Abstract

Neonatal jaundice (hyperbilirubinaemia) is common in neonates and, often, intensive blue-light phototherapy is required to prevent long-term effects. A photonic textile can overcome three major incubator-related concerns: Insulation of the neonate, human contact, and usage restraints. This paper describes the development of a homogeneous luminous textile from polymer optical fibres to use as a wearable, long-term phototherapy device. The bend out-coupling of light from the POFs was related to the weave production, e.g. weave pattern and yarn densities. Comfort, determined by friction against a skin model and breathability, was investigated additionally. Our textile is the first example of phototherapeutic clothing that is produced sans post-processing allowing for faster commercial production.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Luminous fabric devices for wearable low-level light therapy

Jing Shen, Chunghin Chui, and Xiaoming Tao
Biomed. Opt. Express 4(12) 2925-2937 (2013)

Cerebral time domain-NIRS: reproducibility analysis, optical properties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects

Giacomo Giacalone, Marta Zanoletti, Davide Contini, Rebecca Re, Lorenzo Spinelli, Luisa Roveri, and Alessandro Torricelli
Biomed. Opt. Express 8(11) 4987-5000 (2017)

In vivo cellular-level real-time pharmacokinetic imaging of free-form and liposomal indocyanine green in liver

Yoonha Hwang, Hwanjun Yoon, Kibaek Choe, Jinhyo Ahn, Jik Han Jung, Ji-Ho Park, and Pilhan Kim
Biomed. Opt. Express 8(10) 4706-4716 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Ramachandran, “Neonatal hyperbilirubinaemia,” Paediatr. Child Health 26(4), 162–168 (2016).
    [Crossref]
  2. S. Doerr, What causes jaundice in adults? < http://www.medicinenet.com/jaundice_in_adults/page2.htm >.
  3. D. Brites and A. Fernandes, “Bilirubin-induced neural impairment: A special focus on myelination, age-related windows of susceptibility and associated co-morbidities,” Semin. Fetal Neonatal Med. 20(1), 14–19 (2015).
    [Crossref] [PubMed]
  4. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia, “Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation,” Pediatrics 114(1), 297–316 (2004).
    [Crossref] [PubMed]
  5. R. H. Dobbs and R. J. Cremer, “Phototherapy,” Arch. Dis. Child. 50(11), 833–836 (1975).
    [Crossref] [PubMed]
  6. M. J. Maisels and A. F. McDonagh, “Phototherapy for Neonatal Jaundice,” N. Engl. J. Med. 358(9), 920–928 (2008).
    [Crossref] [PubMed]
  7. H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
    [Crossref] [PubMed]
  8. Natus, neoBLUE blanket LED Phototherapy System. < http://www.natus.com/documents/011168C_neoBLUE%20blanket%20Brochure_EN%20US_lo-res.pdf >, accessed November, 10th, 2016.
  9. GE, BiliSoft Phototherapy System. < http://www3.gehealthcare.com/en/products/categories/maternal-infant_care/phototherapy/bilisoft_phototherapy_system#tabs/tab1B45BA4DBCFF4C289CCBD7A361D1FD9B >, accessed November, 10th, 2016.
  10. L. Péruchon, B. Cédric, Le textile lumineux en fibres optiques: appplication en Photothérapie de la jaunisse du nourrisson, Photoniques 64(Dossier Optique et thérapie) (2013) 40 - 42.
  11. O-blanket: Phototherapy Device for Neonatal Jaundice. < https://www.polyu.edu.hk/ife/corp/cntimgs/techsearch/3_ITC_07_0315.pdf >, accessed November, 10th, 2016.
  12. B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles,” Adv. Healthc. Mater. 4(3), 330–355 (2015).
    [Crossref] [PubMed]
  13. A. Masuda, T. Murakami, K. Honda, and S. Yamaguchi, “Optical Properties of Woven Fabrics by Plastic Optical Fiber,” Journal of Textile Engineering 52(3), 93–97 (2006).
    [Crossref]
  14. I. N. R. Lumitex, OH) Fiber optic light emmitting panel and method of making same, in: http://www.freepatentsonline.com/4885663.html , USA, 1989.
  15. Y. Oguz, C. Cochrane, S. R. Mordon, and V. Koncar, Optimization Of Light Emitting Textiles Woven With Optical Fibers For Photodynamic Therapy, V I. International Technical Textiles Congress, İZMİR, 2015.
  16. A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development Of Polymeric Optical Fibre Fabrics As Illumination Elements And Textile Displays,” AUTEX Res. J. 3(1), 8 (2003).
  17. C. Cochrane, S. R. Mordon, J. C. Lesage, and V. Koncar, “New design of textile light diffusers for photodynamic therapy,” Mater. Sci. Eng. C 33(3), 1170–1175 (2013).
    [Crossref] [PubMed]
  18. H. Mekaru, A. Ohtomo, H. Takagi, M. Kokubo, and H. Goto, “Reel-to-reel imprint system to form weaving guides on fibers,” Microelectron. Eng. 98, 171–175 (2012).
    [Crossref]
  19. V. Koncar, “Optical Fiber Fabric Displays,” Opt. Photonics News 16(4), 40–44 (2005).
    [Crossref]
