. Gaylord, “Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function,” J. Opt. Soc. Am. A 33, 2125 (2016).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

J. A. Rodrigo and T. Alieva, “Polymorphic beams and Nature inspired circuits for optical current,” Sci. Rep. 6, 35341 (2016).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6, 1–6 (2016).
[Crossref]

2015 (4)

2014 (3)

J. A. Rodrigo and T. Alieva, “Rapid quantitative phase imaging for partially coherent light microscopy,” Opt. Express 22, 13472–13483 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

N. C. Pegard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–118 (2013).
[Crossref]

2012 (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

2011 (2)

D. R. Rines, D. Thomann, J. F. Dorn, P. Goodwin, and P. K. Sorger, “Live cell imaging of yeast,” Cold Spring Harbor Protocols 2011, 065482 (2011).
[Crossref] [PubMed]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36, 4677–4679 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
[Crossref]

2006 (2)

1988 (1)

1985 (1)

N. Streibl, “Three-dimensional imaging by a microscope,” JOSA A 2, 121–127 (1985).
[Crossref]

1966 (1)

E. Streiblová, I. Málek, and K. Beran, “Structural changes in the cell wall of Schizosaccharomyces pombe during cell division,” Journal of Bacteriology 91, 428–435 (1966).
[PubMed]

Alieva, T.

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Badizadegan, K.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
[Crossref]

Bailleul, J.

Bao, Y.

Barnea, I.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Bednarek, S. Y.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Beran, K.

E. Streiblová, I. Málek, and K. Beran, “Structural changes in the cell wall of Schizosaccharomyces pombe during cell division,” Journal of Bacteriology 91, 428–435 (1966).
[PubMed]

Bianchi, S.

S. Bianchi, F. Saglimbeni, and R. Di Leonardo, “Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria,” Phys. Rev. X 71 (2017).

bin Abdul Rahman, A.

bin Mat Yunus, W. M.

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Charrière, F.

Chen, M.

Choi, W.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
[Crossref]

Colomb, T.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–118 (2013).
[Crossref]

Cuche, E.

D’Ippolito, G.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Dardikman, G.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Dasari, R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
[Crossref]

Dasari, R. R.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

Debailleul, M.

Debnath, S. K.

Depeursinge, C.

Dorn, J. F.

D. R. Rines, D. Thomann, J. F. Dorn, P. Goodwin, and P. K. Sorger, “Live cell imaging of yeast,” Cold Spring Harbor Protocols 2011, 065482 (2011).
[Crossref] [PubMed]

Driscoll, M.

N. C. Pegard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).
[Crossref] [PubMed]

Duschl, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Ecoffet, C.

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Eliceiri, K. W.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Fang-Yen, C.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
[Crossref]

Fantes, P. A.

C. S. Hoffman, V. Wood, and P. A. Fantes, “An ancient yeast for young geneticists: A primer on the schizosaccharomyces pombe model system,” Genetics 201, 403–423 (2015).
[Crossref] [PubMed]

Feld, M.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
[Crossref]

Feld, M. S.

Ferraro, P.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).

Fleischer, J. W.

N. C. Pegard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).
[Crossref] [PubMed]

Fontana, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Forsburg, S. L.

S. L. Forsburg and N. Rhind, “Basic methods for fission yeast,” Yeast 23, 173–183 (2006).
[Crossref] [PubMed]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Gambale, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Gaylord, T. K.

Goodwin, P.

D. R. Rines, D. Thomann, J. F. Dorn, P. Goodwin, and P. K. Sorger, “Live cell imaging of yeast,” Cold Spring Harbor Protocols 2011, 065482 (2011).
[Crossref] [PubMed]

Guernth-Marschner, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Habaza, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Haeberlé, O.

Hamza, B.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Hoffman, C. S.

C. S. Hoffman, V. Wood, and P. A. Fantes, “An ancient yeast for young geneticists: A primer on the schizosaccharomyces pombe model system,” Genetics 201, 403–423 (2015).
[Crossref] [PubMed]

Hoopes, G. M.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Houkal, M.

Iolascon, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Irimia, D.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

Jenkins, M. H.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–118 (2013).
[Crossref]

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Kim, K.

Kirschbaum, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Korenstein, R.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Kuehn, J.

Lambert, J.

Laplantine, E.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Leonardo, R. Di

S. Bianchi, F. Saglimbeni, and R. Di Leonardo, “Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria,” Phys. Rev. X 71 (2017).

Liu, H.

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Lue, N.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
[Crossref]

Magistretti, P. J.

Málek, I.

E. Streiblová, I. Málek, and K. Beran, “Structural changes in the cell wall of Schizosaccharomyces pombe during cell division,” Journal of Bacteriology 91, 428–435 (1966).
[PubMed]

Marian, A.

