Abstract

Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  2. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref] [PubMed]
  3. D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
    [Crossref] [PubMed]
  4. E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
    [Crossref] [PubMed]
  5. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
    [Crossref] [PubMed]
  6. M. Rolfs, “Microsaccades: Small steps on a long way,” Vision Res. 49(20), 2415–2441 (2009).
    [Crossref] [PubMed]
  7. E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE 8(2), e57956 (2013).
    [Crossref] [PubMed]
  8. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
    [Crossref] [PubMed]
  9. S. B. Stevenson and A. RoordaF. Manns, P. G. Söderberg, A. Ho, B. E. Stuck, and M. Belkin, eds., “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” in Ophthalmic Technologies XV,Proceedings of SPIE, F. Manns, P. G. Söderberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (SPIE, Bellingham, WA, 2005), Vol. 5688, pp. 145–151.
    [Crossref]
  10. D. Ott and R. Eckmiller, “Ocular torsion measured by TV- and scanning laser ophthalmoscopy during horizontal pursuit in humans and monkeys,” Invest. Ophthalmol. Vis. Sci. 30(12), 2512–2520 (1989).
    [PubMed]
  11. D. Ott and M. Lades, “Measurement of eye rotations in three dimensions and the retinal stimulus projection using scanning laser ophthalmoscopy,” Ophthalmic Physiol. Opt. 10(1), 67–71 (1990).
    [Crossref] [PubMed]
  12. D. Ott and W. J. Daunicht, “Eye-Movement Measurement with the scanning laser ophthalmoscope,” Clin. Vis. Sci. 7, 551–556 (1992).
  13. M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
    [Crossref] [PubMed]
  14. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
    [Crossref] [PubMed]
  15. A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments,” in Biomedical Image Registration, B. Fischer, B. M. Dawant, and C. Lorenz, eds., Lecture Notes in Computer Science No. 6204 (Springer Berlin Heidelberg, 2010), pp. 60–71.
  16. R. Dodge and T. S. Cline, “The angle velocity of eye movements,” Psychol. Rev. 8(2), 145–157 (1901).
    [Crossref]
  17. J. Nachmias, “Two-Dimensional Motion of the Retinal Image during Monocular Fixation,” J. Opt. Soc. Am. 49(9), 901–908 (1959).
    [Crossref] [PubMed]
  18. L. A. Riggs, J. C. Armington, and F. Ratliff, “Motions of the Retinal Image during Fixation,” J. Opt. Soc. Am. 44(4), 315–321 (1954).
    [Crossref] [PubMed]
  19. L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res. 8(2), 159–169 (1968).
    [Crossref] [PubMed]
  20. R. M. Jones and T. Tulunay-Keesey, “Accuracy of image stabilization by an optical-electronic feedback system,” Vision Res. 15(1), 57–61 (1975).
    [Crossref] [PubMed]
  21. T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am. 63(8), 921–928 (1973).
    [Crossref] [PubMed]
  22. H. D. Crane and C. M. Steele, “Generation-V dual-Purkinje-image eyetracker,” Appl. Opt. 24(4), 527 (1985).
    [Crossref] [PubMed]
  23. F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods 39(3), 350–364 (2007).
    [Crossref] [PubMed]
  24. J. B. Mulligan, in Recovery of Motion Parameters from Distortions in Scanned Images, J. Le Moigne, ed. (NASA Goddard Space Flight Center, 1997), pp. 281–292.
  25. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
    [Crossref] [PubMed]
  26. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
    [Crossref] [PubMed]
  27. D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22 (2013).
    [Crossref] [PubMed]
  28. W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
    [Crossref] [PubMed]
  29. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
    [Crossref] [PubMed]
  30. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
    [Crossref] [PubMed]
  31. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
    [Crossref] [PubMed]
  32. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
    [Crossref] [PubMed]
  33. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A 27(11), A265–A277 (2010).
    [Crossref] [PubMed]
  34. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006).
    [Crossref] [PubMed]
  35. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
    [Crossref] [PubMed]
  36. E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
    [Crossref] [PubMed]
  37. D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10(4), 433–436 (1997).
    [Crossref] [PubMed]
  38. M. Kleiner, D. Brainard, and D. G. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1 (2007).
  39. D. G. Pelli, “The VideoToolbox software for visual psychophysics: Transforming numbers into movies,” Spat. Vis. 10(4), 437–442 (1997).
    [Crossref] [PubMed]
  40. D. (I.P.V.) Troxler, “Über das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises. [On the disappearance of given objects from our visual field],” Ophthalmol. Bibl. Ger. 2, 1–53 (1804).
  41. L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “The Disappearance of Steadily Fixated Visual Test Objects,” J. Opt. Soc. Am. 43(6), 495–501 (1953).
    [Crossref] [PubMed]
  42. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref] [PubMed]
  43. J. B. Mulligan, “Image processing for improved eye-tracking accuracy,” Behav. Res. Methods Instrum. Comput. 29(1), 54–65 (1997).
    [Crossref] [PubMed]