  20. J. Shen, C. Chui, and X. Tao, “Luminous fabric devices for wearable low-level light therapy,” Biomed. Opt. Express 4(12), 2925–2937 (2013).
    [Crossref] [PubMed]
  21. X. Tao, W. Zheng, Z. Zhang, H. Lau, and L. Lee, Phototherapy textile wrapper, in: US patents US 20160121136 A1, USA, 2016.
  22. J. R. Parker, Light emitting panel assemblies and method of making same, in: US Patents US 4907132 A, USA, 1990.
  23. K. D. Kaschke, Optical fiber light emitting apparatus, in: US Patents US 5542016 A, USA, 1996.
  24. M. Daniel, Light emitting fabric, in: US Patents US 4234907 A, USA, 1980.
  25. D. J. Lundin and M. C. Lea, Optical fiber illumination system, in: US patents US 5845038 A, USA, 1998.
  26. R. H. Appeldorn and M. C. Lea, Notched fiber array illumination device, in: US patents US 5659643 A, USA, 1997.
  27. J. R. Parker, Phototherapy treatment devices for applying area lighting to a wound, in: US patents US 7686839 B2, USA, 2010.
  28. D. C. C. Chung, A. J. Totah, W. C. Joe, E. M. W. Chiu, D. J. Brude, B. P. Flaherty, and W. L. Mince, Phototherapy device, in: US patents US 8048136 B2, USA, 2011.
  29. M. Krehel, M. Wolf, L. F. Boesel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Development of a luminous textile for reflective pulse oximetry measurements,” Biomed. Opt. Express 5(8), 2537–2547 (2014).
    [Crossref] [PubMed]
  30. B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
    [Crossref] [PubMed]
  31. M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express 16(17), 12973–12986 (2008).
    [Crossref] [PubMed]
  32. B. Selm, M. Rothmaier, M. Camenzind, T. Khan, and H. Walt, “Novel flexible light diffuser and irradiation properties for photodynamic therapy,” J. Biomed. Opt. 12(3), 034024 (2007).
  33. B. Selm, E. A. Gurel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles,” J. Intell. Mater. Syst. Struct. 21(11), 1061–1071 (2010).
    [Crossref]
  34. H. Walt, B. Selm, and T. Wessel, Light-emitting textile structure, in particular for medical purposes, and use thereof, in: US Patent & Trademark Office US 2006/0257095, United States, 2006.
  35. B. K. Behera and P. K. Hari, 13 - Friction and other aspects of the surface behavior of woven fabrics, in: Woven Textile Structure, Woodhead Publishing, 2010, pp. 230–242.
  36. S. Derler, U. Schrade, L.C. Gerhardt, Tribology of human skin and mechanical skin equivalents in contact with textiles, Wear 263(7–12 SPEC. ISS.) (2007) 1112–1116.
  37. L. C. Gerhardt, A. Schiller, B. Müller, N. D. Spencer, and S. Derler, “Fabrication, characterisation and tribological investigation of artificial skin surface lipid films,” Tribol. Lett. 34(2), 81–93 (2009).
    [Crossref]
  38. B. K. Behera J. Militky, R. Mishra, and D. Kremenakova, Modeling of Woven Fabrics Geometry and Properties, in: Woven Fabrics, InTech, Rijeka, Croatia, (Han-Yong Jeon (Ed.), 2012.
  39. S. Ok, S. A. Furquan, Z. Khan, and A. U. Dogan, “Near superhydrophobic-fluorinated THV fiber-like structures and fibers prepared by electrospinning,” High Perform. Polym. 28(2), 206–214 (2016).
    [Crossref]
  40. M. Croes, Comfort and Hygiene of Textiles. < http://www.ekoteks.com/Content/Documents/07-markcroes.pdf >, November, 10th, 2016.
  41. R. A. Scott, 16 - Textiles in defence*, in: Handbook of Technical Textiles, Woodhead Publishing, 2000, pp. 425–460.
  42. Trevira, Brochure Trevira CS. < http://www.trevira.com/fileadmin/download/broschueren_cs_gesamt/gesamt_gb_2015.pdf >, accessed June 19, 2017.
  43. H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: Current methods and future directions,” Semin. Perinatol. 28(5), 326–333 (2004).
    [Crossref] [PubMed]
  44. J. Frackiewicz-Kaczmarek, A. Psikuta, M. A. Bueno, and R. M. Rossi, “Effect of garment properties on air gap thickness and the contact area distribution,” Text. Res. J. 85(18), 1907–1918 (2015).
    [Crossref]
  45. RW-37 Series General Purpose VIS to NIR Irradiance Detectors < http://www.pro-lite.fr/File/RW-37_Series_Radiometric_detectors.pdf >, accessed November, 10th, 2016.
  46. Plastic Fiber Optic Blue LEDs. < http://i-fiberoptics.com/pdf/ife92.pdf >, accessed November, 11th, 2016.
  47. A. A. Lamola and M. Russo, “Fluorescence Excitation Spectrum of Bilirubin in Blood: A Model for the Action Spectrum for Phototherapy of Neonatal Jaundice,” Photochem. Photobiol. 90(2), 294–296 (2014).
    [Crossref] [PubMed]

2017 (1)

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

2016 (2)

A. Ramachandran, “Neonatal hyperbilirubinaemia,” Paediatr. Child Health 26(4), 162–168 (2016).
[Crossref]

S. Ok, S. A. Furquan, Z. Khan, and A. U. Dogan, “Near superhydrophobic-fluorinated THV fiber-like structures and fibers prepared by electrospinning,” High Perform. Polym. 28(2), 206–214 (2016).
[Crossref]

