Abstract

A novel all-optical akinetic ultrasound sensor, consisting of a rigid, fiber-coupled Fabry-Pérot etalon with a transparent central opening is presented. The sensing principle relies exclusively on the detection of pressure-induced changes of the refractive index in the fluid filling the Fabry-Pérot cavity. This enables resonance-free, inherently linear signal detection over a broad bandwidth. We demonstrate that the sensor achieves a exceptionally low peak noise equivalent pressure (NEP) values of 2 Pa over a 20 MHz measurement bandwidth (without signal averaging), while maintaining a flat frequency response, and a detection bandwidth up to 22.5 MHz (−6 dB). The measured large full field of view of the sensor is 2.7 mm × 1.3 mm and the dynamic range is 137dB/Hz or 63 dB at 20 MHz bandwidth. For different required amplitude ranges the upper amplitude detection limit can be customized from at least 2 kPa to 2 MPa by using cavity mirrors with a lower optical reflectivity. Imaging tests on a resolution target and on biological tissue show the excellent suitability of the akinetic sensor for optical resolution photoacoustic microscopy (OR-PAM) applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy

Xue Bai, Yizhi Liang, Huojiao Sun, Long Jin, Jun Ma, Bai-Ou Guan, and Lidai Wang
Opt. Express 25(15) 17616-17626 (2017)

Thin film metal coated fiber optic hydrophone probe

Rupa Gopinath Minasamudram, Piyush Arora, Gaurav Gandhi, Afshin S. Daryoush, Mahmoud A. El-Sherif, and Peter A. Lewin
Appl. Opt. 48(31) G77-G82 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
    [Crossref] [PubMed]
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [Crossref]
  3. G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
    [Crossref]
  4. S. Hu, K. Maslov, and L. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
    [Crossref] [PubMed]
  5. Z. Xie, S. Jiao, H. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34, 1771–1773 (2009).
    [Crossref] [PubMed]
  6. J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
    [Crossref] [PubMed]
  7. L. Xi, C. Song, and H. Jiang, “Confocal photoacoustic microscopy using a single multifunctional lens,” Opt. Lett. 39, 3328–3331 (2014).
    [Crossref] [PubMed]
  8. J. Gateau, A. Chekkoury, and V. Ntziachristos, “Ultra-wideband three-dimensional optoacoustic tomography,” Opt. Lett. 38, 4671–4674 (2013).
    [Crossref] [PubMed]
  9. C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1, 1093–1098 (2014).
    [Crossref]
  10. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561–577 (2008).
    [Crossref] [PubMed]
  11. Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19, 9027–9034 (2011).
    [Crossref] [PubMed]
  12. H. Li, B. Dong, Z. Zhang, H. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Scientific Reports 4, 4496 (2014).
    [PubMed]
  13. H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15, 021306 (2010).
    [Crossref] [PubMed]
  14. R. Nuster, H. Grün, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Pérot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett. 36, 981–983 (2011).
    [Crossref] [PubMed]
  15. E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
    [Crossref]
  16. B. Fischer, “Optical microphone hears ultrasound,” Nat. Photon 10, 356–358 (2016).
    [Crossref]
  17. W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
    [Crossref]
  18. B. Fischer, “Development of an optical microphone without membrane,” Ph.D. thesis, Vienna University of Technology (2010).
  19. D. Meschede, Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics (Wiley, 2007).
  20. A. A. Oa and A. A. Karabutov, “Ultimate sensitivity of time-resolved optoacoustic detection,” Proc. SPIE 3916, 386326 (2000).
  21. A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18, 097003 (2013).
    [Crossref] [PubMed]
  22. M. Jaeger, “Real-time optoacoustic imaging for medical diagnostics using linear array transducers,” Ph.D. thesis, Philosophisch-Naturwissenschaftliche Fakultät, Universität Bern (2007).
  23. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
    [Crossref] [PubMed]
  24. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
    [Crossref]
  25. L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
    [Crossref] [PubMed]
  26. J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, “Random-access optical-resolution photoacoustic microscopy using a digital micromirror device,” Opt. Lett. 38, 1683–2686 (2013).
    [Crossref]

2016 (2)

B. Fischer, “Optical microphone hears ultrasound,” Nat. Photon 10, 356–358 (2016).
[Crossref]

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

2015 (1)

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

2014 (6)