2014 (1)

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (2)

2011 (3)

A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
[Crossref] [PubMed]

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[Crossref] [PubMed]

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

M. Rolfs, “Microsaccades: Small steps on a long way,” Vision Res. 49(20), 2415–2441 (2009).
[Crossref] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (4)

2006 (2)

2004 (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

2002 (1)

1997 (4)

J. B. Mulligan, “Image processing for improved eye-tracking accuracy,” Behav. Res. Methods Instrum. Comput. 29(1), 54–65 (1997).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: Transforming numbers into movies,” Spat. Vis. 10(4), 437–442 (1997).
[Crossref] [PubMed]

D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10(4), 433–436 (1997).
[Crossref] [PubMed]

1996 (1)

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

1992 (1)

D. Ott and W. J. Daunicht, “Eye-Movement Measurement with the scanning laser ophthalmoscope,” Clin. Vis. Sci. 7, 551–556 (1992).

1990 (1)

D. Ott and M. Lades, “Measurement of eye rotations in three dimensions and the retinal stimulus projection using scanning laser ophthalmoscopy,” Ophthalmic Physiol. Opt. 10(1), 67–71 (1990).
[Crossref] [PubMed]

1989 (1)

D. Ott and R. Eckmiller, “Ocular torsion measured by TV- and scanning laser ophthalmoscopy during horizontal pursuit in humans and monkeys,” Invest. Ophthalmol. Vis. Sci. 30(12), 2512–2520 (1989).
[PubMed]

1985 (1)

1975 (1)

R. M. Jones and T. Tulunay-Keesey, “Accuracy of image stabilization by an optical-electronic feedback system,” Vision Res. 15(1), 57–61 (1975).
[Crossref] [PubMed]

1973 (1)

1968 (1)

L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res. 8(2), 159–169 (1968).
[Crossref] [PubMed]

1959 (1)

1954 (1)

1953 (1)

1901 (1)

R. Dodge and T. S. Cline, “The angle velocity of eye movements,” Psychol. Rev. 8(2), 145–157 (1901).
[Crossref]

1804 (1)

D. (I.P.V.) Troxler, “Über das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises. [On the disappearance of given objects from our visual field],” Ophthalmol. Bibl. Ger. 2, 1–53 (1804).

Achtman, R. L.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE 8(2), e57956 (2013).
[Crossref] [PubMed]

Arathorn, D. W.

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22 (2013).
[Crossref] [PubMed]

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
[Crossref] [PubMed]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
[Crossref] [PubMed]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
[Crossref] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
[Crossref] [PubMed]

Armington, J. C.

Bavelier, D.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE 8(2), e57956 (2013).
[Crossref] [PubMed]

Bigelow, C. E.

Braaf, B.

Brainard, D.

M. Kleiner, D. Brainard, and D. G. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1 (2007).

Brainard, D. H.

D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10(4), 433–436 (1997).
[Crossref] [PubMed]

Burns, S. A.

Campbell, M.

Carroll, J.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE 8(2), e57956 (2013).
[Crossref] [PubMed]

Chung, M.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[Crossref] [PubMed]

Chung, M. M.

Cline, T. S.

R. Dodge and T. S. Cline, “The angle velocity of eye movements,” Psychol. Rev. 8(2), 145–157 (1901).
[Crossref]

Cornsweet, J. C.

