Abstract

Variability in illumination, signal quality, tilt and the amount of motion pose challenges for post-processing based 3D-OCT motion correction algorithms. We present an advanced 3D-OCT motion correction algorithm using image registration and orthogonal raster scan patterns aimed at addressing these challenges. An intensity similarity measure using the pseudo Huber norm and a regularization scheme based on a pseudo L0.5 norm are introduced. A two-stage registration approach was developed. In the first stage, only axial motion and axial tilt are coarsely corrected. This result is then used as the starting point for a second stage full optimization. In preprocessing, a bias field estimation based approach to correct illumination differences in the input volumes is employed. Quantitative evaluation was performed using a large set of data acquired from 73 healthy and glaucomatous eyes using SD-OCT systems. OCT volumes of both the optic nerve head and the macula region acquired with three independent orthogonal volume pairs for each location were used to assess reproducibility. The advanced motion correction algorithm using the techniques presented in this paper was compared to a basic algorithm corresponding to an earlier version and to performing no motion correction. Errors in segmentation-based measures such as layer positions, retinal and nerve fiber thickness, as well as the blood vessel pattern were evaluated. The quantitative results consistently show that reproducibility is improved considerably by using the advanced algorithm, which also significantly outperforms the basic algorithm. The mean of the mean absolute retinal thickness difference over all data was 9.9 um without motion correction, 7.1 um using the basic algorithm and 5.0 um using the advanced algorithm. Similarly, the blood vessel likelihood map error is reduced to 69% of the uncorrected error for the basic and to 47% of the uncorrected error for the advanced algorithm. These results demonstrate that our advanced motion correction algorithm has the potential to improve the reliability of quantitative measurements derived from 3D-OCT data substantially.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. S. Schuman, Optical Coherence Tomography of Ocular Diseases, 3rd ed. (SLACK Inc., 2013).
  3. T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine Xvi 8213(2012).
  4. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz-1MHz axial scan rate and long range centimeter class OCT imaging,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI 8213(2012).
  5. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  6. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
    [CrossRef] [PubMed]
  7. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express4(1), 51–65 (2013).
    [CrossRef] [PubMed]
  8. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express3(11), 2950–2963 (2012).
    [CrossRef] [PubMed]
  9. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Medical Image Computing and Computer-Assisted Intervention - Miccai 2009, Pt I, Proceedings 5761, 100–107 (2009).
  10. A. G. Capps, R. J. Zawadzki, Q. Yang, D. W. Arathorn, C. R. Vogel, B. Hamann, and J. S. Werner, “Correction of eye-motion artifacts in AO-OCT data sets,” Proc. SPIE7885, 78850D (2011).
    [CrossRef]
  11. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
    [CrossRef] [PubMed]
  12. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express4(6), 803–821 (2013).
    [CrossRef] [PubMed]
  13. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
    [CrossRef]
  14. N. Sebe, M. S. Lew, and D. P. Huijsmans, “Toward improved ranking metrics,” IEEE Trans. Pattern Anal. Mach. Intell.22(10), 1132–1143 (2000).
    [CrossRef]
  15. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000).
    [CrossRef] [PubMed]
  16. P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Stat.35(1), 73–101 (1964).
    [CrossRef]
  17. K. Fountoulakis and J. Gondzio, “A second-order method for strongly convex L1-regularization problems,” arXiv preprint arXiv:1306.5386 (2013).
  18. Z. Hou, “A review on MR image intensity inhomogeneity correction,” Int. J. Biomed. Imaging2006, 49515 (2006).
    [CrossRef] [PubMed]
  19. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
    [CrossRef] [PubMed]
  20. H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
    [CrossRef] [PubMed]
  21. M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
    [CrossRef] [PubMed]
  22. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
    [CrossRef] [PubMed]
  23. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lect. Notes Comput. Sci.1496, 130–137 (1998).
    [CrossRef]

2013

2012

2011

A. G. Capps, R. J. Zawadzki, Q. Yang, D. W. Arathorn, C. R. Vogel, B. Hamann, and J. S. Werner, “Correction of eye-motion artifacts in AO-OCT data sets,” Proc. SPIE7885, 78850D (2011).
[CrossRef]

