Abstract

Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. D. Hoffman and J. C. Crocker, “Cell mechanics: dissecting the physical responses of cells to force,” Annu. Rev. Biomed. Eng.11(1), 259–288 (2009).
    [CrossRef] [PubMed]
  2. B. D. Hoffman, C. Grashoff, and M. A. Schwartz, “Dynamic molecular processes mediate cellular mechanotransduction,” Nature475(7356), 316–323 (2011).
    [CrossRef] [PubMed]
  3. Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011).
    [CrossRef] [PubMed]
  4. M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express16(12), 8594–8603 (2008).
    [CrossRef] [PubMed]
  5. T. Ketelaar, H. S. van der Honing, and A. M. C. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
    [CrossRef] [PubMed]
  6. I. A. Sparkes, T. Ketelaar, N. C. A. de Ruijter, and C. Hawes, “Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum,” Traffic10(5), 567–571 (2009).
    [CrossRef] [PubMed]
  7. C. Hawes, A. Osterrieder, I. A. Sparkes, and T. Ketelaar, “Optical tweezers for the micromanipulation of plant cytoplasm and organelles,” Curr. Opin. Plant Biol.13(6), 731–735 (2010).
    [CrossRef] [PubMed]
  8. M. X. Andersson, M. Goksör, and A. S. Sandelius, “Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts,” J. Biol. Chem.282(2), 1170–1174 (2007).
    [CrossRef] [PubMed]
  9. K. Hayakawa, H. Tatsumi, and M. Sokabe, “Actin stress fibers transmit and focus force to activate mechanosensitive channels,” J. Cell Sci.121(4), 496–503 (2008).
    [CrossRef] [PubMed]
  10. G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
    [CrossRef] [PubMed]
  11. C. Leidel, R. A. Longoria, F. M. Gutierrez, and G. T. Shubeita, “Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport,” Biophys. J.103(3), 492–500 (2012).
    [CrossRef] [PubMed]
  12. J. Yoo, T. Kambara, K. Gonda, and H. Higuchi, “Intracellular imaging of targeted proteins labeled with quantum dots,” Exp. Cell Res.314(19), 3563–3569 (2008).
    [CrossRef] [PubMed]
  13. R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J.75(1), 294–320 (1998).
    [CrossRef] [PubMed]
  14. V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
    [CrossRef] [PubMed]
  15. A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
    [CrossRef]
  16. V. Olivier, J.-L. Duval, M. Hindié, P. Pouletaut, and M.-D. Nagel, “Comparative particle-induced cytotoxicity toward macrophages and fibroblasts,” Cell Biol. Toxicol.19(3), 145–159 (2003).
    [CrossRef] [PubMed]
  17. L. M. Costantini, R. M. Gilberti, and D. A. Knecht, “The phagocytosis and toxicity of amorphous silica,” PLoS ONE6(2), e14647 (2011).
    [CrossRef] [PubMed]
  18. S. P. Gross, “Come together: group behavior of dynein motors,” Dev. Cell24(2), 117–118 (2013).
    [CrossRef] [PubMed]
  19. L. B. Oddershede, “Force probing of individual molecules inside the living cell is now a reality,” Nat. Chem. Biol.8(11), 879–886 (2012).
    [CrossRef] [PubMed]
  20. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38(16), 3651–3661 (1999).
    [CrossRef] [PubMed]
  21. S. P. Gross, “Application of optical traps in vivo,” Methods Enzymol.361, 162–174 (2003).
    [CrossRef] [PubMed]
  22. M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell92(4), 547–557 (1998).
    [CrossRef] [PubMed]
  23. C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol.12(3), 163–176 (2011).
    [CrossRef] [PubMed]
  24. A. T. Lada, M. C. Willingham, and R. W. St Clair, “Triglyceride depletion in THP-1 cells alters cholesteryl ester physical state and cholesterol efflux,” J. Lipid Res.43(4), 618–628 (2002).
    [PubMed]
  25. X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
    [CrossRef] [PubMed]
  26. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
    [CrossRef] [PubMed]
  27. T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
    [CrossRef] [PubMed]
  28. G. Galili, “ER-derived compartments are formed by highly regulated processes and have special functions in plants,” Plant Physiol.136(3), 3411–3413 (2004).
    [CrossRef] [PubMed]
  29. M. I. Geli, M. Torrent, and D. Ludevid, “Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation,” Plant Cell6(12), 1911–1922 (1994).
    [PubMed]
  30. M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
    [CrossRef] [PubMed]
  31. I. Llop-Tous, M. Ortiz, M. Torrent, and M. D. Ludevid, “The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants,” PLoS ONE6(4), e19474 (2011).
    [CrossRef] [PubMed]
  32. M. Torrent, I. Llop-Tous, and M. D. Ludevid, “Protein body induction: a new tool to produce and recover recombinant proteins in plants,” Methods Mol. Biol.483, 193–208 (2009).
    [CrossRef] [PubMed]
  33. I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010).
    [CrossRef] [PubMed]
  34. E. M. Herman and B. A. Larkins, “Protein storage bodies and vacuoles,” Plant Cell11(4), 601–614 (1999).
    [CrossRef] [PubMed]
  35. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
    [CrossRef] [PubMed]
  36. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
    [CrossRef] [PubMed]
  37. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J.77(5), 2856–2863 (1999).
    [CrossRef] [PubMed]
  38. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
    [CrossRef]
  39. G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett.97(15), 157402 (2006).
    [CrossRef] [PubMed]
  40. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  41. R. Barer and S. Joseph, “Refractometry of living cells, part I. Basic principles,” Q. J. Microsc. Sci.95, 399–423 (1954).
  42. H. Zhao, P. H. Brown, and P. Schuck, “On the distribution of protein refractive index increments,” Biophys. J.100(9), 2309–2317 (2011).
    [CrossRef] [PubMed]
  43. J. Vörös, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J.87(1), 553–561 (2004).
    [CrossRef] [PubMed]
  44. H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci.13(10), 2825–2828 (2004).
    [CrossRef] [PubMed]
  45. M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
    [CrossRef] [PubMed]
  46. R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am.47(6), 545–556 (1957).
    [CrossRef] [PubMed]
  47. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
    [CrossRef] [PubMed]
  48. J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol.10(4), 046006 (2013).
    [CrossRef] [PubMed]
  49. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
    [CrossRef] [PubMed]
  50. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
    [CrossRef]
  51. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004).
    [CrossRef]
  52. A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express20(11), 12270–12291 (2012).
    [CrossRef] [PubMed]
  53. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
    [CrossRef] [PubMed]
  54. G. F. Zhang and L. A. Staehelin, “Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells,” Plant Physiol.99(3), 1070–1083 (1992).
    [CrossRef] [PubMed]
  55. P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998).
    [CrossRef] [PubMed]
  56. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt.50(10), 1581–1590 (2003).
    [CrossRef]
  57. I. Derényi, F. Jülicher, and J. Prost, “Formation and interaction of membrane tubes,” Phys. Rev. Lett.88(23), 238101 (2002).
    [CrossRef] [PubMed]
  58. G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, and M. Dogterom, “Force barriers for membrane tube formation,” Phys. Rev. Lett.94(6), 068101 (2005).
    [CrossRef] [PubMed]
  59. T. Shimmen and E. Yokota, “Cytoplasmic streaming in plants,” Curr. Opin. Cell Biol.16(1), 68–72 (2004).
    [CrossRef] [PubMed]
  60. I. A. Sparkes, L. Frigerio, N. Tolley, and C. Hawes, “The plant endoplasmic reticulum: a cell-wide web,” Biochem. J.423(2), 145–155 (2009).
    [CrossRef] [PubMed]
  61. A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A.86(20), 7914–7918 (1989).
    [CrossRef] [PubMed]
  62. S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J.78(4), 1736–1747 (2000).
    [CrossRef] [PubMed]
  63. T. Lobovkina, P. G. Dommersnes, S. Tiourine, J.-F. Joanny, and O. Orwar, “Shape optimization in lipid nanotube networks,” Eur Phys J E Soft Matter26(3), 295–300 (2008).
    [CrossRef] [PubMed]
  64. E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
    [CrossRef] [PubMed]
  65. I. Sparkes, J. Runions, C. Hawes, and L. Griffing, “Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves,” Plant Cell21(12), 3937–3949 (2009).
    [CrossRef] [PubMed]
  66. E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007).
    [CrossRef]
  67. E. Pleguezuelos, A. Carnicer, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “HoloTrap: interactive hologram design for multiple dynamic optical trapping,” Comput. Phys. Commun.176(11-12), 701–709 (2007).
    [CrossRef]
  68. E. Goytia, L. Fernández-Calvino, B. Martínez-García, D. López-Abella, and J. J. López-Moya, “Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system,” J. Gen. Virol.87(11), 3413–3423 (2006).
    [CrossRef] [PubMed]
  69. O. Voinnet, S. Rivas, P. Mestre, and D. Baulcombe, “An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus,” Plant J.33(5), 949–956 (2003).
    [CrossRef] [PubMed]