Cornsweet, T. N.

Crane, H. D.

Daunicht, W. J.

D. Ott and W. J. Daunicht, “Eye-Movement Measurement with the scanning laser ophthalmoscope,” Clin. Vis. Sci. 7, 551–556 (1992).

de Boer, J. F.

Deng, C.

Dodge, R.

R. Dodge and T. S. Cline, “The angle velocity of eye movements,” Psychol. Rev. 8(2), 145–157 (1901).
[Crossref]

Donnelly Iii, W.

Dubra, A.

Eckmiller, R.

D. Ott and R. Eckmiller, “Ocular torsion measured by TV- and scanning laser ophthalmoscopy during horizontal pursuit in humans and monkeys,” Invest. Ophthalmol. Vis. Sci. 30(12), 2512–2520 (1989).
[PubMed]

Elsner, A. E.

Ferguson, D.

Ferguson, R. D.

Fienup, J. R.

Fischer, W.

Folwell, M. A.

Guidon, A.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE 8(2), e57956 (2013).
[Crossref] [PubMed]

Guizar-Sicairos, M.

Hammer, D. X.

Harmening, W. M.

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

Hebert, T.

Horton, J. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Hunter, J. J.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[Crossref] [PubMed]

Iftimia, N. V.

Iovin, R.

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods 39(3), 350–364 (2007).
[Crossref] [PubMed]

Jones, R. M.

R. M. Jones and T. Tulunay-Keesey, “Accuracy of image stabilization by an optical-electronic feedback system,” Vision Res. 15(1), 57–61 (1975).
[Crossref] [PubMed]

Kleiner, M.

M. Kleiner, D. Brainard, and D. G. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1 (2007).

Lades, M.

D. Ott and M. Lades, “Measurement of eye rotations in three dimensions and the retinal stimulus projection using scanning laser ophthalmoscopy,” Ophthalmic Physiol. Opt. 10(1), 67–71 (1990).
[Crossref] [PubMed]

Latchney, L. R.

Liang, J.

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Merigan, W. H.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[Crossref] [PubMed]

Miller, D. T.

Mujat, M.

Mulligan, J. B.

J. B. Mulligan, “Image processing for improved eye-tracking accuracy,” Behav. Res. Methods Instrum. Comput. 29(1), 54–65 (1997).
[Crossref] [PubMed]

Nachmias, J.

Ott, D.

D. Ott and W. J. Daunicht, “Eye-Movement Measurement with the scanning laser ophthalmoscope,” Clin. Vis. Sci. 7, 551–556 (1992).

D. Ott and M. Lades, “Measurement of eye rotations in three dimensions and the retinal stimulus projection using scanning laser ophthalmoscopy,” Ophthalmic Physiol. Opt. 10(1), 67–71 (1990).
[Crossref] [PubMed]

D. Ott and R. Eckmiller, “Ocular torsion measured by TV- and scanning laser ophthalmoscopy during horizontal pursuit in humans and monkeys,” Invest. Ophthalmol. Vis. Sci. 30(12), 2512–2520 (1989).
[PubMed]

Parker, A.

Parkins, K.

Patel, A. H.

Pelli, D. G.

M. Kleiner, D. Brainard, and D. G. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1 (2007).

D. G. Pelli, “The VideoToolbox software for visual psychophysics: Transforming numbers into movies,” Spat. Vis. 10(4), 437–442 (1997).
[Crossref] [PubMed]

Queener, H.

Rangel-Fonseca, P.

Ratliff, F.

Redner, G.

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods 39(3), 350–364 (2007).
[Crossref] [PubMed]

Riggs, L. A.

Rolfs, M.

M. Rolfs, “Microsaccades: Small steps on a long way,” Vision Res. 49(20), 2415–2441 (2009).
[Crossref] [PubMed]

Romero-Borja, F.

Roorda, A.

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22 (2013).
[Crossref] [PubMed]

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
[Crossref] [PubMed]

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE 8(2), e57956 (2013).
[Crossref] [PubMed]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
[Crossref] [PubMed]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
[Crossref] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
[Crossref] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Rossi, E. A.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE 8(2), e57956 (2013).
[Crossref] [PubMed]

E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
[Crossref] [PubMed]

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[Crossref] [PubMed]

Rucci, M.