2010

2008

2007

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

2006

Z. Hou, “A review on MR image intensity inhomogeneity correction,” Int. J. Biomed. Imaging2006, 49515 (2006).
[CrossRef] [PubMed]

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

2005

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

2004

2000

N. Sebe, M. S. Lew, and D. P. Huijsmans, “Toward improved ranking metrics,” IEEE Trans. Pattern Anal. Mach. Intell.22(10), 1132–1143 (2000).
[CrossRef]

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000).
[CrossRef] [PubMed]

1998

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lect. Notes Comput. Sci.1496, 130–137 (1998).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1964

P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Stat.35(1), 73–101 (1964).
[CrossRef]

Arathorn, D. W.

Bashkansky, M.

Baumann, B.

Beaton, S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

Beaton, S. A.

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

Bilonick, R. A.

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

Bock, R.

Braaf, B.

Cable, A.

Capps, A. G.

A. G. Capps, R. J. Zawadzki, Q. Yang, D. W. Arathorn, C. R. Vogel, B. Hamann, and J. S. Werner, “Correction of eye-motion artifacts in AO-OCT data sets,” Proc. SPIE7885, 78850D (2011).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Chiu, S. J.

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

de Boer, J. F.

Duker, J. S.

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

Estrada, R.

Farsiu, S.

Ferguson, R. D.

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Frangi, A. F.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lect. Notes Comput. Sci.1496, 130–137 (1998).
[CrossRef]

Fujimoto, J. G.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fuller, A. R.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Gabriele, M. L.

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hamann, B.

A. G. Capps, R. J. Zawadzki, Q. Yang, D. W. Arathorn, C. R. Vogel, B. Hamann, and J. S. Werner, “Correction of eye-motion artifacts in AO-OCT data sets,” Proc. SPIE7885, 78850D (2011).
[CrossRef]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Hammer, D. X.

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hendargo, H. C.

Hornegger, J.

Hou, Z.

Z. Hou, “A review on MR image intensity inhomogeneity correction,” Int. J. Biomed. Imaging2006, 49515 (2006).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, P. J.

P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Stat.35(1), 73–101 (1964).
[CrossRef]

Huijsmans, D. P.

N. Sebe, M. S. Lew, and D. P. Huijsmans, “Toward improved ranking metrics,” IEEE Trans. Pattern Anal. Mach. Intell.22(10), 1132–1143 (2000).
[CrossRef]

Ishikawa, H.

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

Izatt, J. A.

Jiang, J.

Kagemann, L.

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

Kraus, M. F.

Lew, M. S.

N. Sebe, M. S. Lew, and D. P. Huijsmans, “Toward improved ranking metrics,” IEEE Trans. Pattern Anal. Mach. Intell.22(10), 1132–1143 (2000).
[CrossRef]

Li, X. T.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, J. J.

Mayer, M. A.

Nicholas, P.

Niessen, W. J.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lect. Notes Comput. Sci.1496, 130–137 (1998).
[CrossRef]

Paunescu, L. A.

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Reintjes, J.

Roorda, A.

Schuman, J. S.

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sebe, N.

N. Sebe, M. S. Lew, and D. P. Huijsmans, “Toward improved ranking metrics,” IEEE Trans. Pattern Anal. Mach. Intell.22(10), 1132–1143 (2000).
[CrossRef]

Sheehy, C. K.

Srinivasan, V. J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

Stein, D. M.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tiruveedhula, P.

Tomasi, C.

Toth, C. A.

Vermeer, K. A.

Vienola, K. V.

Viergever, M. A.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lect. Notes Comput. Sci.1496, 130–137 (1998).
[CrossRef]

Vincken, K. L.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lect. Notes Comput. Sci.1496, 130–137 (1998).
[CrossRef]

Vogel, C. R.

A. G. Capps, R. J. Zawadzki, Q. Yang, D. W. Arathorn, C. R. Vogel, B. Hamann, and J. S. Werner, “Correction of eye-motion artifacts in AO-OCT data sets,” Proc. SPIE7885, 78850D (2011).
[CrossRef]

Werner, J. S.

