Abstract

We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
    [CrossRef] [PubMed]
  2. P. Cherukuri, E. S. Glazer, and S. A. Curley, “Targeted hyperthermia using metal nanoparticles,” Adv. Drug Deliv. Rev.62(3), 339–345 (2010).
    [CrossRef] [PubMed]
  3. K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
    [CrossRef] [PubMed]
  4. A. Neyman, L. Meshi, L. Zeiri, and I. A. Weinstock, “Direct imaging of the ligand monolayer on an anion-protected metal nanoparticle through cryogenic trapping of its solution-state structure,” J. Am. Chem. Soc.130(49), 16480–16481 (2008).
    [CrossRef] [PubMed]
  5. Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009).
    [CrossRef] [PubMed]
  6. M. Goeppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik401(3), 273–294 (1931).
    [CrossRef]
  7. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  8. K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron50(6), 823–839 (2006).
    [CrossRef] [PubMed]
  9. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
    [CrossRef] [PubMed]
  10. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
    [CrossRef] [PubMed]
  11. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  12. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett.19(13), 930–932 (1994).
    [CrossRef] [PubMed]
  13. J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
    [CrossRef] [PubMed]
  14. T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: Flexible software for operating laser scanning microscopes,” Biomed. Eng. Online2(1), 13 (2003).
    [CrossRef] [PubMed]
  15. J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol.81(1), 212–213 (2005).
    [CrossRef] [PubMed]
  16. T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
    [CrossRef] [PubMed]
  17. B. Kuhn, T. M. Hoogland, and S. S.-H. Wang, “Injection of recombinant adenovirus for delivery of genetically encoded calcium indicators into astrocytes of the cerebellar cortex,” Cold Spring Harb Protoc2011(10), 1217–1223 (2011).
    [CrossRef] [PubMed]
  18. B. Kuhn, I. Ozden, Y. Lampi, M. T. Hasan, and S. S.-H. Wang, “An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex,” Front Neural Circuits6, 49 (2012).
    [CrossRef] [PubMed]
  19. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
    [CrossRef] [PubMed]
  20. K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
    [CrossRef]
  21. M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996).
    [CrossRef] [PubMed]
  22. R. G. Thorne and C. Nicholson, “In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space,” Proc. Natl. Acad. Sci. U.S.A.103(14), 5567–5572 (2006).
    [CrossRef] [PubMed]
  23. J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007).
    [CrossRef]
  24. V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014).
    [CrossRef] [PubMed]
  25. J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007).
    [CrossRef] [PubMed]

2014

V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014).
[CrossRef] [PubMed]

2013

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

2012

B. Kuhn, I. Ozden, Y. Lampi, M. T. Hasan, and S. S.-H. Wang, “An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex,” Front Neural Circuits6, 49 (2012).
[CrossRef] [PubMed]

2011

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

B. Kuhn, T. M. Hoogland, and S. S.-H. Wang, “Injection of recombinant adenovirus for delivery of genetically encoded calcium indicators into astrocytes of the cerebellar cortex,” Cold Spring Harb Protoc2011(10), 1217–1223 (2011).
[CrossRef] [PubMed]

2010

J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
[CrossRef] [PubMed]

P. Cherukuri, E. S. Glazer, and S. A. Curley, “Targeted hyperthermia using metal nanoparticles,” Adv. Drug Deliv. Rev.62(3), 339–345 (2010).
[CrossRef] [PubMed]

2009

Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009).
[CrossRef] [PubMed]

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

2008

A. Neyman, L. Meshi, L. Zeiri, and I. A. Weinstock, “Direct imaging of the ligand monolayer on an anion-protected metal nanoparticle through cryogenic trapping of its solution-state structure,” J. Am. Chem. Soc.130(49), 16480–16481 (2008).
[CrossRef] [PubMed]

2007

J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007).
[CrossRef] [PubMed]

J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007).
[CrossRef]

2006

R. G. Thorne and C. Nicholson, “In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space,” Proc. Natl. Acad. Sci. U.S.A.103(14), 5567–5572 (2006).
[CrossRef] [PubMed]

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron50(6), 823–839 (2006).
[CrossRef] [PubMed]

2005

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol.81(1), 212–213 (2005).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

2003

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: Flexible software for operating laser scanning microscopes,” Biomed. Eng. Online2(1), 13 (2003).
[CrossRef] [PubMed]

K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
[CrossRef]

1996

M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996).
[CrossRef] [PubMed]

1994

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1986

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

1931

M. Goeppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik401(3), 273–294 (1931).
[CrossRef]

Arkhangelsky, E.

Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009).
[CrossRef] [PubMed]

Bacri, J. C.

J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007).
[CrossRef] [PubMed]

Bauer, A.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Besson, C.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Blechinger, J.

J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
[CrossRef] [PubMed]

Block, S. M.

Bonhoeffer, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Bräuchle, Ch.

J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
[CrossRef] [PubMed]

Brayner, R.

J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007).
[CrossRef]

Budisa, N.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Cheng, J.-X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Cheon, J.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Cherukuri, P.

P. Cherukuri, E. S. Glazer, and S. A. Curley, “Targeted hyperthermia using metal nanoparticles,” Adv. Drug Deliv. Rev.62(3), 339–345 (2010).
[CrossRef] [PubMed]

Choi, J.-S.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Chow, D. K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Chuckowree, J.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Cubitt, A. B.

M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996).
[CrossRef] [PubMed]

Curley, S. A.

P. Cherukuri, E. S. Glazer, and S. A. Curley, “Targeted hyperthermia using metal nanoparticles,” Adv. Drug Deliv. Rev.62(3), 339–345 (2010).
[CrossRef] [PubMed]

De Paola, V.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Ding, Y.

K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
[CrossRef]

Dixon, J. M.

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol.81(1), 212–213 (2005).
[CrossRef] [PubMed]

Domingos, R.

J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007).
[CrossRef]

Durkin, P.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Elkins, K. E.

K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
[CrossRef]

Fernández-Gutiérrez, M.

V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014).
[CrossRef] [PubMed]

Fiévet, F.

J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007).
[CrossRef]

Flint, J.

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

Fortin, J.-P.

J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007).
[CrossRef] [PubMed]

García-García, F. J.

J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
[CrossRef] [PubMed]

Gazeau, F.

J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007).
[CrossRef] [PubMed]

Georgii, R.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Gitis, V.

Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009).
[CrossRef] [PubMed]

Glazer, E. S.

P. Cherukuri, E. S. Glazer, and S. A. Curley, “Targeted hyperthermia using metal nanoparticles,” Adv. Drug Deliv. Rev.62(3), 339–345 (2010).
[CrossRef] [PubMed]

Göbel, W.

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

Goeppert-Mayer, M.

M. Goeppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik401(3), 273–294 (1931).
[CrossRef]

Goya, G.

V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Gross, L. A.

M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996).
[CrossRef] [PubMed]

Hasan, M. T.

B. Kuhn, I. Ozden, Y. Lampi, M. T. Hasan, and S. S.-H. Wang, “An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex,” Front Neural Circuits6, 49 (2012).
[CrossRef] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Helmchen, F.

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

Hernández, R.

V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014).
[CrossRef] [PubMed]

Herrmann, R.

J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
[CrossRef] [PubMed]

Hofer, S. B.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Holtmaat, A.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Hoogland, T. M.

B. Kuhn, T. M. Hoogland, and S. S.-H. Wang, “Injection of recombinant adenovirus for delivery of genetically encoded calcium indicators into astrocytes of the cerebellar cortex,” Cold Spring Harb Protoc2011(10), 1217–1223 (2011).
[CrossRef] [PubMed]

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

Huang, W.

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

Hübener, M.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Jang, J.-T.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Kallio, K.

M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996).
[CrossRef] [PubMed]

Keck, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Kiener, D.

J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
[CrossRef] [PubMed]

Kim, I.-S.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Kim, J.-G.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Kim, J.-W.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Kindervater, J.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Knott, G.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Kögerler, P.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Kuhn, B.