2015 (3)

J. Frackiewicz-Kaczmarek, A. Psikuta, M. A. Bueno, and R. M. Rossi, “Effect of garment properties on air gap thickness and the contact area distribution,” Text. Res. J. 85(18), 1907–1918 (2015).
[Crossref]

D. Brites and A. Fernandes, “Bilirubin-induced neural impairment: A special focus on myelination, age-related windows of susceptibility and associated co-morbidities,” Semin. Fetal Neonatal Med. 20(1), 14–19 (2015).
[Crossref] [PubMed]

B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles,” Adv. Healthc. Mater. 4(3), 330–355 (2015).
[Crossref] [PubMed]

2014 (2)

A. A. Lamola and M. Russo, “Fluorescence Excitation Spectrum of Bilirubin in Blood: A Model for the Action Spectrum for Phototherapy of Neonatal Jaundice,” Photochem. Photobiol. 90(2), 294–296 (2014).
[Crossref] [PubMed]

M. Krehel, M. Wolf, L. F. Boesel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Development of a luminous textile for reflective pulse oximetry measurements,” Biomed. Opt. Express 5(8), 2537–2547 (2014).
[Crossref] [PubMed]

2013 (2)

J. Shen, C. Chui, and X. Tao, “Luminous fabric devices for wearable low-level light therapy,” Biomed. Opt. Express 4(12), 2925–2937 (2013).
[Crossref] [PubMed]

C. Cochrane, S. R. Mordon, J. C. Lesage, and V. Koncar, “New design of textile light diffusers for photodynamic therapy,” Mater. Sci. Eng. C 33(3), 1170–1175 (2013).
[Crossref] [PubMed]

2012 (1)

H. Mekaru, A. Ohtomo, H. Takagi, M. Kokubo, and H. Goto, “Reel-to-reel imprint system to form weaving guides on fibers,” Microelectron. Eng. 98, 171–175 (2012).
[Crossref]

2010 (1)

B. Selm, E. A. Gurel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles,” J. Intell. Mater. Syst. Struct. 21(11), 1061–1071 (2010).
[Crossref]

2009 (1)

L. C. Gerhardt, A. Schiller, B. Müller, N. D. Spencer, and S. Derler, “Fabrication, characterisation and tribological investigation of artificial skin surface lipid films,” Tribol. Lett. 34(2), 81–93 (2009).
[Crossref]

2008 (2)

2007 (1)

B. Selm, M. Rothmaier, M. Camenzind, T. Khan, and H. Walt, “Novel flexible light diffuser and irradiation properties for photodynamic therapy,” J. Biomed. Opt. 12(3), 034024 (2007).

2006 (1)

A. Masuda, T. Murakami, K. Honda, and S. Yamaguchi, “Optical Properties of Woven Fabrics by Plastic Optical Fiber,” Journal of Textile Engineering 52(3), 93–97 (2006).
[Crossref]

2005 (1)

V. Koncar, “Optical Fiber Fabric Displays,” Opt. Photonics News 16(4), 40–44 (2005).
[Crossref]

2004 (2)

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: Current methods and future directions,” Semin. Perinatol. 28(5), 326–333 (2004).
[Crossref] [PubMed]

American Academy of Pediatrics Subcommittee on Hyperbilirubinemia, “Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation,” Pediatrics 114(1), 297–316 (2004).
[Crossref] [PubMed]

2003 (1)

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development Of Polymeric Optical Fibre Fabrics As Illumination Elements And Textile Displays,” AUTEX Res. J. 3(1), 8 (2003).

1998 (1)

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

1975 (1)

R. H. Dobbs and R. J. Cremer, “Phototherapy,” Arch. Dis. Child. 50(11), 833–836 (1975).
[Crossref] [PubMed]

Boesel, L. F.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles,” Adv. Healthc. Mater. 4(3), 330–355 (2015).
[Crossref] [PubMed]

M. Krehel, M. Wolf, L. F. Boesel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Development of a luminous textile for reflective pulse oximetry measurements,” Biomed. Opt. Express 5(8), 2537–2547 (2014).
[Crossref] [PubMed]

Bona, G.-L.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles,” Adv. Healthc. Mater. 4(3), 330–355 (2015).
[Crossref] [PubMed]

M. Krehel, M. Wolf, L. F. Boesel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Development of a luminous textile for reflective pulse oximetry measurements,” Biomed. Opt. Express 5(8), 2537–2547 (2014).
[Crossref] [PubMed]

Braun, F.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

Brites, D.

D. Brites and A. Fernandes, “Bilirubin-induced neural impairment: A special focus on myelination, age-related windows of susceptibility and associated co-morbidities,” Semin. Fetal Neonatal Med. 20(1), 14–19 (2015).
[Crossref] [PubMed]

Bueno, M. A.

J. Frackiewicz-Kaczmarek, A. Psikuta, M. A. Bueno, and R. M. Rossi, “Effect of garment properties on air gap thickness and the contact area distribution,” Text. Res. J. 85(18), 1907–1918 (2015).
[Crossref]

Camenzind, M.

B. Selm, M. Rothmaier, M. Camenzind, T. Khan, and H. Walt, “Novel flexible light diffuser and irradiation properties for photodynamic therapy,” J. Biomed. Opt. 12(3), 034024 (2007).

Chui, C.

Cochrane, C.