A. G. Capps, R. J. Zawadzki, Q. Yang, D. W. Arathorn, C. R. Vogel, B. Hamann, and J. S. Werner, “Correction of eye-motion artifacts in AO-OCT data sets,” Proc. SPIE7885, 78850D (2011).
[CrossRef]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Wojtkowski, M.

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

Wollstein, G.

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

Yang, Q.

Zawadzki, R. J.

A. G. Capps, R. J. Zawadzki, Q. Yang, D. W. Arathorn, C. R. Vogel, B. Hamann, and J. S. Werner, “Correction of eye-motion artifacts in AO-OCT data sets,” Proc. SPIE7885, 78850D (2011).
[CrossRef]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Ann. Math. Stat.

P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Stat.35(1), 73–101 (1964).
[CrossRef]

Biomed. Opt. Express

IEEE Trans. Pattern Anal. Mach. Intell.

N. Sebe, M. S. Lew, and D. P. Huijsmans, “Toward improved ranking metrics,” IEEE Trans. Pattern Anal. Mach. Intell.22(10), 1132–1143 (2000).
[CrossRef]

Int. J. Biomed. Imaging

Z. Hou, “A review on MR image intensity inhomogeneity correction,” Int. J. Biomed. Imaging2006, 49515 (2006).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006).
[CrossRef] [PubMed]

M. L. Gabriele, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Invest. Ophthalmol. Vis. Sci.48(7), 3154–3160 (2007).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

Lect. Notes Comput. Sci.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lect. Notes Comput. Sci.1496, 130–137 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

A. G. Capps, R. J. Zawadzki, Q. Yang, D. W. Arathorn, C. R. Vogel, B. Hamann, and J. S. Werner, “Correction of eye-motion artifacts in AO-OCT data sets,” Proc. SPIE7885, 78850D (2011).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

J. S. Schuman, Optical Coherence Tomography of Ocular Diseases, 3rd ed. (SLACK Inc., 2013).

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine Xvi 8213(2012).

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz-1MHz axial scan rate and long range centimeter class OCT imaging,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI 8213(2012).

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Medical Image Computing and Computer-Assisted Intervention - Miccai 2009, Pt I, Proceedings 5761, 100–107 (2009).

K. Fountoulakis and J. Gondzio, “A second-order method for strongly convex L1-regularization problems,” arXiv preprint arXiv:1306.5386 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Range of signal quality in OCT volumes. Both volumes were acquired using the same imaging device and parameters, yet there is a significant difference in image quality and artifacts.

Fig. 2
Fig. 2

Two stage optimization flowchart.

Fig. 3
Fig. 3

Example of different tilt in two consecutive volume acquisitions

Fig. 4
Fig. 4

Tilt correction using axial intensity distributions. Composite images before and after stage one and their corresponding axial intensity distributions. Plotted red, green and blue are the intensity distributions of the first and second volume and the combined distribution, respectively. Using Var(M(k, d X , d Y )) as a penalty term in the objective function the variance is reduced from ~47400 to ~46600 pixels2, thereby aligning the volumes and removing tilt.

Fig. 5
Fig. 5

Illumination correction example.

Fig. 6
Fig. 6

Layer segmentation example of a merged ONH data set. Left to right: Volume fundus projection, segmented B-Scan corresponding to the line in the fundus projection and the obtained retinal thickness map. The red, green and blue lines mark the ILM, IS and RPE boundaries that were segmented, respectively.

Fig. 7
Fig. 7

Example of blood vessel likelihood map generation for three corresponding uncorrected 3D-OCT volumes. Top to bottom: Maps corresponding to three XFAST input volumes from one subject. Left to right: Input fundus view, average projection from IS to RPE layer, illumination corrected average projection and last the resulting blood vessel maps. The volumes show slight signal loss in the top left corner due to part of the retina being outside of the axial imaging range.

Fig. 8
Fig. 8

Segmentation based quantitative evaluation workflow.

Fig. 9
Fig. 9

Spatial tolerance schematic. The minimum absolute difference between a value in map 1 and a neighborhood in map 2 is calculated. The size of the neighborhood depends on the spatial tolerance.