Marquet, P.

Martel, J.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

Memmolo, P.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Merola, F.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Miccio, L.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Montfort, F.

Mugnano, M.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
[Crossref]

Park, Y.

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–118 (2013).
[Crossref]

Pegard, N. C.

N. C. Pegard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).
[Crossref] [PubMed]

Perry, N.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Rappaz, B.

Reynolds, G. D.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Rhind, N.

S. L. Forsburg and N. Rhind, “Basic methods for fission yeast,” Yeast 23, 173–183 (2006).
[Crossref] [PubMed]

Rines, D. R.

D. R. Rines, D. Thomann, J. F. Dorn, P. Goodwin, and P. K. Sorger, “Live cell imaging of yeast,” Cold Spring Harbor Protocols 2011, 065482 (2011).
[Crossref] [PubMed]

Rodrigo, J. A.

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Saglimbeni, F.

S. Bianchi, F. Saglimbeni, and R. Di Leonardo, “Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria,” Phys. Rev. X 71 (2017).

Sardo, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Savoia, R.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Schindelin, J.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Shaked, N. T.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Shorte, S. L.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Simon, B.

So, P.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

Soppera, O.

Sorger, P. K.

D. R. Rines, D. Thomann, J. F. Dorn, P. Goodwin, and P. K. Sorger, “Live cell imaging of yeast,” Cold Spring Harbor Protocols 2011, 065482 (2011).
[Crossref] [PubMed]

Soto, J. M.

Spangenberg, A.

Streibl, N.

N. Streibl, “Three-dimensional imaging by a microscope,” JOSA A 2, 121–127 (1985).
[Crossref]

Streiblová, E.

E. Streiblová, I. Málek, and K. Beran, “Structural changes in the cell wall of Schizosaccharomyces pombe during cell division,” Journal of Bacteriology 91, 428–435 (1966).
[PubMed]

Sung, Y.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

Thomann, D.

D. R. Rines, D. Thomann, J. F. Dorn, P. Goodwin, and P. K. Sorger, “Live cell imaging of yeast,” Cold Spring Harbor Protocols 2011, 065482 (2011).
[Crossref] [PubMed]

Tian, L.

Tinevez, J.-Y.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Toth, M. L.

N. C. Pegard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).
[Crossref] [PubMed]

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–118 (2013).
[Crossref]

Waller, L.

Wax, A.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Wood, V.

C. S. Hoffman, V. Wood, and P. A. Fantes, “An ancient yeast for young geneticists: A primer on the schizosaccharomyces pombe model system,” Genetics 201, 403–423 (2015).
[Crossref] [PubMed]

Yaqoob, Z.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

Yoon, J.

Zalevsky, Z.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).

Adv. Sci. (1)

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv. Sci. 4, 1600205 (2017).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Cold Spring Harbor Protocols (1)

D. R. Rines, D. Thomann, J. F. Dorn, P. Goodwin, and P. K. Sorger, “Live cell imaging of yeast,” Cold Spring Harbor Protocols 2011, 065482 (2011).
[Crossref] [PubMed]

Genetics (1)

C. S. Hoffman, V. Wood, and P. A. Fantes, “An ancient yeast for young geneticists: A primer on the schizosaccharomyces pombe model system,” Genetics 201, 403–423 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

JOSA A (1)

N. Streibl, “Three-dimensional imaging by a microscope,” JOSA A 2, 121–127 (1985).
[Crossref]

Journal of Bacteriology (1)

E. Streiblová, I. Málek, and K. Beran, “Structural changes in the cell wall of Schizosaccharomyces pombe during cell division,” Journal of Bacteriology 91, 428–435 (1966).
[PubMed]

Lab Chip (1)

N. C. Pegard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (1)

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2016).
[Crossref]

Methods (1)

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Nat. Meth. (2)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–720 (2007).
[Crossref]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Meth. 9, 676–682 (2012).
[Crossref]

Nat. Photon. (1)

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–118 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (3)

Phys. Rev. Appl. (1)

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1, 014002 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. Bianchi, F. Saglimbeni, and R. Di Leonardo, “Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria,” Phys. Rev. X 71 (2017).

Sci. Rep. (2)

J. A. Rodrigo and T. Alieva, “Polymorphic beams and Nature inspired circuits for optical current,” Sci. Rep. 6, 35341 (2016).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6, 1–6 (2016).
[Crossref]

Yeast (1)

S. L. Forsburg and N. Rhind, “Basic methods for fission yeast,” Yeast 23, 173–183 (2006).
[Crossref] [PubMed]

Other (1)

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).