B. Kuhn, I. Ozden, Y. Lampi, M. T. Hasan, and S. S.-H. Wang, “An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex,” Front Neural Circuits6, 49 (2012).
[CrossRef] [PubMed]

B. Kuhn, T. M. Hoogland, and S. S.-H. Wang, “Injection of recombinant adenovirus for delivery of genetically encoded calcium indicators into astrocytes of the cerebellar cortex,” Cold Spring Harb Protoc2011(10), 1217–1223 (2011).
[CrossRef] [PubMed]

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

Lampi, Y.

B. Kuhn, I. Ozden, Y. Lampi, M. T. Hasan, and S. S.-H. Wang, “An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex,” Front Neural Circuits6, 49 (2012).
[CrossRef] [PubMed]

Lee, J.-H.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Lee, W.-C. A.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Lindsey, J. S.

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol.81(1), 212–213 (2005).
[CrossRef] [PubMed]

Liu, J. P.

K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
[CrossRef]

Lopez, R.

J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007).
[CrossRef]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Luysberg, M.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Ménager, C.

J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007).
[CrossRef] [PubMed]

Meshi, L.

Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009).
[CrossRef] [PubMed]

A. Neyman, L. Meshi, L. Zeiri, and I. A. Weinstock, “Direct imaging of the ligand monolayer on an anion-protected metal nanoparticle through cryogenic trapping of its solution-state structure,” J. Am. Chem. Soc.130(49), 16480–16481 (2008).
[CrossRef] [PubMed]

Meyer, M.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Mijangos, C.

V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014).
[CrossRef] [PubMed]

Moon, S. H.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Mostany, R.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Mrsic-Flogel, T. D.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Nakai, J.

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

Nedivi, E.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Neyman, A.

Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009).
[CrossRef] [PubMed]

A. Neyman, L. Meshi, L. Zeiri, and I. A. Weinstock, “Direct imaging of the ligand monolayer on an anion-protected metal nanoparticle through cryogenic trapping of its solution-state structure,” J. Am. Chem. Soc.130(49), 16480–16481 (2008).
[CrossRef] [PubMed]

Nicholson, C.

R. G. Thorne and C. Nicholson, “In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space,” Proc. Natl. Acad. Sci. U.S.A.103(14), 5567–5572 (2006).
[CrossRef] [PubMed]

Noh, S.-H.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Ormö, M.

M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996).
[CrossRef] [PubMed]

Ozden, I.

B. Kuhn, I. Ozden, Y. Lampi, M. T. Hasan, and S. S.-H. Wang, “An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex,” Front Neural Circuits6, 49 (2012).
[CrossRef] [PubMed]

Park, K. I.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Pinheiro, J. P.

J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007).
[CrossRef]

Pologruto, T. A.

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: Flexible software for operating laser scanning microscopes,” Biomed. Eng. Online2(1), 13 (2003).
[CrossRef] [PubMed]

Portera-Cailliau, C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Pyckhout-Hintzen, W.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Reller, A.

J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
[CrossRef] [PubMed]

Remington, S. J.

M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996).
[CrossRef] [PubMed]

Sabatini, B. L.

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: Flexible software for operating laser scanning microscopes,” Biomed. Eng. Online2(1), 13 (2003).
[CrossRef] [PubMed]

San Román, J.

V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014).
[CrossRef] [PubMed]

Scheu, Ch.

J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
[CrossRef] [PubMed]

Schneider, C. M.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Seemann, K. M.

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Servais, J.

J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007).
[CrossRef] [PubMed]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sun, S.

K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
[CrossRef]

Svoboda, K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron50(6), 823–839 (2006).
[CrossRef] [PubMed]

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: Flexible software for operating laser scanning microscopes,” Biomed. Eng. Online2(1), 13 (2003).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett.19(13), 930–932 (1994).
[CrossRef] [PubMed]

Taniguchi, M.

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol.81(1), 212–213 (2005).
[CrossRef] [PubMed]

Thorne, R. G.

R. G. Thorne and C. Nicholson, “In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space,” Proc. Natl. Acad. Sci. U.S.A.103(14), 5567–5572 (2006).
[CrossRef] [PubMed]

Trachtenberg, J. T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Tsien, R. Y.