L. Xi, C. Song, and H. Jiang, “Confocal photoacoustic microscopy using a single multifunctional lens,” Opt. Lett. 39, 3328–3331 (2014).
[Crossref] [PubMed]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1, 1093–1098 (2014).
[Crossref]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref] [PubMed]

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

H. Li, B. Dong, Z. Zhang, H. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Scientific Reports 4, 4496 (2014).
[PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref] [PubMed]

2013 (3)

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, “Random-access optical-resolution photoacoustic microscopy using a digital micromirror device,” Opt. Lett. 38, 1683–2686 (2013).
[Crossref]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18, 097003 (2013).
[Crossref] [PubMed]

J. Gateau, A. Chekkoury, and V. Ntziachristos, “Ultra-wideband three-dimensional optoacoustic tomography,” Opt. Lett. 38, 4671–4674 (2013).
[Crossref] [PubMed]

2011 (3)

2010 (3)

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[Crossref]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15, 021306 (2010).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

2009 (2)

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Z. Xie, S. Jiao, H. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34, 1771–1773 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

2000 (1)

A. A. Oa and A. A. Karabutov, “Ultimate sensitivity of time-resolved optoacoustic detection,” Proc. SPIE 3916, 386326 (2000).

Barnes, E.

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

Beard, P.

Berer, T.

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15, 021306 (2010).
[Crossref] [PubMed]

Burgholzer, P.

R. Nuster, H. Grün, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Pérot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett. 36, 981–983 (2011).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15, 021306 (2010).
[Crossref] [PubMed]

Carson, P. L.

Chekkoury, A.

Chen, R.

Chen, S.-L.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1, 1093–1098 (2014).
[Crossref]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19, 9027–9034 (2011).
[Crossref] [PubMed]

Chen, Z.

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

Dong, B.

H. Li, B. Dong, Z. Zhang, H. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Scientific Reports 4, 4496 (2014).
[PubMed]

Drexler, W.

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Fischer, B.

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

B. Fischer, “Optical microphone hears ultrasound,” Nat. Photon 10, 356–358 (2016).
[Crossref]

B. Fischer, “Development of an optical microphone without membrane,” Ph.D. thesis, Vienna University of Technology (2010).

Gateau, J.

Glickman, R.

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

Gratt, S.

Grün, H.

R. Nuster, H. Grün, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Pérot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett. 36, 981–983 (2011).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15, 021306 (2010).
[Crossref] [PubMed]

Guo, L. J.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1, 1093–1098 (2014).
[Crossref]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19, 9027–9034 (2011).
[Crossref] [PubMed]

Hermann, B.

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

Hu, S.

Huang, C.-H.

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

Jaeger, M.

M. Jaeger, “Real-time optoacoustic imaging for medical diagnostics using linear array transducers,” Ph.D. thesis, Philosophisch-Naturwissenschaftliche Fakultät, Universität Bern (2007).

Jiang, H.

Jiao, S.

Karabutov, A. A.

A. A. Oa and A. A. Karabutov, “Ultimate sensitivity of time-resolved optoacoustic detection,” Proc. SPIE 3916, 386326 (2000).

Khachatryan, E.

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Ku, G.

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[Crossref]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Laufer, J.

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Li, C.

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, “Random-access optical-resolution photoacoustic microscopy using a digital micromirror device,” Opt. Lett. 38, 1683–2686 (2013).
[Crossref]

Li, H.

H. Li, B. Dong, Z. Zhang, H. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Scientific Reports 4, 4496 (2014).
[PubMed]

Li, L.

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref] [PubMed]

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[Crossref]

Liang, J.

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, “Random-access optical-resolution photoacoustic microscopy using a digital micromirror device,” Opt. Lett. 38, 1683–2686 (2013).
[Crossref]

Ling, T.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1, 1093–1098 (2014).
[Crossref]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19, 9027–9034 (2011).
[Crossref] [PubMed]

Liu, M.

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

Maslov, K.

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18, 097003 (2013).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
[Crossref] [PubMed]

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[Crossref]

Maslov, K. I.

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref] [PubMed]

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, “Random-access optical-resolution photoacoustic microscopy using a digital micromirror device,” Opt. Lett. 38, 1683–2686 (2013).
[Crossref]

Maswadi, S.

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Meschede, D.

D. Meschede, Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics (Wiley, 2007).

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Nash, K.

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

Ntziachristos, V.

Nuster, R.

R. Nuster, H. Grün, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Pérot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett. 36, 981–983 (2011).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15, 021306 (2010).
[Crossref] [PubMed]

Oa, A. A.