Supplementary Material (4)

NameDescription
» Visualization 1       3D RI reconstruction of multiple S. pombe bacteria. The inset displaying a RI XY-slice shows four cells ( 3.5 mm long and 1.5 mm wide) with well-defined membrane and exhibiting small intracellular structures of 250 - 350 nm indicated by the arrows. I
» Visualization 2       A freestyle laser trap in form of 3D spiral is used to optically confine and transport the bacteria along the spiral
» Visualization 3       This example shows real-time motion control achieved by simultaneously exploiting trapping and propelling optical forces. The cell labeled as B1 optically transported along the ring follows a pendulum-like motion (due to switching the rotation direct
» Visualization 4       Results demonstrating real-time reconfiguration of the optical transport trajectory (bacteria), switching between triangle and ring laser trap.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

3D RI reconstruction of multiple S. pombe bacteria. The inset displaying a RI XY-slice shows four cells (~ 3.5 μm long and ~ 1.5 μm wide) with well-defined membrane and exhibiting small intracellular structures of 250 – 350 nm indicated by the arrows. It is also observed tiny bacteria freely swimming in the scanned sample volume, see Visualization 1.

Fig. 2
Fig. 2

(a) Sketch of the bright-filed microscope used for 4D RI reconstruction and optical manipulation experiments: A trapping laser beam is focused into the sample by using the same objective lens imaging the sample. The bacteria have been optically trapped up to 25 μm deep within the sample. (b) A freestyle laser trap in form of 3D spiral is used to optically confine and transport the bacteria along the spiral, see Visualization 2. (c) The trajectory followed by the transported bacteria along the spiral is revealed in the displayed time-lapse image, which has been made by combining all the recorded video frames of Visualization 2.

Fig. 3
Fig. 3

(a) Experimental results demonstrating 4D RI reconstruction of three bacteria (S. pombe, ~ 6 μm long and ~ 2 μm wide) while they have been optically manipulated by using a laser ring trap. This example shows real-time motion control achieved by simultaneously exploiting trapping and propelling optical forces. The cell labeled as B1 optically transported along the ring follows a pendulum-like motion (due to switching the rotation direction) as observed in Visualization 3. The time-lapse image confirms stable 3D confinement of the cells in the ring. (b) The positions of the confined cells have been tracked revealing their trajectory and velocity distribution during this experiment, see the corresponding local speed map. Note that some of these cells are undergoing division cycle with a clearly visible medial cavity. (c) Experimental 4D RI results demonstrating real-time reconfiguration of the transport trajectory, switching between triangle and ring laser trap. The time-lapse images reveal the corresponding flows of cells transported along the curves while their tracking confirm a nearly uniform velocity distribution for each case as shown in (d), see also Visualization 4. In these experiments the recording time was 20 s with rate of 10 fps (100 ms each 3D frame).

Fig. 4
Fig. 4

Sketch of the experimental setup used for simultaneous 4D label-free quantitative imaging (based on PC-ODT) and optical trapping and manipulation of living cells. In the bright-field microscope (comprising the condenser and objective lenses) has been incorporated two systems: The measurement setup required for PC-ODT and the setup for shaping the laser traps (SLM and the laser device). The laser beam modulated by the SLM is relayed onto the back aperture of the objective lens by using a set of two identical convergent lenses (focal length of 150 mm) working as a ×1 Keplerian telescope. Both the microscope’s tube lens (with focal length fTL = 150 mm) and the relay lens RL (fRL = 150 mm) are achromatic convergent lenses (Thorlabs AC254-150-A-ML).

Fig. 5
Fig. 5

(a) Focal length variation of the ETL. (b) Electrical signal addressed into the ETL required for optical axial scan.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = B + P ( r ) h P ( r ) + A ( r ) h A ( r ) ,
I ^ ( ρ ) = B δ ( ρ ) + P ^ ( ρ ) H E ( ρ ) ,
P ^ ( ρ ) = I ^ ( ρ ) H E * ( ρ ) | H E ( ρ ) | 2 + β ,
Δ z d e f o c u s = n m f RL 2 M 2 f ETL d ( f ETL d ) ,
T = [ 1 d 0 1 ] [ 1 0 1 f ETL 1 ] [ 1 f RL 0 1 ] [ 1 0 1 f RL 1 ] [ 1 z 0 1 ] = [ d f RL ( 1 d f ETL ) f RL + d ( 1 z f RL ) 1 f RL ( 1 z f RL ) f RL f ETL ] ,
z = f RL [ 1 + f RL ( 1 d 1 f ETL ) ] ,
Δ z = z f RL = f RL 2 ( 1 d 1 f ETL ) = f RL 2 f ETL d ( f ETL d ) ,