2013 (2)

S. P. Gross, “Come together: group behavior of dynein motors,” Dev. Cell24(2), 117–118 (2013).
[CrossRef] [PubMed]

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol.10(4), 046006 (2013).
[CrossRef] [PubMed]

2012 (5)

A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express20(11), 12270–12291 (2012).
[CrossRef] [PubMed]

M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
[CrossRef] [PubMed]

L. B. Oddershede, “Force probing of individual molecules inside the living cell is now a reality,” Nat. Chem. Biol.8(11), 879–886 (2012).
[CrossRef] [PubMed]

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

C. Leidel, R. A. Longoria, F. M. Gutierrez, and G. T. Shubeita, “Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport,” Biophys. J.103(3), 492–500 (2012).
[CrossRef] [PubMed]

2011 (7)

B. D. Hoffman, C. Grashoff, and M. A. Schwartz, “Dynamic molecular processes mediate cellular mechanotransduction,” Nature475(7356), 316–323 (2011).
[CrossRef] [PubMed]

Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011).
[CrossRef] [PubMed]

L. M. Costantini, R. M. Gilberti, and D. A. Knecht, “The phagocytosis and toxicity of amorphous silica,” PLoS ONE6(2), e14647 (2011).
[CrossRef] [PubMed]

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol.12(3), 163–176 (2011).
[CrossRef] [PubMed]

I. Llop-Tous, M. Ortiz, M. Torrent, and M. D. Ludevid, “The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants,” PLoS ONE6(4), e19474 (2011).
[CrossRef] [PubMed]

H. Zhao, P. H. Brown, and P. Schuck, “On the distribution of protein refractive index increments,” Biophys. J.100(9), 2309–2317 (2011).
[CrossRef] [PubMed]

E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
[CrossRef] [PubMed]

2010 (4)

I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010).
[CrossRef] [PubMed]

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

T. Ketelaar, H. S. van der Honing, and A. M. C. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

C. Hawes, A. Osterrieder, I. A. Sparkes, and T. Ketelaar, “Optical tweezers for the micromanipulation of plant cytoplasm and organelles,” Curr. Opin. Plant Biol.13(6), 731–735 (2010).
[CrossRef] [PubMed]

2009 (6)

I. A. Sparkes, T. Ketelaar, N. C. A. de Ruijter, and C. Hawes, “Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum,” Traffic10(5), 567–571 (2009).
[CrossRef] [PubMed]

B. D. Hoffman and J. C. Crocker, “Cell mechanics: dissecting the physical responses of cells to force,” Annu. Rev. Biomed. Eng.11(1), 259–288 (2009).
[CrossRef] [PubMed]

M. Torrent, I. Llop-Tous, and M. D. Ludevid, “Protein body induction: a new tool to produce and recover recombinant proteins in plants,” Methods Mol. Biol.483, 193–208 (2009).
[CrossRef] [PubMed]

I. Sparkes, J. Runions, C. Hawes, and L. Griffing, “Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves,” Plant Cell21(12), 3937–3949 (2009).
[CrossRef] [PubMed]

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

I. A. Sparkes, L. Frigerio, N. Tolley, and C. Hawes, “The plant endoplasmic reticulum: a cell-wide web,” Biochem. J.423(2), 145–155 (2009).
[CrossRef] [PubMed]

2008 (6)

T. Lobovkina, P. G. Dommersnes, S. Tiourine, J.-F. Joanny, and O. Orwar, “Shape optimization in lipid nanotube networks,” Eur Phys J E Soft Matter26(3), 295–300 (2008).
[CrossRef] [PubMed]

M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express16(12), 8594–8603 (2008).
[CrossRef] [PubMed]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
[CrossRef] [PubMed]

J. Yoo, T. Kambara, K. Gonda, and H. Higuchi, “Intracellular imaging of targeted proteins labeled with quantum dots,” Exp. Cell Res.314(19), 3563–3569 (2008).
[CrossRef] [PubMed]

K. Hayakawa, H. Tatsumi, and M. Sokabe, “Actin stress fibers transmit and focus force to activate mechanosensitive channels,” J. Cell Sci.121(4), 496–503 (2008).
[CrossRef] [PubMed]

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

2007 (4)

M. X. Andersson, M. Goksör, and A. S. Sandelius, “Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts,” J. Biol. Chem.282(2), 1170–1174 (2007).
[CrossRef] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007).
[CrossRef]

E. Pleguezuelos, A. Carnicer, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “HoloTrap: interactive hologram design for multiple dynamic optical trapping,” Comput. Phys. Commun.176(11-12), 701–709 (2007).
[CrossRef]

2006 (3)