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods 39(3), 350–364 (2007).
[Crossref] [PubMed]

Santini, F.

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods 39(3), 350–364 (2007).
[Crossref] [PubMed]

Schick, A. M.

L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res. 8(2), 159–169 (1968).
[Crossref] [PubMed]

Sendtner, R. A.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

Sheehy, C. K.

Sincich, L. C.

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Steele, C. M.

Stetter, M.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

Stevenson, S. B.

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22 (2013).
[Crossref] [PubMed]

Sulai, Y.

Thurman, S. T.

Timberlake, G. T.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

Tiruveedhula, P.

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22 (2013).
[Crossref] [PubMed]

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
[Crossref] [PubMed]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
[Crossref] [PubMed]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
[Crossref] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
[Crossref] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

Tulunay-Keesey, T.

R. M. Jones and T. Tulunay-Keesey, “Accuracy of image stabilization by an optical-electronic feedback system,” Vision Res. 15(1), 57–61 (1975).
[Crossref] [PubMed]

Tumbar, R.

Tuten, W. S.

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

Ustun, T. E.

Vermeer, K. A.

Vienola, K. V.

Vogel, C. R.

Williams, D. R.

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE 8(2), e57956 (2013).
[Crossref] [PubMed]

E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).
[Crossref] [PubMed]

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[Crossref] [PubMed]

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

Yang, Q.

Zhang, Y.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

Zhong, Z.

Zou, W.

Appl. Opt. (1)

Behav. Res. Methods (1)

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods 39(3), 350–364 (2007).
[Crossref] [PubMed]

Behav. Res. Methods Instrum. Comput. (1)

J. B. Mulligan, “Image processing for improved eye-tracking accuracy,” Behav. Res. Methods Instrum. Comput. 29(1), 54–65 (1997).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

Clin. Vis. Sci. (1)

D. Ott and W. J. Daunicht, “Eye-Movement Measurement with the scanning laser ophthalmoscope,” Clin. Vis. Sci. 7, 551–556 (1992).

Eye (Lond.) (1)

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

D. Ott and R. Eckmiller, “Ocular torsion measured by TV- and scanning laser ophthalmoscopy during horizontal pursuit in humans and monkeys,” Invest. Ophthalmol. Vis. Sci. 30(12), 2512–2520 (1989).
[PubMed]

J. Neurosci. (1)

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci. 34(16), 5667–5677 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (3)

J. Vis. (1)

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22 (2013).
[Crossref] [PubMed]

Nat. Neurosci. (1)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

D. Ott and M. Lades, “Measurement of eye rotations in three dimensions and the retinal stimulus projection using scanning laser ophthalmoscopy,” Ophthalmic Physiol. Opt. 10(1), 67–71 (1990).
[Crossref] [PubMed]

Ophthalmol. Bibl. Ger. (1)

D. (I.P.V.) Troxler, “Über das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises. [On the disappearance of given objects from our visual field],” Ophthalmol. Bibl. Ger. 2, 1–53 (1804).

Opt. Express (5)

Opt. Lett. (1)

Perception (1)

M. Kleiner, D. Brainard, and D. G. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1 (2007).

PLoS ONE (1)

E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE 8(2), e57956 (2013).
[Crossref] [PubMed]

Psychol. Rev. (1)

R. Dodge and T. S. Cline, “The angle velocity of eye movements,” Psychol. Rev. 8(2), 145–157 (1901).
[Crossref]

Spat. Vis. (2)

D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10(4), 433–436 (1997).
[Crossref] [PubMed]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: Transforming numbers into movies,” Spat. Vis. 10(4), 437–442 (1997).
[Crossref] [PubMed]

Vision Res. (5)

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[Crossref] [PubMed]

M. Rolfs, “Microsaccades: Small steps on a long way,” Vision Res. 49(20), 2415–2441 (2009).
[Crossref] [PubMed]

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996).
[Crossref] [PubMed]

L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res. 8(2), 159–169 (1968).
[Crossref] [PubMed]

R. M. Jones and T. Tulunay-Keesey, “Accuracy of image stabilization by an optical-electronic feedback system,” Vision Res. 15(1), 57–61 (1975).
[Crossref] [PubMed]

Other (3)

A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments,” in Biomedical Image Registration, B. Fischer, B. M. Dawant, and C. Lorenz, eds., Lecture Notes in Computer Science No. 6204 (Springer Berlin Heidelberg, 2010), pp. 60–71.