A. A. Oa and A. A. Karabutov, “Ultimate sensitivity of time-resolved optoacoustic detection,” Proc. SPIE 3916, 386326 (2000).

Oraevsky, A. A.

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Paltauf, G.

R. Nuster, H. Grün, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Pérot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett. 36, 981–983 (2011).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15, 021306 (2010).
[Crossref] [PubMed]

Passler, K.

Preißer, S.

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

Puliafito, C. A.

Reitinger, B.

Rohringer, W.

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

Sardar, D.

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

Sattmann, H.

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

Shung, K. K.

Soetikno, B. T.

Song, C.

Sun, C.

H. Li, B. Dong, Z. Zhang, H. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Scientific Reports 4, 4496 (2014).
[PubMed]

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

Tsyboulski, D. A.

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

Wang, L.

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref] [PubMed]

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, “Random-access optical-resolution photoacoustic microscopy using a digital micromirror device,” Opt. Lett. 38, 1683–2686 (2013).
[Crossref]

S. Hu, K. Maslov, and L. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
[Crossref] [PubMed]

Wang, L. V.

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref] [PubMed]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18, 097003 (2013).
[Crossref] [PubMed]

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, “Random-access optical-resolution photoacoustic microscopy using a digital micromirror device,” Opt. Lett. 38, 1683–2686 (2013).
[Crossref]

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[Crossref]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Wang, X.

Winkler, A. M.

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18, 097003 (2013).
[Crossref] [PubMed]

Winkler, A. W.

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, “Random-access optical-resolution photoacoustic microscopy using a digital micromirror device,” Opt. Lett. 38, 1683–2686 (2013).
[Crossref]

Wong, T.

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

Xi, L.

Xie, Z.

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Yang, J.-M.

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

Yao, J.

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref] [PubMed]

Yeh, C.

Zhang, C.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1, 1093–1098 (2014).
[Crossref]

Zhang, E.

Zhang, H.

H. Li, B. Dong, Z. Zhang, H. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Scientific Reports 4, 4496 (2014).
[PubMed]

Z. Xie, S. Jiao, H. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34, 1771–1773 (2009).
[Crossref] [PubMed]

Zhang, Z.

H. Li, B. Dong, Z. Zhang, H. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Scientific Reports 4, 4496 (2014).
[PubMed]

Zhou, Q.

Zhou, Y.

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, “Random-access optical-resolution photoacoustic microscopy using a digital micromirror device,” Opt. Lett. 38, 1683–2686 (2013).
[Crossref]

Zotter, S.

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

Zou, J.

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1, 1093–1098 (2014).
[Crossref]

Appl. Opt. (1)

J. Biomed. Opt. (5)

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[Crossref]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15, 021306 (2010).
[Crossref] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18, 097003 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

J. Yao, L. Wang, J.-M. Yang, K. Maslov, T. Wong, L. Li, C.-H. Huang, J. Zou, and L. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref] [PubMed]

Nat. Photon (1)

B. Fischer, “Optical microphone hears ultrasound,” Nat. Photon 10, 356–358 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Photoacoustics (1)

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref] [PubMed]

Proc. SPIE (3)

E. Khachatryan, S. Maswadi, D. A. Tsyboulski, E. Barnes, D. Sardar, A. A. Oraevsky, K. Nash, and R. Glickman, “Optoacoustic Microscopy Using Laser Beam Deflection Technique,” Proc. SPIE 8943, 89432T (2014).
[Crossref]

W. Rohringer, S. Preißer, M. Liu, S. Zotter, Z. Chen, B. Hermann, H. Sattmann, B. Fischer, and W. Drexler, “All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging,” Proc. SPIE 9708, 970815 (2016).
[Crossref]

A. A. Oa and A. A. Karabutov, “Ultimate sensitivity of time-resolved optoacoustic detection,” Proc. SPIE 3916, 386326 (2000).

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Scientific Reports (1)

H. Li, B. Dong, Z. Zhang, H. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Scientific Reports 4, 4496 (2014).
[PubMed]

Other (3)

B. Fischer, “Development of an optical microphone without membrane,” Ph.D. thesis, Vienna University of Technology (2010).