E. Goytia, L. Fernández-Calvino, B. Martínez-García, D. López-Abella, and J. J. López-Moya, “Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system,” J. Gen. Virol.87(11), 3413–3423 (2006).
[CrossRef] [PubMed]

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett.97(15), 157402 (2006).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

2005 (4)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, and M. Dogterom, “Force barriers for membrane tube formation,” Phys. Rev. Lett.94(6), 068101 (2005).
[CrossRef] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
[CrossRef] [PubMed]

2004 (5)

J. Vörös, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J.87(1), 553–561 (2004).
[CrossRef] [PubMed]

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci.13(10), 2825–2828 (2004).
[CrossRef] [PubMed]

T. Shimmen and E. Yokota, “Cytoplasmic streaming in plants,” Curr. Opin. Cell Biol.16(1), 68–72 (2004).
[CrossRef] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004).
[CrossRef]

G. Galili, “ER-derived compartments are formed by highly regulated processes and have special functions in plants,” Plant Physiol.136(3), 3411–3413 (2004).
[CrossRef] [PubMed]

2003 (5)

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

V. Olivier, J.-L. Duval, M. Hindié, P. Pouletaut, and M.-D. Nagel, “Comparative particle-induced cytotoxicity toward macrophages and fibroblasts,” Cell Biol. Toxicol.19(3), 145–159 (2003).
[CrossRef] [PubMed]

S. P. Gross, “Application of optical traps in vivo,” Methods Enzymol.361, 162–174 (2003).
[CrossRef] [PubMed]

O. Voinnet, S. Rivas, P. Mestre, and D. Baulcombe, “An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus,” Plant J.33(5), 949–956 (2003).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt.50(10), 1581–1590 (2003).
[CrossRef]

2002 (2)

I. Derényi, F. Jülicher, and J. Prost, “Formation and interaction of membrane tubes,” Phys. Rev. Lett.88(23), 238101 (2002).
[CrossRef] [PubMed]

A. T. Lada, M. C. Willingham, and R. W. St Clair, “Triglyceride depletion in THP-1 cells alters cholesteryl ester physical state and cholesterol efflux,” J. Lipid Res.43(4), 618–628 (2002).
[PubMed]

2000 (1)

S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J.78(4), 1736–1747 (2000).
[CrossRef] [PubMed]

1999 (3)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J.77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38(16), 3651–3661 (1999).
[CrossRef] [PubMed]

E. M. Herman and B. A. Larkins, “Protein storage bodies and vacuoles,” Plant Cell11(4), 601–614 (1999).
[CrossRef] [PubMed]

1998 (3)

M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell92(4), 547–557 (1998).
[CrossRef] [PubMed]

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J.75(1), 294–320 (1998).
[CrossRef] [PubMed]

P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998).
[CrossRef] [PubMed]

1996 (3)

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

1994 (1)

M. I. Geli, M. Torrent, and D. Ludevid, “Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation,” Plant Cell6(12), 1911–1922 (1994).
[PubMed]

1992 (2)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

G. F. Zhang and L. A. Staehelin, “Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells,” Plant Physiol.99(3), 1070–1083 (1992).
[CrossRef] [PubMed]

1989 (1)

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A.86(20), 7914–7918 (1989).
[CrossRef] [PubMed]

1957 (1)

1954 (1)

R. Barer and S. Joseph, “Refractometry of living cells, part I. Basic principles,” Q. J. Microsc. Sci.95, 399–423 (1954).

Allman, B. E.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Ander, M.

Andersson, M. X.

M. X. Andersson, M. Goksör, and A. S. Sandelius, “Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts,” J. Biol. Chem.282(2), 1170–1174 (2007).
[CrossRef] [PubMed]

Andilla, J.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007).
[CrossRef]

E. Pleguezuelos, A. Carnicer, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “HoloTrap: interactive hologram design for multiple dynamic optical trapping,” Comput. Phys. Commun.176(11-12), 701–709 (2007).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A.86(20), 7914–7918 (1989).
[CrossRef] [PubMed]

Barer, R.

R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am.47(6), 545–556 (1957).
[CrossRef] [PubMed]

R. Barer and S. Joseph, “Refractometry of living cells, part I. Basic principles,” Q. J. Microsc. Sci.95, 399–423 (1954).

Bar-Ziv, R.

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J.75(1), 294–320 (1998).
[CrossRef] [PubMed]

Bastida, M.

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

Baulcombe, D.

O. Voinnet, S. Rivas, P. Mestre, and D. Baulcombe, “An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus,” Plant J.33(5), 949–956 (2003).
[CrossRef] [PubMed]

Bayoudh, S.

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt.50(10), 1581–1590 (2003).
[CrossRef]

Beaurepaire, E.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Bellair, C. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J.77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Berg-Sørensen, K.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol.10(4), 046006 (2013).
[CrossRef] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004).
[CrossRef]

Betteridge, A.

P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998).
[CrossRef] [PubMed]

Beuthan, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J.77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell92(4), 547–557 (1998).
[CrossRef] [PubMed]

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Boevink, P.

P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998).
[CrossRef] [PubMed]

Booth, M.

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

Bormuth, V.

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

Brown, P. H.

H. Zhao, P. H. Brown, and P. Schuck, “On the distribution of protein refractive index increments,” Biophys. J.100(9), 2309–2317 (2011).
[CrossRef] [PubMed]

Cacciuto, A.

G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, and M. Dogterom, “Force barriers for membrane tube formation,” Phys. Rev. Lett.94(6), 068101 (2005).
[CrossRef] [PubMed]

Carnicer, A.

E. Pleguezuelos, A. Carnicer, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “HoloTrap: interactive hologram design for multiple dynamic optical trapping,” Comput. Phys. Commun.176(11-12), 701–709 (2007).
[CrossRef]

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007).
[CrossRef]

Cermelli, S.

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J.77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Cheng, J. X.

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Chiou, A.

Chu, S.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Combettes, L.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Costantini, L. M.

L. M. Costantini, R. M. Gilberti, and D. A. Knecht, “The phagocytosis and toxicity of amorphous silica,” PLoS ONE6(2), e14647 (2011).
[CrossRef] [PubMed]

Cotton, S. L.

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

Craievich, A. F.

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci.13(10), 2825–2828 (2004).
[CrossRef] [PubMed]

Crocker, J. C.

B. D. Hoffman and J. C. Crocker, “Cell mechanics: dissecting the physical responses of cells to force,” Annu. Rev. Biomed. Eng.11(1), 259–288 (2009).
[CrossRef] [PubMed]

Curl, C. L.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

de Ruijter, N. C. A.

I. A. Sparkes, T. Ketelaar, N. C. A. de Ruijter, and C. Hawes, “Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum,” Traffic10(5), 567–571 (2009).
[CrossRef] [PubMed]

Debarre, D.