M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996).
[CrossRef] [PubMed]

Vedantam, T. S.

K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
[CrossRef]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wang, S. S.-H.

B. Kuhn, I. Ozden, Y. Lampi, M. T. Hasan, and S. S.-H. Wang, “An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex,” Front Neural Circuits6, 49 (2012).
[CrossRef] [PubMed]

B. Kuhn, T. M. Hoogland, and S. S.-H. Wang, “Injection of recombinant adenovirus for delivery of genetically encoded calcium indicators into astrocytes of the cerebellar cortex,” Cold Spring Harb Protoc2011(10), 1217–1223 (2011).
[CrossRef] [PubMed]

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009).
[CrossRef] [PubMed]

Wang, Z. L.

K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Weinstock, I. A.

Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009).
[CrossRef] [PubMed]

A. Neyman, L. Meshi, L. Zeiri, and I. A. Weinstock, “Direct imaging of the ligand monolayer on an anion-protected metal nanoparticle through cryogenic trapping of its solution-state structure,” J. Am. Chem. Soc.130(49), 16480–16481 (2008).
[CrossRef] [PubMed]

Wilbrecht, L.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Wilhelm, C.

J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007).
[CrossRef] [PubMed]

Wilkinson, K.

J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007).
[CrossRef]

Yasuda, R.

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron50(6), 823–839 (2006).
[CrossRef] [PubMed]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Zamora-Mora, V.

V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014).
[CrossRef] [PubMed]

Zeiri, L.

A. Neyman, L. Meshi, L. Zeiri, and I. A. Weinstock, “Direct imaging of the ligand monolayer on an anion-protected metal nanoparticle through cryogenic trapping of its solution-state structure,” J. Am. Chem. Soc.130(49), 16480–16481 (2008).
[CrossRef] [PubMed]

Zeng, H.

K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
[CrossRef]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Adv. Drug Deliv. Rev.

P. Cherukuri, E. S. Glazer, and S. A. Curley, “Targeted hyperthermia using metal nanoparticles,” Adv. Drug Deliv. Rev.62(3), 339–345 (2010).
[CrossRef] [PubMed]

Annalen der Physik

M. Goeppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik401(3), 273–294 (1931).
[CrossRef]

Biomed. Eng. Online

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: Flexible software for operating laser scanning microscopes,” Biomed. Eng. Online2(1), 13 (2003).
[CrossRef] [PubMed]

Carbohydr. Polym.

V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014).
[CrossRef] [PubMed]

Cold Spring Harb Protoc

B. Kuhn, T. M. Hoogland, and S. S.-H. Wang, “Injection of recombinant adenovirus for delivery of genetically encoded calcium indicators into astrocytes of the cerebellar cortex,” Cold Spring Harb Protoc2011(10), 1217–1223 (2011).
[CrossRef] [PubMed]

Colloids Surf., A

J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007).
[CrossRef]

Front Neural Circuits

B. Kuhn, I. Ozden, Y. Lampi, M. T. Hasan, and S. S.-H. Wang, “An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex,” Front Neural Circuits6, 49 (2012).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

A. Neyman, L. Meshi, L. Zeiri, and I. A. Weinstock, “Direct imaging of the ligand monolayer on an anion-protected metal nanoparticle through cryogenic trapping of its solution-state structure,” J. Am. Chem. Soc.130(49), 16480–16481 (2008).
[CrossRef] [PubMed]

Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009).
[CrossRef] [PubMed]

J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007).
[CrossRef] [PubMed]

Nano Lett.

K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003).
[CrossRef]

Nanoscale

K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013).
[CrossRef] [PubMed]

Nat. Nanotechnol.

J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011).
[CrossRef] [PubMed]

Nat. Protoc.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009).
[CrossRef] [PubMed]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Neuron

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron50(6), 823–839 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Photochem. Photobiol.