C. Cochrane, S. R. Mordon, J. C. Lesage, and V. Koncar, “New design of textile light diffusers for photodynamic therapy,” Mater. Sci. Eng. C 33(3), 1170–1175 (2013).
[Crossref] [PubMed]

Cremer, R. J.

R. H. Dobbs and R. J. Cremer, “Phototherapy,” Arch. Dis. Child. 50(11), 833–836 (1975).
[Crossref] [PubMed]

Derler, S.

L. C. Gerhardt, A. Schiller, B. Müller, N. D. Spencer, and S. Derler, “Fabrication, characterisation and tribological investigation of artificial skin surface lipid films,” Tribol. Lett. 34(2), 81–93 (2009).
[Crossref]

Dobbs, R. H.

R. H. Dobbs and R. J. Cremer, “Phototherapy,” Arch. Dis. Child. 50(11), 833–836 (1975).
[Crossref] [PubMed]

Dogan, A. U.

S. Ok, S. A. Furquan, Z. Khan, and A. U. Dogan, “Near superhydrophobic-fluorinated THV fiber-like structures and fibers prepared by electrospinning,” High Perform. Polym. 28(2), 206–214 (2016).
[Crossref]

Fejer, M. M.

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

Fernandes, A.

D. Brites and A. Fernandes, “Bilirubin-induced neural impairment: A special focus on myelination, age-related windows of susceptibility and associated co-morbidities,” Semin. Fetal Neonatal Med. 20(1), 14–19 (2015).
[Crossref] [PubMed]

Ferrario, D.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

Frackiewicz-Kaczmarek, J.

J. Frackiewicz-Kaczmarek, A. Psikuta, M. A. Bueno, and R. M. Rossi, “Effect of garment properties on air gap thickness and the contact area distribution,” Text. Res. J. 85(18), 1907–1918 (2015).
[Crossref]

Furquan, S. A.

S. Ok, S. A. Furquan, Z. Khan, and A. U. Dogan, “Near superhydrophobic-fluorinated THV fiber-like structures and fibers prepared by electrospinning,” High Perform. Polym. 28(2), 206–214 (2016).
[Crossref]

Gale, R.

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

Gerhardt, L. C.

L. C. Gerhardt, A. Schiller, B. Müller, N. D. Spencer, and S. Derler, “Fabrication, characterisation and tribological investigation of artificial skin surface lipid films,” Tribol. Lett. 34(2), 81–93 (2009).
[Crossref]

Goto, H.

H. Mekaru, A. Ohtomo, H. Takagi, M. Kokubo, and H. Goto, “Reel-to-reel imprint system to form weaving guides on fibers,” Microelectron. Eng. 98, 171–175 (2012).
[Crossref]

Gurel, E. A.

B. Selm, E. A. Gurel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles,” J. Intell. Mater. Syst. Struct. 21(11), 1061–1071 (2010).
[Crossref]

Haensse, D.

Harlin, A.

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development Of Polymeric Optical Fibre Fabrics As Illumination Elements And Textile Displays,” AUTEX Res. J. 3(1), 8 (2003).

Honda, K.

A. Masuda, T. Murakami, K. Honda, and S. Yamaguchi, “Optical Properties of Woven Fabrics by Plastic Optical Fiber,” Journal of Textile Engineering 52(3), 93–97 (2006).
[Crossref]

Hufenus, R.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

Khan, T.

B. Selm, M. Rothmaier, M. Camenzind, T. Khan, and H. Walt, “Novel flexible light diffuser and irradiation properties for photodynamic therapy,” J. Biomed. Opt. 12(3), 034024 (2007).

Khan, Z.

S. Ok, S. A. Furquan, Z. Khan, and A. U. Dogan, “Near superhydrophobic-fluorinated THV fiber-like structures and fibers prepared by electrospinning,” High Perform. Polym. 28(2), 206–214 (2016).
[Crossref]

Kokubo, M.

H. Mekaru, A. Ohtomo, H. Takagi, M. Kokubo, and H. Goto, “Reel-to-reel imprint system to form weaving guides on fibers,” Microelectron. Eng. 98, 171–175 (2012).
[Crossref]

Koncar, V.

C. Cochrane, S. R. Mordon, J. C. Lesage, and V. Koncar, “New design of textile light diffusers for photodynamic therapy,” Mater. Sci. Eng. C 33(3), 1170–1175 (2013).
[Crossref] [PubMed]

V. Koncar, “Optical Fiber Fabric Displays,” Opt. Photonics News 16(4), 40–44 (2005).
[Crossref]

Krehel, M.

Lamola, A. A.

A. A. Lamola and M. Russo, “Fluorescence Excitation Spectrum of Bilirubin in Blood: A Model for the Action Spectrum for Phototherapy of Neonatal Jaundice,” Photochem. Photobiol. 90(2), 294–296 (2014).
[Crossref] [PubMed]

Lesage, J. C.

C. Cochrane, S. R. Mordon, J. C. Lesage, and V. Koncar, “New design of textile light diffusers for photodynamic therapy,” Mater. Sci. Eng. C 33(3), 1170–1175 (2013).
[Crossref] [PubMed]

Maisels, M. J.

M. J. Maisels and A. F. McDonagh, “Phototherapy for Neonatal Jaundice,” N. Engl. J. Med. 358(9), 920–928 (2008).
[Crossref] [PubMed]

Mäkinen, M.

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development Of Polymeric Optical Fibre Fabrics As Illumination Elements And Textile Displays,” AUTEX Res. J. 3(1), 8 (2003).