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

Débarre, D.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Delbridge, L. M. D.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

Demirörs, A. F.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

Derényi, I.

G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, and M. Dogterom, “Force barriers for membrane tube formation,” Phys. Rev. Lett.94(6), 068101 (2005).
[CrossRef] [PubMed]

I. Derényi, F. Jülicher, and J. Prost, “Formation and interaction of membrane tubes,” Phys. Rev. Lett.88(23), 238101 (2002).
[CrossRef] [PubMed]

Dogterom, M.

G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, and M. Dogterom, “Force barriers for membrane tube formation,” Phys. Rev. Lett.94(6), 068101 (2005).
[CrossRef] [PubMed]

Dommersnes, P. G.

T. Lobovkina, P. G. Dommersnes, S. Tiourine, J.-F. Joanny, and O. Orwar, “Shape optimization in lipid nanotube networks,” Eur Phys J E Soft Matter26(3), 295–300 (2008).
[CrossRef] [PubMed]

Drezek, R.

Dufrêne, Y. F.

Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011).
[CrossRef] [PubMed]

Dunn, A.

Duval, J.-L.

V. Olivier, J.-L. Duval, M. Hindié, P. Pouletaut, and M.-D. Nagel, “Comparative particle-induced cytotoxicity toward macrophages and fibroblasts,” Cell Biol. Toxicol.19(3), 145–159 (2003).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A.86(20), 7914–7918 (1989).
[CrossRef] [PubMed]

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Emons, A. M. C.

T. Ketelaar, H. S. van der Honing, and A. M. C. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

Engel, A.

Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011).
[CrossRef] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Evans, E.

Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011).
[CrossRef] [PubMed]

Fabre, A.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Farré, A.

Fernández-Calvino, L.

E. Goytia, L. Fernández-Calvino, B. Martínez-García, D. López-Abella, and J. J. López-Moya, “Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system,” J. Gen. Virol.87(11), 3413–3423 (2006).
[CrossRef] [PubMed]

Finer, J. T.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Fischer, H.

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci.13(10), 2825–2828 (2004).
[CrossRef] [PubMed]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004).
[CrossRef]

Frenkel, D.

G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, and M. Dogterom, “Force barriers for membrane tube formation,” Phys. Rev. Lett.94(6), 068101 (2005).
[CrossRef] [PubMed]

Frigerio, L.

I. A. Sparkes, L. Frigerio, N. Tolley, and C. Hawes, “The plant endoplasmic reticulum: a cell-wide web,” Biochem. J.423(2), 145–155 (2009).
[CrossRef] [PubMed]

Galili, G.

G. Galili, “ER-derived compartments are formed by highly regulated processes and have special functions in plants,” Plant Physiol.136(3), 3411–3413 (2004).
[CrossRef] [PubMed]

Gaub, H. E.

Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011).
[CrossRef] [PubMed]

Geli, M. I.

M. I. Geli, M. Torrent, and D. Ludevid, “Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation,” Plant Cell6(12), 1911–1922 (1994).
[PubMed]

Ghadiali, S. N.

Gilberti, R. M.

L. M. Costantini, R. M. Gilberti, and D. A. Knecht, “The phagocytosis and toxicity of amorphous silica,” PLoS ONE6(2), e14647 (2011).
[CrossRef] [PubMed]

Giralt, E.

I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010).
[CrossRef] [PubMed]

Goksör, M.

M. X. Andersson, M. Goksör, and A. S. Sandelius, “Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts,” J. Biol. Chem.282(2), 1170–1174 (2007).
[CrossRef] [PubMed]

Gonda, K.

J. Yoo, T. Kambara, K. Gonda, and H. Higuchi, “Intracellular imaging of targeted proteins labeled with quantum dots,” Exp. Cell Res.314(19), 3563–3569 (2008).
[CrossRef] [PubMed]

Goytia, E.

E. Goytia, L. Fernández-Calvino, B. Martínez-García, D. López-Abella, and J. J. López-Moya, “Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system,” J. Gen. Virol.87(11), 3413–3423 (2006).
[CrossRef] [PubMed]

Grashoff, C.

B. D. Hoffman, C. Grashoff, and M. A. Schwartz, “Dynamic molecular processes mediate cellular mechanotransduction,” Nature475(7356), 316–323 (2011).
[CrossRef] [PubMed]

Grieve, K.

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

Griffing, L.

I. Sparkes, J. Runions, C. Hawes, and L. Griffing, “Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves,” Plant Cell21(12), 3937–3949 (2009).
[CrossRef] [PubMed]

Gross, S. P.

S. P. Gross, “Come together: group behavior of dynein motors,” Dev. Cell24(2), 117–118 (2013).
[CrossRef] [PubMed]

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

S. P. Gross, “Application of optical traps in vivo,” Methods Enzymol.361, 162–174 (2003).
[CrossRef] [PubMed]

M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell92(4), 547–557 (1998).
[CrossRef] [PubMed]

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Guck, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Gutierrez, F. M.

C. Leidel, R. A. Longoria, F. M. Gutierrez, and G. T. Shubeita, “Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport,” Biophys. J.103(3), 492–500 (2012).
[CrossRef] [PubMed]

Hara-Nishimura, I.

E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
[CrossRef] [PubMed]

Harris, P. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

Harris, T.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

Hashimoto, K.

E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
[CrossRef] [PubMed]

Hawes, C.

C. Hawes, A. Osterrieder, I. A. Sparkes, and T. Ketelaar, “Optical tweezers for the micromanipulation of plant cytoplasm and organelles,” Curr. Opin. Plant Biol.13(6), 731–735 (2010).
[CrossRef] [PubMed]

I. A. Sparkes, L. Frigerio, N. Tolley, and C. Hawes, “The plant endoplasmic reticulum: a cell-wide web,” Biochem. J.423(2), 145–155 (2009).
[CrossRef] [PubMed]

I. Sparkes, J. Runions, C. Hawes, and L. Griffing, “Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves,” Plant Cell21(12), 3937–3949 (2009).
[CrossRef] [PubMed]

I. A. Sparkes, T. Ketelaar, N. C. A. de Ruijter, and C. Hawes, “Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum,” Traffic10(5), 567–571 (2009).
[CrossRef] [PubMed]

P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998).
[CrossRef] [PubMed]

Hayakawa, K.

K. Hayakawa, H. Tatsumi, and M. Sokabe, “Actin stress fibers transmit and focus force to activate mechanosensitive channels,” J. Cell Sci.121(4), 496–503 (2008).
[CrossRef] [PubMed]

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett.97(15), 157402 (2006).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt.50(10), 1581–1590 (2003).
[CrossRef]

Heifetz, P. B.

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

Helenius, J.

Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011).
[CrossRef] [PubMed]

Helfmann, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Herman, E. M.