Fig. 10
Fig. 10

Comparison of fundus views from two pairs of volumes before and after basic and advanced motion correction.

Fig. 11
Fig. 11

Example comparison of quasi-rigid registration performance between uncorrected and motion corrected data.

Fig. 12
Fig. 12

Example comparison between mapped blood vessel likelihood maps and the corresponding difference maps. The mean absolute difference is 0.19 for the uncorrected pair, 0.11 for basic correction and 0.06 for the pair resulting from using the advanced correction algorithm.

Fig. 13
Fig. 13

Example comparison between mapped retinal thickness maps and the corresponding difference maps. The mean absolute difference in this case is 9.32 um for no correction, 6.17 um for basic correction and 4.28 um for the advanced correction algorithm.

Fig. 14
Fig. 14

Comparison of information theoretic measures. A: Mean mutual information increase through registration over all registered data sets for different for different regularization strength for no correction, basic algorithm and advanced algorithm. B: Corresponding mean mutual information after rigid registration of pairs of disjoint results of result volumes for the three different methods. Error bars indicate one standard deviation around the mean.

Fig. 15
Fig. 15

Comparison of the mean of mean absolute segmentation map errors between all possible pairs of output volumes from one scan region for the three methods and differentα. Error bars indicate one standard deviation around the mean. A: Retinal thickness error in pixels. B: ILM position error. C: NFL thickness error. D: Blood vessel map error.

Fig. 16
Fig. 16

Box plot segmentation error comparison between Normal and Other Subjects (glaucoma + glaucoma suspects) for the three methods. A: Retinal thickness. B: ILM position. C: NFL Thickness. D: Blood vessel maps.

Fig. 17
Fig. 17

Box plot segmentation error comparison between for ONH and Macula region volumes for the three methods. A: Retinal thickness. B: ILM position. C: NFL Thickness. D: Blood vessel maps.

Fig. 18
Fig. 18

Box plot segmentation error comparison for different spatial uncertainty tolerances tol for the three methods. A: Retinal thickness. B: ILM position. C: NFL Thickness. D: Blood vessel maps.

Tables (1)

Tables Icon

Table 1 Reproducibility data set statistics

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R i,j,k ( d X , d Y )= I X ( x i +δ x X ( x i , y j ), y j +δ y X ( x i , y j ), z k +δ z X ( x i , y j )) I Y ( x i +δ x Y ( x i , y j ), y j +δ y Y ( x i , y j ), z k +δ z Y ( x i , y j ))
S base ( d X , d Y )= i=1 w j=1 h k=1 d L 2 2 ( R i,j,k ) .
Reg base ( d X , d Y )= t L 2 2 ( d d X (t) d t ) + t L 2 2 ( d d Y (t) d t )
F( d X , d Y )= S base ( d X , d Y )+α Reg base ( d X , d Y )
Huber(x, ε H )= n=1 N ( ε H ( (1+ ( x n / ε H ) 2 1) )
L 0.5 (x)= n=1 N | x n |
L 0.5, ε 0.5 (x)= n=1 N ( ( x n 2 + ε 0.5 ) ε 0.5 )
R i,j,k axial ( d X , d Y )= I X ( x i , y j , z k +δ z X ( y j )) I Y ( x i , y j , z k +δ z Y ( x i ))
R i,j,k axial+tilt ( d X , d Y )= I X ( x i , y j , z k +δ z X ( y j )+ x i m X ( y j )) I Y ( x i , y j , z k +δ z Y ( x i )+ y j m Y ( x i ))
M(k, d X , d Y )= i=1 w j=1 h [ I X ( x i , y j , z k +δ z X ( y j )+ x i m X ( y j ))+ I Y ( x i , y j , z k +δ z Y ( x i )+ y j m Y ( x i )) ] .
MD( d X , d Y )= i j ( d X (i,j)+ d Y (i,j) ) .
F i,j = k=1 d I( x i , y j , z k )
absdif f tol (x,y)= min ( x 2 , y 2 )n(x,y,tol) |a(x,y)b( x 2 , y 2 )|

Metrics