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol.81(1), 212–213 (2005).
[CrossRef] [PubMed]

Phys. Rev. B Condens. Matter

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009).
[CrossRef] [PubMed]

R. G. Thorne and C. Nicholson, “In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space,” Proc. Natl. Acad. Sci. U.S.A.103(14), 5567–5572 (2006).
[CrossRef] [PubMed]

Science

M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Small

J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

HR-TEM image of magnetic FePt core-shell nanoparticles, however, the shell is not visible without averaging (a). Tungsten oxide covering the surface of the crystalline nanoparticles causes dispersibility in polar solvents like EtOH and water but also allows functionalization as, for example, labeling with the fluorescence dye NOPS as illustrated schematically in (b).

Fig. 2
Fig. 2

Fluorescence of the NOPS-labeled FePt nanoparticles is observed upon 1-photon excitation at a wavelength of 488 nm when dispersed in EtOH (red). The fluorescence of the labeled nanoparticles is fully quenched in H2O (blue) but recovers after re-dispersion in EtOH (green).

Fig. 3
Fig. 3

FePt nanoparticles or clusters of particles immobilized on a glass slide show bright luminescence in the two wavelength intervals (green: bandpass 490 nm to 560 nm, red: bandpass 570 nm to 640 nm) using multi-photon excitation. The fluorescence emission was evident for both, dye-labeled (a, b) and non-labeled nanoparticles (c, d) in EtOH (a, c) and in H2O (b, d). The excitation wavelength was 900 nm and the laser power 0.4 mW with a 25x/1.05N.A. water immersion lens. The image pairs are normalized to the intensity of the red channel.

Fig. 4
Fig. 4

Average multi-photon-excited fluorescence/luminescence spectra of NOPS-labeled and unlabeled magnetic FePt core-shell particles immobilized on glass slides in EtOH (a) and H2O (b) excited with 1.5 mW at 800 nm, 900 nm, 1000 nm. Spectra were normalized to the intensity at 507 nm. The difference of the two spectra resembles the emission spectrum of NOPS but shows significant differences compared to the 1-photon emission spectrum in EtOH (Fig. 2). In some spectra the backscattered or reflected second harmonic signal is visible (arrows). The intensity of unlabeled magnetic FePt core-shell nanoparticles, immobilized on a glass slide with water added and excited at 1000 nm, increases wavelength-dependent by the power of 3.8 to 3.2 up to an excitation power of 3.2 mW (c). Background-corrected data was fitted by y(x) = axb. Values of b are listed ± standard deviation.

Fig. 5
Fig. 5

FePt core-shell nanoparticles or clusters of particles are dragged by the scanning focus of a fs-infrared laser beam when the laser power exceeds 10 mW. White arrows indicate the scan direction of the laser beam through the sample. The yellow arrows indicate the main movement direction of the particles. Three scanning direction (a, 0°; b, 90°; c, 180°) in the same imaging location were tested.

Fig. 6
Fig. 6

In vivo imaging of NOPS-labeled magnetic nanoparticles or clusters of particles in the barrel cortex of an anesthetized mouse. To label a subset of neurons in barrel cortex at first a viral vector is injected delivering the DNA of a fluorescent protein. 4 days later magnetic FePt nanoparticles were injected and imaged through a chronic cranial window with multi-photon microscopy.

Fig. 7
Fig. 7

Multi-photon imaging in the mouse barrel cortex in vivo after nanoparticle injection. A stack of images was recorded with two channels starting from the dura and then reconstructed to show the side view (a). Clusters of NOPS-labeled magnetic FePt core-shell nanoparticles and maybe also single particles are visible in the green (left) and red (middle) channel while the axons and dendrites of GFP expressing neurons are only visible in the green, as can be seen in the overlay (right). Particles or clusters of particles can be detected in xy images between axons (majority of processes) and dendrites down to a depth of 700 µm (b). Depth of imaging is indicated in the upper left corner corresponding to the arrows in (a). For the image at 700 µm in (b) the contrast and averaging was increased in comparison to the images at lower depth. The dura is visible due to backscattering of the second harmonic signal of collagen. The excitation wavelength was 1000 nm.

Fig. 8
Fig. 8

In vivo imaging as in Fig. 7 but at higher magnification shows nanoparticles (yellow) and axons of cortical pyramidal neurons (green) in cortical layer 1, 90 µm below the brain surface. The bright green spots along the axons are synaptic boutons.

Metrics