E. M. Herman and B. A. Larkins, “Protein storage bodies and vacuoles,” Plant Cell11(4), 601–614 (1999).
[CrossRef] [PubMed]

Herrig, M.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Higuchi, H.

J. Yoo, T. Kambara, K. Gonda, and H. Higuchi, “Intracellular imaging of targeted proteins labeled with quantum dots,” Exp. Cell Res.314(19), 3563–3569 (2008).
[CrossRef] [PubMed]

Hindié, M.

V. Olivier, J.-L. Duval, M. Hindié, P. Pouletaut, and M.-D. Nagel, “Comparative particle-induced cytotoxicity toward macrophages and fibroblasts,” Cell Biol. Toxicol.19(3), 145–159 (2003).
[CrossRef] [PubMed]

Hoffman, B. D.

B. D. Hoffman, C. Grashoff, and M. A. Schwartz, “Dynamic molecular processes mediate cellular mechanotransduction,” Nature475(7356), 316–323 (2011).
[CrossRef] [PubMed]

B. D. Hoffman and J. C. Crocker, “Cell mechanics: dissecting the physical responses of cells to force,” Annu. Rev. Biomed. Eng.11(1), 259–288 (2009).
[CrossRef] [PubMed]

Howard, J.

Jannasch, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
[CrossRef] [PubMed]

Jesacher, A.

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

Joanny, J.-F.

T. Lobovkina, P. G. Dommersnes, S. Tiourine, J.-F. Joanny, and O. Orwar, “Shape optimization in lipid nanotube networks,” Eur Phys J E Soft Matter26(3), 295–300 (2008).
[CrossRef] [PubMed]

Joseph, M.

M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
[CrossRef] [PubMed]

Joseph, S.

R. Barer and S. Joseph, “Refractometry of living cells, part I. Basic principles,” Q. J. Microsc. Sci.95, 399–423 (1954).

Jülicher, F.

I. Derényi, F. Jülicher, and J. Prost, “Formation and interaction of membrane tubes,” Phys. Rev. Lett.88(23), 238101 (2002).
[CrossRef] [PubMed]

Juvells, I.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007).
[CrossRef]

Kambara, T.

J. Yoo, T. Kambara, K. Gonda, and H. Higuchi, “Intracellular imaging of targeted proteins labeled with quantum dots,” Exp. Cell Res.314(19), 3563–3569 (2008).
[CrossRef] [PubMed]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Ketelaar, T.

T. Ketelaar, H. S. van der Honing, and A. M. C. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

C. Hawes, A. Osterrieder, I. A. Sparkes, and T. Ketelaar, “Optical tweezers for the micromanipulation of plant cytoplasm and organelles,” Curr. Opin. Plant Biol.13(6), 731–735 (2010).
[CrossRef] [PubMed]

I. A. Sparkes, T. Ketelaar, N. C. A. de Ruijter, and C. Hawes, “Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum,” Traffic10(5), 567–571 (2009).
[CrossRef] [PubMed]

Knecht, D. A.

L. M. Costantini, R. M. Gilberti, and D. A. Knecht, “The phagocytosis and toxicity of amorphous silica,” PLoS ONE6(2), e14647 (2011).
[CrossRef] [PubMed]

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett.97(15), 157402 (2006).
[CrossRef] [PubMed]

Koster, G.

G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, and M. Dogterom, “Force barriers for membrane tube formation,” Phys. Rev. Lett.94(6), 068101 (2005).
[CrossRef] [PubMed]

Kuo, S. C.

S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J.78(4), 1736–1747 (2000).
[CrossRef] [PubMed]

Lada, A. T.

A. T. Lada, M. C. Willingham, and R. W. St Clair, “Triglyceride depletion in THP-1 cells alters cholesteryl ester physical state and cholesterol efflux,” J. Lipid Res.43(4), 618–628 (2002).
[PubMed]

Larkins, B. A.

E. M. Herman and B. A. Larkins, “Protein storage bodies and vacuoles,” Plant Cell11(4), 601–614 (1999).
[CrossRef] [PubMed]

Lasserre-Ramassamy, S.

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

Leidel, C.

C. Leidel, R. A. Longoria, F. M. Gutierrez, and G. T. Shubeita, “Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport,” Biophys. J.103(3), 492–500 (2012).
[CrossRef] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J.77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Llompart, B.

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

Llop-Tous, I.

I. Llop-Tous, M. Ortiz, M. Torrent, and M. D. Ludevid, “The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants,” PLoS ONE6(4), e19474 (2011).
[CrossRef] [PubMed]

I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010).
[CrossRef] [PubMed]

M. Torrent, I. Llop-Tous, and M. D. Ludevid, “Protein body induction: a new tool to produce and recover recombinant proteins in plants,” Methods Mol. Biol.483, 193–208 (2009).
[CrossRef] [PubMed]

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

Lobovkina, T.

T. Lobovkina, P. G. Dommersnes, S. Tiourine, J.-F. Joanny, and O. Orwar, “Shape optimization in lipid nanotube networks,” Eur Phys J E Soft Matter26(3), 295–300 (2008).
[CrossRef] [PubMed]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

Longoria, R. A.

C. Leidel, R. A. Longoria, F. M. Gutierrez, and G. T. Shubeita, “Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport,” Biophys. J.103(3), 492–500 (2012).
[CrossRef] [PubMed]

López-Abella, D.

E. Goytia, L. Fernández-Calvino, B. Martínez-García, D. López-Abella, and J. J. López-Moya, “Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system,” J. Gen. Virol.87(11), 3413–3423 (2006).
[CrossRef] [PubMed]

López-Moya, J. J.

E. Goytia, L. Fernández-Calvino, B. Martínez-García, D. López-Abella, and J. J. López-Moya, “Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system,” J. Gen. Virol.87(11), 3413–3423 (2006).
[CrossRef] [PubMed]

Ludevid, D.

M. I. Geli, M. Torrent, and D. Ludevid, “Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation,” Plant Cell6(12), 1911–1922 (1994).
[PubMed]

Ludevid, M. D.

M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
[CrossRef] [PubMed]

I. Llop-Tous, M. Ortiz, M. Torrent, and M. D. Ludevid, “The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants,” PLoS ONE6(4), e19474 (2011).
[CrossRef] [PubMed]

I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010).
[CrossRef] [PubMed]

M. Torrent, I. Llop-Tous, and M. D. Ludevid, “Protein body induction: a new tool to produce and recover recombinant proteins in plants,” Methods Mol. Biol.483, 193–208 (2009).
[CrossRef] [PubMed]

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

Madurga, S.

I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010).
[CrossRef] [PubMed]

Marsà, F.

Martin, B.

P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998).
[CrossRef] [PubMed]

Martín-Badosa, E.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007).
[CrossRef]

E. Pleguezuelos, A. Carnicer, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “HoloTrap: interactive hologram design for multiple dynamic optical trapping,” Comput. Phys. Commun.176(11-12), 701–709 (2007).
[CrossRef]

Martínez-García, B.