Masuda, A.

A. Masuda, T. Murakami, K. Honda, and S. Yamaguchi, “Optical Properties of Woven Fabrics by Plastic Optical Fiber,” Journal of Textile Engineering 52(3), 93–97 (2006).
[Crossref]

McDonagh, A. F.

M. J. Maisels and A. F. McDonagh, “Phototherapy for Neonatal Jaundice,” N. Engl. J. Med. 358(9), 920–928 (2008).
[Crossref] [PubMed]

Mekaru, H.

H. Mekaru, A. Ohtomo, H. Takagi, M. Kokubo, and H. Goto, “Reel-to-reel imprint system to form weaving guides on fibers,” Microelectron. Eng. 98, 171–175 (2012).
[Crossref]

Mordon, S. R.

C. Cochrane, S. R. Mordon, J. C. Lesage, and V. Koncar, “New design of textile light diffusers for photodynamic therapy,” Mater. Sci. Eng. C 33(3), 1170–1175 (2013).
[Crossref] [PubMed]

Müller, B.

L. C. Gerhardt, A. Schiller, B. Müller, N. D. Spencer, and S. Derler, “Fabrication, characterisation and tribological investigation of artificial skin surface lipid films,” Tribol. Lett. 34(2), 81–93 (2009).
[Crossref]

Murakami, T.

A. Masuda, T. Murakami, K. Honda, and S. Yamaguchi, “Optical Properties of Woven Fabrics by Plastic Optical Fiber,” Journal of Textile Engineering 52(3), 93–97 (2006).
[Crossref]

Ohtomo, A.

H. Mekaru, A. Ohtomo, H. Takagi, M. Kokubo, and H. Goto, “Reel-to-reel imprint system to form weaving guides on fibers,” Microelectron. Eng. 98, 171–175 (2012).
[Crossref]

Ok, S.

S. Ok, S. A. Furquan, Z. Khan, and A. U. Dogan, “Near superhydrophobic-fluorinated THV fiber-like structures and fibers prepared by electrospinning,” High Perform. Polym. 28(2), 206–214 (2016).
[Crossref]

Psikuta, A.

J. Frackiewicz-Kaczmarek, A. Psikuta, M. A. Bueno, and R. M. Rossi, “Effect of garment properties on air gap thickness and the contact area distribution,” Text. Res. J. 85(18), 1907–1918 (2015).
[Crossref]

Quandt, B. M.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles,” Adv. Healthc. Mater. 4(3), 330–355 (2015).
[Crossref] [PubMed]

Ramachandran, A.

A. Ramachandran, “Neonatal hyperbilirubinaemia,” Paediatr. Child Health 26(4), 162–168 (2016).
[Crossref]

Reader, S. D.

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

Rossi, R. M.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles,” Adv. Healthc. Mater. 4(3), 330–355 (2015).
[Crossref] [PubMed]

J. Frackiewicz-Kaczmarek, A. Psikuta, M. A. Bueno, and R. M. Rossi, “Effect of garment properties on air gap thickness and the contact area distribution,” Text. Res. J. 85(18), 1907–1918 (2015).
[Crossref]

M. Krehel, M. Wolf, L. F. Boesel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Development of a luminous textile for reflective pulse oximetry measurements,” Biomed. Opt. Express 5(8), 2537–2547 (2014).
[Crossref] [PubMed]

B. Selm, E. A. Gurel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles,” J. Intell. Mater. Syst. Struct. 21(11), 1061–1071 (2010).
[Crossref]

Rothmaier, M.

B. Selm, E. A. Gurel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles,” J. Intell. Mater. Syst. Struct. 21(11), 1061–1071 (2010).
[Crossref]

M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express 16(17), 12973–12986 (2008).
[Crossref] [PubMed]

B. Selm, M. Rothmaier, M. Camenzind, T. Khan, and H. Walt, “Novel flexible light diffuser and irradiation properties for photodynamic therapy,” J. Biomed. Opt. 12(3), 034024 (2007).

Route, R. K.

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

Russo, M.

A. A. Lamola and M. Russo, “Fluorescence Excitation Spectrum of Bilirubin in Blood: A Model for the Action Spectrum for Phototherapy of Neonatal Jaundice,” Photochem. Photobiol. 90(2), 294–296 (2014).
[Crossref] [PubMed]

Scheel-Sailer, A.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

Scherer, L. J.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles,” Adv. Healthc. Mater. 4(3), 330–355 (2015).
[Crossref] [PubMed]

M. Krehel, M. Wolf, L. F. Boesel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Development of a luminous textile for reflective pulse oximetry measurements,” Biomed. Opt. Express 5(8), 2537–2547 (2014).
[Crossref] [PubMed]

B. Selm, E. A. Gurel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles,” J. Intell. Mater. Syst. Struct. 21(11), 1061–1071 (2010).
[Crossref]

Schiller, A.

L. C. Gerhardt, A. Schiller, B. Müller, N. D. Spencer, and S. Derler, “Fabrication, characterisation and tribological investigation of artificial skin surface lipid films,” Tribol. Lett. 34(2), 81–93 (2009).
[Crossref]

Seidman, D. S.

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

Selm, B.