D. Meschede, Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics (Wiley, 2007).

M. Jaeger, “Real-time optoacoustic imaging for medical diagnostics using linear array transducers,” Ph.D. thesis, Philosophisch-Naturwissenschaftliche Fakultät, Universität Bern (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Detection principle of the akinetic sensor. A pressure wave constitutes a density change in the medium (illustrated by the red dots) between the resonator mirrors, altering the optical pathlength via a change of the refractive index n. This leads to a resonance shift, which can be detected by monitoring the light intensity reflected by the resonator. (b) Sketch of the sensor head and detection volume (detection laser diameter of 60 μm and mirror diameter of 2 mm).

Fig. 2
Fig. 2

Photograph of the acoustic characterization set-up. (a) Measurement set-up submerged in water. The calibrated needle hydrophone (Acoustic Precision) and the all-optical akinetic sensor (marked by a red circle) are mounted in the axis of the rotation mount. PZT transducers function as sound sources. Distances in the photograph has been adapted for demonstration purpose to better show the entire setup. (b) Zoomed-in photograph of the measurement setup under a different angle showing the all-optical sensor marked by a red circle.

Fig. 3
Fig. 3

Measured frequency response of the all-optical akinetic sensor plotted as a solid black line and the simulated frequency response using Eq. 4 plotted as a dashed red line.

Fig. 4
Fig. 4

Directional responses of the akinetic sensor. (a) The polar pattern shows a flat directional response for rotation parallel to the detection laser axis. (b) Directive response for higher frequencies for rotation of rotating the sensor orthogonal to the detection laser axis.

Fig. 5
Fig. 5

Sensitivity results. (a) Measured noise equivalent pressure of the all-optical akinetic sensor, compared to theoretical limits due to thermal noise for piezoelectric transducers. The characterized test sensor outperforms piezo-electric transducers of identical element size. (b) Signal-to-noise measurements of the akinetic sensor, compared to Olympus piezo-electric transducers. Frequency range of the ultrasound source was between 0.5 MHz and 3.5 MHz (−6 dB).

Fig. 6
Fig. 6

(a) Interferometer transfer function of the high sensitive sensor. (b) Interferometer transfer function of the optical sensor with a extended upper detection limit

Fig. 7
Fig. 7

(a) Sketch of the PAM setup. (b) Mounting of the sensor in the transmission-mode OR-PAM setup.

Fig. 8
Fig. 8

(a) OR-PAM image of the central region containing the smallest groups 6 and 7 of a USAF resolution test target using a pulse energy of 4 nJ with a 10× objective. (b) The edge of the chrome rectangle was scanned illustrated by the blue line in (a) providing the step-edged function. The ESF was well fitted and the FWHM of the derived LSF represents the lateral resolution of the system. With the 10× Olympus objective lens (NA 0.25), the lateral resolution was measured as 1.45 μm, and R2 value, the goodness of fit, was 0.9993.

Fig. 9
Fig. 9

Comparison of OR-PAM (blue) and brightfield microscope images of Feulgen-stained Allium Cepa histology samples. For the images in the upper panel, a pulse energy of 20 nJ was used, while for the picture in the lower panel, the pulse energy was reduced to 8 nJ, demonstrating the possibility of performing imaging on biological tissue with low fluence, although the sensor is not focused.

Fig. 10
Fig. 10

(a) OR-PAM image of red blood cells of a mouse imaged with pulse energies of 10 nJ. (b) OR-PAM image of an ex vivo zebra fish embryo imaged with pulse energies below 15 nJ.

Fig. 11
Fig. 11

Field of view covered by the all-optical sensor at 4.5 mm distance between detection laser and sample. For this measurement, the sensor was kept at a fixed position, while the excitation laser was grid-scanned over a piece of black plastic foil with homogeneous absorption. The measured wide FOV of 2.7 mm by 1.3 mm, is defined by the positions where the normalized photoacoustic signal drops by 6 dB with respect to the maximum recorded signal amplitude. A small black dot in the center symbolizes the FOV of a highly sensitive focused piezoelectric transducer and serves for comparison.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

TF ( q ) = 1 1 1 + F sin ( q 2 ) 2 ,
q ( n ) = 4 π n d λ .
BW FWHM = FSR ( R ) = c 2 n d ( R ) .
P m ( k ) = p s ( k ) sin ( k ( x x ) ) exp ( 2 x 2 w 0 2 ) d x .
P tr ( r , θ , t ) = ν s L ( κ n sin θ + κ τ cos θ ) r 0 r t 0.5 α ( θ ) t + 0.5 α ( θ ) p 0 ( t ) d t ,
f ( x ) = A erf ( x + x 0 c 2 ) + d ,

Metrics