E. Goytia, L. Fernández-Calvino, B. Martínez-García, D. López-Abella, and J. J. López-Moya, “Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system,” J. Gen. Virol.87(11), 3413–3423 (2006).
[CrossRef] [PubMed]

Marzabal, P.

I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010).
[CrossRef] [PubMed]

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

Mas, J.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol.10(4), 046006 (2013).
[CrossRef] [PubMed]

Mestre, P.

O. Voinnet, S. Rivas, P. Mestre, and D. Baulcombe, “An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus,” Plant J.33(5), 949–956 (2003).
[CrossRef] [PubMed]

Minet, O.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Montes-Usategui, M.

A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express20(11), 12270–12291 (2012).
[CrossRef] [PubMed]

E. Pleguezuelos, A. Carnicer, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “HoloTrap: interactive hologram design for multiple dynamic optical trapping,” Comput. Phys. Commun.176(11-12), 701–709 (2007).
[CrossRef]

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007).
[CrossRef]

Moses, E.

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J.75(1), 294–320 (1998).
[CrossRef] [PubMed]

Müller, D. J.

Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011).
[CrossRef] [PubMed]

Müller, G.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Nagel, M.-D.

V. Olivier, J.-L. Duval, M. Hindié, P. Pouletaut, and M.-D. Nagel, “Comparative particle-induced cytotoxicity toward macrophages and fibroblasts,” Cell Biol. Toxicol.19(3), 145–159 (2003).
[CrossRef] [PubMed]

Nan, X.

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Nelson, P.

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J.75(1), 294–320 (1998).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J.77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett.97(15), 157402 (2006).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt.50(10), 1581–1590 (2003).
[CrossRef]

Nugent, K. A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

Oddershede, L. B.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol.10(4), 046006 (2013).
[CrossRef] [PubMed]

L. B. Oddershede, “Force probing of individual molecules inside the living cell is now a reality,” Nat. Chem. Biol.8(11), 879–886 (2012).
[CrossRef] [PubMed]

Olivier, V.

V. Olivier, J.-L. Duval, M. Hindié, P. Pouletaut, and M.-D. Nagel, “Comparative particle-induced cytotoxicity toward macrophages and fibroblasts,” Cell Biol. Toxicol.19(3), 145–159 (2003).
[CrossRef] [PubMed]

Oparka, K.

P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998).
[CrossRef] [PubMed]

Orii, H.

E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
[CrossRef] [PubMed]

Ortiz, M.

I. Llop-Tous, M. Ortiz, M. Torrent, and M. D. Ludevid, “The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants,” PLoS ONE6(4), e19474 (2011).
[CrossRef] [PubMed]

Orwar, O.

T. Lobovkina, P. G. Dommersnes, S. Tiourine, J.-F. Joanny, and O. Orwar, “Shape optimization in lipid nanotube networks,” Eur Phys J E Soft Matter26(3), 295–300 (2008).
[CrossRef] [PubMed]

Osterrieder, A.

C. Hawes, A. Osterrieder, I. A. Sparkes, and T. Ketelaar, “Optical tweezers for the micromanipulation of plant cytoplasm and organelles,” Curr. Opin. Plant Biol.13(6), 731–735 (2010).
[CrossRef] [PubMed]

Ou-Yang, H. D.

Parkin, S.

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett.97(15), 157402 (2006).
[CrossRef] [PubMed]

Peltier, J.-B.

M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
[CrossRef] [PubMed]

Pena, A. M.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Pleguezuelos, E.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007).
[CrossRef]

E. Pleguezuelos, A. Carnicer, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “HoloTrap: interactive hologram design for multiple dynamic optical trapping,” Comput. Phys. Commun.176(11-12), 701–709 (2007).
[CrossRef]

Polikarpov, I.

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci.13(10), 2825–2828 (2004).
[CrossRef] [PubMed]

Postner, M.

M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell92(4), 547–557 (1998).
[CrossRef] [PubMed]

Pouletaut, P.

V. Olivier, J.-L. Duval, M. Hindié, P. Pouletaut, and M.-D. Nagel, “Comparative particle-induced cytotoxicity toward macrophages and fibroblasts,” Cell Biol. Toxicol.19(3), 145–159 (2003).
[CrossRef] [PubMed]

Prost, J.

I. Derényi, F. Jülicher, and J. Prost, “Formation and interaction of membrane tubes,” Phys. Rev. Lett.88(23), 238101 (2002).
[CrossRef] [PubMed]

Reihani, S. N. S.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol.10(4), 046006 (2013).
[CrossRef] [PubMed]

Richards-Kortum, R.

Richardson, A. C.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol.10(4), 046006 (2013).
[CrossRef] [PubMed]

Rivas, S.

O. Voinnet, S. Rivas, P. Mestre, and D. Baulcombe, “An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus,” Plant J.33(5), 949–956 (2003).
[CrossRef] [PubMed]

Roberts, A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

Rofidal, V.

M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
[CrossRef] [PubMed]

Rohrbach, A.

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
[CrossRef] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Rossignol, M.

M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett.97(15), 157402 (2006).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt.50(10), 1581–1590 (2003).
[CrossRef]

Runions, J.

I. Sparkes, J. Runions, C. Hawes, and L. Griffing, “Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves,” Plant Cell21(12), 3937–3949 (2009).
[CrossRef] [PubMed]

Saloheimo, M.

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

Sandelius, A. S.

M. X. Andersson, M. Goksör, and A. S. Sandelius, “Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts,” J. Biol. Chem.282(2), 1170–1174 (2007).
[CrossRef] [PubMed]

Santa Cruz, S.

P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998).
[CrossRef] [PubMed]

Schäffer, E.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
[CrossRef] [PubMed]

Schanne-Klein, M. C.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Schmidt, C. F.

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol.12(3), 163–176 (2011).
[CrossRef] [PubMed]

Schuck, P.

H. Zhao, P. H. Brown, and P. Schuck, “On the distribution of protein refractive index increments,” Biophys. J.100(9), 2309–2317 (2011).
[CrossRef] [PubMed]

Schwartz, M. A.

B. D. Hoffman, C. Grashoff, and M. A. Schwartz, “Dynamic molecular processes mediate cellular mechanotransduction,” Nature475(7356), 316–323 (2011).
[CrossRef] [PubMed]

Shimada, T.

E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
[CrossRef] [PubMed]

Shimmen, T.

E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
[CrossRef] [PubMed]

T. Shimmen and E. Yokota, “Cytoplasmic streaming in plants,” Curr. Opin. Cell Biol.16(1), 68–72 (2004).
[CrossRef] [PubMed]

Shubeita, G. T.

C. Leidel, R. A. Longoria, F. M. Gutierrez, and G. T. Shubeita, “Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport,” Biophys. J.103(3), 492–500 (2012).
[CrossRef] [PubMed]

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

Simmons, R. M.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Sokabe, M.