B. Selm, E. A. Gurel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles,” J. Intell. Mater. Syst. Struct. 21(11), 1061–1071 (2010).
[Crossref]

M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express 16(17), 12973–12986 (2008).
[Crossref] [PubMed]

B. Selm, M. Rothmaier, M. Camenzind, T. Khan, and H. Walt, “Novel flexible light diffuser and irradiation properties for photodynamic therapy,” J. Biomed. Opt. 12(3), 034024 (2007).

Shen, J.

Spencer, N. D.

L. C. Gerhardt, A. Schiller, B. Müller, N. D. Spencer, and S. Derler, “Fabrication, characterisation and tribological investigation of artificial skin surface lipid films,” Tribol. Lett. 34(2), 81–93 (2009).
[Crossref]

Spichtig, S.

Stevenson, D. K.

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: Current methods and future directions,” Semin. Perinatol. 28(5), 326–333 (2004).
[Crossref] [PubMed]

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

Takagi, H.

H. Mekaru, A. Ohtomo, H. Takagi, M. Kokubo, and H. Goto, “Reel-to-reel imprint system to form weaving guides on fibers,” Microelectron. Eng. 98, 171–175 (2012).
[Crossref]

Tao, X.

Vreman, H. J.

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: Current methods and future directions,” Semin. Perinatol. 28(5), 326–333 (2004).
[Crossref] [PubMed]

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

Vuorivirta, A.

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development Of Polymeric Optical Fibre Fabrics As Illumination Elements And Textile Displays,” AUTEX Res. J. 3(1), 8 (2003).

Walt, H.

B. Selm, M. Rothmaier, M. Camenzind, T. Khan, and H. Walt, “Novel flexible light diffuser and irradiation properties for photodynamic therapy,” J. Biomed. Opt. 12(3), 034024 (2007).

Wolf, M.

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles,” Adv. Healthc. Mater. 4(3), 330–355 (2015).
[Crossref] [PubMed]

M. Krehel, M. Wolf, L. F. Boesel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Development of a luminous textile for reflective pulse oximetry measurements,” Biomed. Opt. Express 5(8), 2537–2547 (2014).
[Crossref] [PubMed]

M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express 16(17), 12973–12986 (2008).
[Crossref] [PubMed]

Wong, R. J.

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: Current methods and future directions,” Semin. Perinatol. 28(5), 326–333 (2004).
[Crossref] [PubMed]

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

Yamaguchi, S.

A. Masuda, T. Murakami, K. Honda, and S. Yamaguchi, “Optical Properties of Woven Fabrics by Plastic Optical Fiber,” Journal of Textile Engineering 52(3), 93–97 (2006).
[Crossref]

Adv. Healthc. Mater. (1)

B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles,” Adv. Healthc. Mater. 4(3), 330–355 (2015).
[Crossref] [PubMed]

Arch. Dis. Child. (1)

R. H. Dobbs and R. J. Cremer, “Phototherapy,” Arch. Dis. Child. 50(11), 833–836 (1975).
[Crossref] [PubMed]

AUTEX Res. J. (1)

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development Of Polymeric Optical Fibre Fabrics As Illumination Elements And Textile Displays,” AUTEX Res. J. 3(1), 8 (2003).

Biomed. Opt. Express (2)

High Perform. Polym. (1)

S. Ok, S. A. Furquan, Z. Khan, and A. U. Dogan, “Near superhydrophobic-fluorinated THV fiber-like structures and fibers prepared by electrospinning,” High Perform. Polym. 28(2), 206–214 (2016).
[Crossref]

J. Biomed. Opt. (1)

B. Selm, M. Rothmaier, M. Camenzind, T. Khan, and H. Walt, “Novel flexible light diffuser and irradiation properties for photodynamic therapy,” J. Biomed. Opt. 12(3), 034024 (2007).

J. Intell. Mater. Syst. Struct. (1)

B. Selm, E. A. Gurel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles,” J. Intell. Mater. Syst. Struct. 21(11), 1061–1071 (2010).
[Crossref]

J. R. Soc. Interface (1)

B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. Scheel-Sailer, M. Wolf, G.-L. Bona, R. Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface 14(128), 20170060 (2017).
[Crossref] [PubMed]

Journal of Textile Engineering (1)

A. Masuda, T. Murakami, K. Honda, and S. Yamaguchi, “Optical Properties of Woven Fabrics by Plastic Optical Fiber,” Journal of Textile Engineering 52(3), 93–97 (2006).
[Crossref]

Mater. Sci. Eng. C (1)

C. Cochrane, S. R. Mordon, J. C. Lesage, and V. Koncar, “New design of textile light diffusers for photodynamic therapy,” Mater. Sci. Eng. C 33(3), 1170–1175 (2013).
[Crossref] [PubMed]

Microelectron. Eng. (1)

H. Mekaru, A. Ohtomo, H. Takagi, M. Kokubo, and H. Goto, “Reel-to-reel imprint system to form weaving guides on fibers,” Microelectron. Eng. 98, 171–175 (2012).
[Crossref]

N. Engl. J. Med. (1)

M. J. Maisels and A. F. McDonagh, “Phototherapy for Neonatal Jaundice,” N. Engl. J. Med. 358(9), 920–928 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Photonics News (1)

V. Koncar, “Optical Fiber Fabric Displays,” Opt. Photonics News 16(4), 40–44 (2005).
[Crossref]

Paediatr. Child Health (1)

A. Ramachandran, “Neonatal hyperbilirubinaemia,” Paediatr. Child Health 26(4), 162–168 (2016).
[Crossref]

Pediatr. Res. (1)