S. B. Stevenson and A. RoordaF. Manns, P. G. Söderberg, A. Ho, B. E. Stuck, and M. Belkin, eds., “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” in Ophthalmic Technologies XV,Proceedings of SPIE, F. Manns, P. G. Söderberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (SPIE, Bellingham, WA, 2005), Vol. 5688, pp. 145–151.
[Crossref]

J. B. Mulligan, in Recovery of Motion Parameters from Distortions in Scanned Images, J. Le Moigne, ed. (NASA Goddard Space Flight Center, 1997), pp. 281–292.

Supplementary Material (3)

» Media 1: MPEG (1120 KB)     
» Media 2: MPEG (2482 KB)     
» Media 3: MPEG (580 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Two axes of the PI TTM (dark shaded square) showing its full range of motion (lightly shaded diamond). The dashed rectangle encloses the area of the stabilization range that can be utilized in the optical system. The small dark square shows the size of a 1.5° × 1.5° AOSLO imaging field. Scale bar is one degree.

Fig. 2
Fig. 2

Flow chart of optical stabilization system

Fig. 3
Fig. 3

Strip-level data acquisition, buffering, and eye motion detection. The duration of the longest latencies (T1,T3,T4 & T5) are denoted by the brackets; arrows denote the end of each latency. Note that T2 and T6 are extremely short; their durations are denoted by the thickness of the labeled arrows.

Fig. 4
Fig. 4

Human imaging locations. Subjects NOR011a, NOR025a, NOR037a, were imaged using the pattern of locations shown in (a), while subject NOR047a was imaged with the pattern shown in (b). The gray circle denotes the foveal center imaging location, while the gray squares denote eccentric imaging locations.

Fig. 5
Fig. 5

Eye motion trace computed from the image sequence shown in Media 2, showing vertical (y) component of eye motion before (red) and after optical stabilization alone (blue) and optical stabilization combined with digital registration (green). Inset shows zoomed in trace for the region denoted by the dashed rectangle. Asterisks denote spurious motion measurements during blinks or large amplitude motion (see Appendix for details).

Fig. 6
Fig. 6

Small amplitude motion is calculated by comparing strips of data between consecutive frames. This works well when the motion between frames is small (such as between frame Fr and Fn. However, this fails when the between frame motion is large (such as between frame Fr and frame Fn + 1).

Fig. 7
Fig. 7

A frame offset (Xn,c,Yn,c) is applied before calculating strip motion to increase the probability that strips on the current frame will be compared with the appropriate overlapping strips on the reference frame (Fr)

Fig. 8
Fig. 8

The computational cost of the frame offset (Xn,c,Yn,c) calculation is reduced by using only the central portion of the frame (denoted by the shaded region).

Fig. 9
Fig. 9

Large amplitude motion and blink detection computes motion between consecutive frames using strips from the same frame position (denoted by the darker shading).

Tables (3)

Tables Icon

Table 1 Electronic latencies of the optical stabilization system

Tables Icon

Table 2 Optical stabilization system performance for each participant

Tables Icon

Table 3 Comparison to other stabilization and registration methods

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

| r 1 |=1
| r 2 |=1
r =a r 1 +b r 2 ,
R (t+1)= R (t)+ g Δ R (t)
S +Θ{ R (t+1)}
RMS= i=1 N ( r i r ¯ ) 2 N1
R( u,v )=FF T R2C ( r( x,y ) )
T( u,v )=FF T R2C ( t( x,y ) )
A( u,v )=R( u,v )conj( T( u,v ) )
b( x,y )=FF T C2R 1 ( A(u,v) )
( x,y ) max =argmax( b(x,y) ),

Metrics