K. Hayakawa, H. Tatsumi, and M. Sokabe, “Actin stress fibers transmit and focus force to activate mechanosensitive channels,” J. Cell Sci.121(4), 496–503 (2008).
[CrossRef] [PubMed]

Sparkes, I.

I. Sparkes, J. Runions, C. Hawes, and L. Griffing, “Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves,” Plant Cell21(12), 3937–3949 (2009).
[CrossRef] [PubMed]

Sparkes, I. A.

C. Hawes, A. Osterrieder, I. A. Sparkes, and T. Ketelaar, “Optical tweezers for the micromanipulation of plant cytoplasm and organelles,” Curr. Opin. Plant Biol.13(6), 731–735 (2010).
[CrossRef] [PubMed]

I. A. Sparkes, L. Frigerio, N. Tolley, and C. Hawes, “The plant endoplasmic reticulum: a cell-wide web,” Biochem. J.423(2), 145–155 (2009).
[CrossRef] [PubMed]

I. A. Sparkes, T. Ketelaar, N. C. A. de Ruijter, and C. Hawes, “Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum,” Traffic10(5), 567–571 (2009).
[CrossRef] [PubMed]

Spudich, J. A.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Srinivas, S.

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

St Clair, R. W.

A. T. Lada, M. C. Willingham, and R. W. St Clair, “Triglyceride depletion in THP-1 cells alters cholesteryl ester physical state and cholesterol efflux,” J. Lipid Res.43(4), 618–628 (2002).
[PubMed]

Staehelin, L. A.

G. F. Zhang and L. A. Staehelin, “Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells,” Plant Physiol.99(3), 1070–1083 (1992).
[CrossRef] [PubMed]

Stewart, A. G.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

Supatto, W.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Tatsumi, H.

K. Hayakawa, H. Tatsumi, and M. Sokabe, “Actin stress fibers transmit and focus force to activate mechanosensitive channels,” J. Cell Sci.121(4), 496–503 (2008).
[CrossRef] [PubMed]

Tauzin, M.

M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
[CrossRef] [PubMed]

Thayil, A.

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

Tiourine, S.

T. Lobovkina, P. G. Dommersnes, S. Tiourine, J.-F. Joanny, and O. Orwar, “Shape optimization in lipid nanotube networks,” Eur Phys J E Soft Matter26(3), 295–300 (2008).
[CrossRef] [PubMed]

Tolley, N.

I. A. Sparkes, L. Frigerio, N. Tolley, and C. Hawes, “The plant endoplasmic reticulum: a cell-wide web,” Biochem. J.423(2), 145–155 (2009).
[CrossRef] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Torrent, M.

M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
[CrossRef] [PubMed]

I. Llop-Tous, M. Ortiz, M. Torrent, and M. D. Ludevid, “The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants,” PLoS ONE6(4), e19474 (2011).
[CrossRef] [PubMed]

I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010).
[CrossRef] [PubMed]

M. Torrent, I. Llop-Tous, and M. D. Ludevid, “Protein body induction: a new tool to produce and recover recombinant proteins in plants,” Methods Mol. Biol.483, 193–208 (2009).
[CrossRef] [PubMed]

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

M. I. Geli, M. Torrent, and D. Ludevid, “Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation,” Plant Cell6(12), 1911–1922 (1994).
[PubMed]

Tran, S. L.

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

Ueda, H.

E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
[CrossRef] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

van Blaaderen, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
[CrossRef] [PubMed]

van der Honing, H. S.

T. Ketelaar, H. S. van der Honing, and A. M. C. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

van Kats, C. M.

van Oostrum, P. D. J.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

Veigel, C.

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol.12(3), 163–176 (2011).
[CrossRef] [PubMed]

Vershinin, M.

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

Visscher, K.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Voinnet, O.

O. Voinnet, S. Rivas, P. Mestre, and D. Baulcombe, “An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus,” Plant J.33(5), 949–956 (2003).
[CrossRef] [PubMed]

Vörös, J.

J. Vörös, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J.87(1), 553–561 (2004).
[CrossRef] [PubMed]

Wang, J.

Watanabe, T.

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

Wei, M. T.

Welte, M. A.

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell92(4), 547–557 (1998).
[CrossRef] [PubMed]

Westerholm-Parvinen, A.

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

Wieschaus, E. F.

M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell92(4), 547–557 (1998).
[CrossRef] [PubMed]

Willingham, M. C.

A. T. Lada, M. C. Willingham, and R. W. St Clair, “Triglyceride depletion in THP-1 cells alters cholesteryl ester physical state and cholesterol efflux,” J. Lipid Res.43(4), 618–628 (2002).
[PubMed]

Wilson, T.

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

Wirtz, D.

S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J.78(4), 1736–1747 (2000).
[CrossRef] [PubMed]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Xie, X. S.

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Xu, J.

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

Yalcin, H. C.

Yamada, S.

S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J.78(4), 1736–1747 (2000).
[CrossRef] [PubMed]

Yokota, E.

E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
[CrossRef] [PubMed]

T. Shimmen and E. Yokota, “Cytoplasmic streaming in plants,” Curr. Opin. Cell Biol.16(1), 68–72 (2004).
[CrossRef] [PubMed]

Yoo, J.

J. Yoo, T. Kambara, K. Gonda, and H. Higuchi, “Intracellular imaging of targeted proteins labeled with quantum dots,” Exp. Cell Res.314(19), 3563–3569 (2008).
[CrossRef] [PubMed]

Zaorski, A.

Zhang, G. F.

G. F. Zhang and L. A. Staehelin, “Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells,” Plant Physiol.99(3), 1070–1083 (1992).
[CrossRef] [PubMed]

Zhao, H.

H. Zhao, P. H. Brown, and P. Schuck, “On the distribution of protein refractive index increments,” Biophys. J.100(9), 2309–2317 (2011).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

B. D. Hoffman and J. C. Crocker, “Cell mechanics: dissecting the physical responses of cells to force,” Annu. Rev. Biomed. Eng.11(1), 259–288 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biochem. J. (1)

I. A. Sparkes, L. Frigerio, N. Tolley, and C. Hawes, “The plant endoplasmic reticulum: a cell-wide web,” Biochem. J.423(2), 145–155 (2009).
[CrossRef] [PubMed]

Biochem. Soc. Trans. (1)

T. Ketelaar, H. S. van der Honing, and A. M. C. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

Biophys. J. (9)

C. Leidel, R. A. Longoria, F. M. Gutierrez, and G. T. Shubeita, “Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport,” Biophys. J.103(3), 492–500 (2012).
[CrossRef] [PubMed]

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J.75(1), 294–320 (1998).
[CrossRef] [PubMed]

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J.77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J.78(4), 1736–1747 (2000).
[CrossRef] [PubMed]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