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, and D. S. Seidman, “Light-Emitting Diodes: A Novel Light Source for Phototherapy,” Pediatr. Res. 44(5), 804–809 (1998).
[Crossref] [PubMed]

Pediatrics (1)

American Academy of Pediatrics Subcommittee on Hyperbilirubinemia, “Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation,” Pediatrics 114(1), 297–316 (2004).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

A. A. Lamola and M. Russo, “Fluorescence Excitation Spectrum of Bilirubin in Blood: A Model for the Action Spectrum for Phototherapy of Neonatal Jaundice,” Photochem. Photobiol. 90(2), 294–296 (2014).
[Crossref] [PubMed]

Semin. Fetal Neonatal Med. (1)

D. Brites and A. Fernandes, “Bilirubin-induced neural impairment: A special focus on myelination, age-related windows of susceptibility and associated co-morbidities,” Semin. Fetal Neonatal Med. 20(1), 14–19 (2015).
[Crossref] [PubMed]

Semin. Perinatol. (1)

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: Current methods and future directions,” Semin. Perinatol. 28(5), 326–333 (2004).
[Crossref] [PubMed]

Text. Res. J. (1)

J. Frackiewicz-Kaczmarek, A. Psikuta, M. A. Bueno, and R. M. Rossi, “Effect of garment properties on air gap thickness and the contact area distribution,” Text. Res. J. 85(18), 1907–1918 (2015).
[Crossref]

Tribol. Lett. (1)

L. C. Gerhardt, A. Schiller, B. Müller, N. D. Spencer, and S. Derler, “Fabrication, characterisation and tribological investigation of artificial skin surface lipid films,” Tribol. Lett. 34(2), 81–93 (2009).
[Crossref]

Other (24)

B. K. Behera J. Militky, R. Mishra, and D. Kremenakova, Modeling of Woven Fabrics Geometry and Properties, in: Woven Fabrics, InTech, Rijeka, Croatia, (Han-Yong Jeon (Ed.), 2012.

RW-37 Series General Purpose VIS to NIR Irradiance Detectors < http://www.pro-lite.fr/File/RW-37_Series_Radiometric_detectors.pdf >, accessed November, 10th, 2016.

Plastic Fiber Optic Blue LEDs. < http://i-fiberoptics.com/pdf/ife92.pdf >, accessed November, 11th, 2016.

S. Doerr, What causes jaundice in adults? < http://www.medicinenet.com/jaundice_in_adults/page2.htm >.

Natus, neoBLUE blanket LED Phototherapy System. < http://www.natus.com/documents/011168C_neoBLUE%20blanket%20Brochure_EN%20US_lo-res.pdf >, accessed November, 10th, 2016.

GE, BiliSoft Phototherapy System. < http://www3.gehealthcare.com/en/products/categories/maternal-infant_care/phototherapy/bilisoft_phototherapy_system#tabs/tab1B45BA4DBCFF4C289CCBD7A361D1FD9B >, accessed November, 10th, 2016.

L. Péruchon, B. Cédric, Le textile lumineux en fibres optiques: appplication en Photothérapie de la jaunisse du nourrisson, Photoniques 64(Dossier Optique et thérapie) (2013) 40 - 42.

O-blanket: Phototherapy Device for Neonatal Jaundice. < https://www.polyu.edu.hk/ife/corp/cntimgs/techsearch/3_ITC_07_0315.pdf >, accessed November, 10th, 2016.

I. N. R. Lumitex, OH) Fiber optic light emmitting panel and method of making same, in: http://www.freepatentsonline.com/4885663.html , USA, 1989.

Y. Oguz, C. Cochrane, S. R. Mordon, and V. Koncar, Optimization Of Light Emitting Textiles Woven With Optical Fibers For Photodynamic Therapy, V I. International Technical Textiles Congress, İZMİR, 2015.

X. Tao, W. Zheng, Z. Zhang, H. Lau, and L. Lee, Phototherapy textile wrapper, in: US patents US 20160121136 A1, USA, 2016.

J. R. Parker, Light emitting panel assemblies and method of making same, in: US Patents US 4907132 A, USA, 1990.

K. D. Kaschke, Optical fiber light emitting apparatus, in: US Patents US 5542016 A, USA, 1996.

M. Daniel, Light emitting fabric, in: US Patents US 4234907 A, USA, 1980.

D. J. Lundin and M. C. Lea, Optical fiber illumination system, in: US patents US 5845038 A, USA, 1998.

R. H. Appeldorn and M. C. Lea, Notched fiber array illumination device, in: US patents US 5659643 A, USA, 1997.

J. R. Parker, Phototherapy treatment devices for applying area lighting to a wound, in: US patents US 7686839 B2, USA, 2010.

D. C. C. Chung, A. J. Totah, W. C. Joe, E. M. W. Chiu, D. J. Brude, B. P. Flaherty, and W. L. Mince, Phototherapy device, in: US patents US 8048136 B2, USA, 2011.

H. Walt, B. Selm, and T. Wessel, Light-emitting textile structure, in particular for medical purposes, and use thereof, in: US Patent & Trademark Office US 2006/0257095, United States, 2006.

B. K. Behera and P. K. Hari, 13 - Friction and other aspects of the surface behavior of woven fabrics, in: Woven Textile Structure, Woodhead Publishing, 2010, pp. 230–242.

S. Derler, U. Schrade, L.C. Gerhardt, Tribology of human skin and mechanical skin equivalents in contact with textiles, Wear 263(7–12 SPEC. ISS.) (2007) 1112–1116.

M. Croes, Comfort and Hygiene of Textiles. < http://www.ekoteks.com/Content/Documents/07-markcroes.pdf >, November, 10th, 2016.

R. A. Scott, 16 - Textiles in defence*, in: Handbook of Technical Textiles, Woodhead Publishing, 2000, pp. 425–460.

Trevira, Brochure Trevira CS. < http://www.trevira.com/fileadmin/download/broschueren_cs_gesamt/gesamt_gb_2015.pdf >, accessed June 19, 2017.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Decline of serum bilirubin content depending on the average spectral irradiance shown with an exponential fit added to guide the eye, adapted from [4]; inset showing the unconjugated bilirubin molecule with the intramolecular hydrogen bonds between the oxygen (red) and hydrogen (white) atoms with dashed lines.

Fig. 2
Fig. 2

(Upper left) Thickness of the weaves: At each section, three bars are plotted for (red) 1 warp yarn per heddle eye, (yellow) 2 warp yarns per heddle eye, and (green) three warp yarns per heddle eye; (lower left) Normalized thickness of the weaves in which the thickness is divided by the number of weft fibres per mm; (upper right) Static coefficient of friction of all weaves with 2 threads per heddle eye (ID06-10) in dry, stable conditions over 1000 friction cycles; (lower right) Coefficient of static friction of the prepared weaves averaged over 1000 cycles. The two lower graphs show the same colour-coding as described in the upper left.

Fig. 3
Fig. 3

(a) Produced weaves ID01 to −05 all showing good flexibility; the POFs are bundled at one end to enable light in-coupling; (b) and (c) Production of weave ID10_5 with connecting POFs and both sides of the textile on the semi-automatic loom; Images of the polymer optical fibre weaves after washing before (d) and after (e) the fire retardation test in weft direction (3 samples each); (f) Bundling of threads in the loom for 3 threads per heddle eye for the satin 6/6(6) (weave ID15), produced solely from Trevira CS; the scale bar indicates 1 mm.

Fig. 4
Fig. 4

(left) Normalized light intensity for the fabrics produced with 2 warp yarns per heddle eye. The standard deviation is given as coloured patches, with weave ID07 as an inset; (right) Light out-coupling intensity of the satin 6/6(6) weaves with warp yarn densities of 12 (ID05), 24 (ID10), and 36 (ID15) yarns/cm; the standard deviations are given as coloured patches.

Fig. 5
Fig. 5

Theoretical light out-coupling intensity of weaves ID09 (left) and ID10 (right): (red) measured data in-coupled from the leftern side of the textiles as well as mirrored for the rightern in-coupling; (blue) the sum of the two. The standard deviation of the total is derived with error propagation of the two single lines. The linear function minimizing χ2 of experimental data and solving function is plotted with black circles for both weaves. The coefficients can be taken from Table 3.

Fig. 6
Fig. 6

(a) Plot of weave type ID10_4 (double warp yarn and satin 6(6/6)) with 94 POF/cm); with a combined linear fit (as shown in Table 4) for both sides of the textile, (b) Schematic of the evaluation procedure when illuminated by LEDs from both sides; orange and blue corresponds to the data sets in (a), (c) Plot of final textile (94 POF/cm) while illuminated from both sides by LEDs, the inset shows the fabric with 1 ferrule illuminated ( = 60 POF), (d) The fabric is wrapped around a Teddy with 120 POF illuminated.

Fig. 7
Fig. 7

(left) Relative intensity of the used LED over the emitting wavelength range with the respective relative spectral responsitivities of the used detector with calculated linear fit in that wavelength range. The relative power density compared to the LED emission spectrum is given for this detector. The data was imported from the data sheet of the detector and LED [45, 46]; (right) Relative intensity of the used LED (blue) [46] plotted with the relative absorption probability of light by bilirubin (blood sample containing 2.44 mmol/L hemoglobin and 0.147 mmol/L bilirubin), adapted from Lamola et al. (2014) [47].

Tables (4)

Tables Icon

Table 1 Production parameters and schematic of the weaves: Trevira CS is depicted in grey while the POF is marked in blue; fibres are not to size. a Pattern denomination corresponding to the set-up on a 12 ends/cm- reed; b scale bars equal 1 mm; “alt.” denominating weaves with one pattern repetition of Trevira CS-yarn in weft direction after each repetition of pattern of POF-fibres.

Tables Icon

Table 2 Production parameters of the initial weaves as well as the optimizations of weave ID10 in the bottom 5 rows. There, only the number of optical fibres per weave cm is varied. a Required space within 1 cm of the loom is defined by the pattern and the used threads’ or fibers’ diameters, values higher than 1 lead to 2D fabrics due to bundling; b Volume is calculated from the radii of both POF fibers and Trevira CS threads and their count per cm2.

Tables Icon

Table 3 Coefficients to the exponential as well as linear fit for the light out-coupling of the weaves, illuminated from 1 side. The R2-value is given for all weaves for both fits. Coefficients of the linear fit feasible following calculations are marked bold as well as R2-values above 0.90.

Tables Icon

Table 4 Confirmation of a re-in-coupling effect: weave production parameters for weaves of type ID10 (as determined as the best fitting (Table 3). Their optical properties are listed as slope and R2-value. These are determined from light out-coupling experiment while illuminated from both sides.

Metrics