H. Zhao, P. H. Brown, and P. Schuck, “On the distribution of protein refractive index increments,” Biophys. J.100(9), 2309–2317 (2011).
[CrossRef] [PubMed]

J. Vörös, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J.87(1), 553–561 (2004).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

BMC Biol. (1)

M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009).
[CrossRef] [PubMed]

BMC Cell Biol. (1)

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010).
[CrossRef] [PubMed]

BMC Plant Biol. (1)

M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012).
[CrossRef] [PubMed]

Cell (2)

M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell92(4), 547–557 (1998).
[CrossRef] [PubMed]

G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008).
[CrossRef] [PubMed]

Cell Biol. Toxicol. (1)

V. Olivier, J.-L. Duval, M. Hindié, P. Pouletaut, and M.-D. Nagel, “Comparative particle-induced cytotoxicity toward macrophages and fibroblasts,” Cell Biol. Toxicol.19(3), 145–159 (2003).
[CrossRef] [PubMed]

Comput. Phys. Commun. (1)

E. Pleguezuelos, A. Carnicer, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “HoloTrap: interactive hologram design for multiple dynamic optical trapping,” Comput. Phys. Commun.176(11-12), 701–709 (2007).
[CrossRef]

Curr. Opin. Cell Biol. (1)

T. Shimmen and E. Yokota, “Cytoplasmic streaming in plants,” Curr. Opin. Cell Biol.16(1), 68–72 (2004).
[CrossRef] [PubMed]

Curr. Opin. Plant Biol. (1)

C. Hawes, A. Osterrieder, I. A. Sparkes, and T. Ketelaar, “Optical tweezers for the micromanipulation of plant cytoplasm and organelles,” Curr. Opin. Plant Biol.13(6), 731–735 (2010).
[CrossRef] [PubMed]

Cytometry A (1)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005).
[CrossRef] [PubMed]

Dev. Cell (1)

S. P. Gross, “Come together: group behavior of dynein motors,” Dev. Cell24(2), 117–118 (2013).
[CrossRef] [PubMed]

Eur Phys J E Soft Matter (1)

T. Lobovkina, P. G. Dommersnes, S. Tiourine, J.-F. Joanny, and O. Orwar, “Shape optimization in lipid nanotube networks,” Eur Phys J E Soft Matter26(3), 295–300 (2008).
[CrossRef] [PubMed]

Exp. Cell Res. (1)

J. Yoo, T. Kambara, K. Gonda, and H. Higuchi, “Intracellular imaging of targeted proteins labeled with quantum dots,” Exp. Cell Res.314(19), 3563–3569 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

J. Biol. Chem. (2)

M. X. Andersson, M. Goksör, and A. S. Sandelius, “Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts,” J. Biol. Chem.282(2), 1170–1174 (2007).
[CrossRef] [PubMed]

I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010).
[CrossRef] [PubMed]

J. Cell Sci. (1)

K. Hayakawa, H. Tatsumi, and M. Sokabe, “Actin stress fibers transmit and focus force to activate mechanosensitive channels,” J. Cell Sci.121(4), 496–503 (2008).
[CrossRef] [PubMed]

J. Gen. Virol. (1)

E. Goytia, L. Fernández-Calvino, B. Martínez-García, D. López-Abella, and J. J. López-Moya, “Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system,” J. Gen. Virol.87(11), 3413–3423 (2006).
[CrossRef] [PubMed]

J. Lipid Res. (2)

A. T. Lada, M. C. Willingham, and R. W. St Clair, “Triglyceride depletion in THP-1 cells alters cholesteryl ester physical state and cholesterol efflux,” J. Lipid Res.43(4), 618–628 (2002).
[PubMed]

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt.50(10), 1581–1590 (2003).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

Methods Enzymol. (1)

S. P. Gross, “Application of optical traps in vivo,” Methods Enzymol.361, 162–174 (2003).
[CrossRef] [PubMed]

Methods Mol. Biol. (1)

M. Torrent, I. Llop-Tous, and M. D. Ludevid, “Protein body induction: a new tool to produce and recover recombinant proteins in plants,” Methods Mol. Biol.483, 193–208 (2009).
[CrossRef] [PubMed]

Nat. Chem. Biol. (1)

L. B. Oddershede, “Force probing of individual molecules inside the living cell is now a reality,” Nat. Chem. Biol.8(11), 879–886 (2012).
[CrossRef] [PubMed]

Nat. Methods (2)

Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

Nat. Rev. Mol. Cell Biol. (1)

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol.12(3), 163–176 (2011).
[CrossRef] [PubMed]

Nature (1)

B. D. Hoffman, C. Grashoff, and M. A. Schwartz, “Dynamic molecular processes mediate cellular mechanotransduction,” Nature475(7356), 316–323 (2011).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Biol. (1)

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol.10(4), 046006 (2013).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

I. Derényi, F. Jülicher, and J. Prost, “Formation and interaction of membrane tubes,” Phys. Rev. Lett.88(23), 238101 (2002).
[CrossRef] [PubMed]

G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, and M. Dogterom, “Force barriers for membrane tube formation,” Phys. Rev. Lett.94(6), 068101 (2005).
[CrossRef] [PubMed]

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett.97(15), 157402 (2006).
[CrossRef] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
[CrossRef] [PubMed]

Plant Cell (3)

E. M. Herman and B. A. Larkins, “Protein storage bodies and vacuoles,” Plant Cell11(4), 601–614 (1999).
[CrossRef] [PubMed]

M. I. Geli, M. Torrent, and D. Ludevid, “Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation,” Plant Cell6(12), 1911–1922 (1994).
[PubMed]

I. Sparkes, J. Runions, C. Hawes, and L. Griffing, “Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves,” Plant Cell21(12), 3937–3949 (2009).
[CrossRef] [PubMed]

Plant J. (2)

P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998).
[CrossRef] [PubMed]

O. Voinnet, S. Rivas, P. Mestre, and D. Baulcombe, “An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus,” Plant J.33(5), 949–956 (2003).
[CrossRef] [PubMed]

Plant Physiol. (3)

G. F. Zhang and L. A. Staehelin, “Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells,” Plant Physiol.99(3), 1070–1083 (1992).
[CrossRef] [PubMed]

E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011).
[CrossRef] [PubMed]

G. Galili, “ER-derived compartments are formed by highly regulated processes and have special functions in plants,” Plant Physiol.136(3), 3411–3413 (2004).
[CrossRef] [PubMed]

PLoS ONE (2)

I. Llop-Tous, M. Ortiz, M. Torrent, and M. D. Ludevid, “The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants,” PLoS ONE6(4), e19474 (2011).
[CrossRef] [PubMed]

L. M. Costantini, R. M. Gilberti, and D. A. Knecht, “The phagocytosis and toxicity of amorphous silica,” PLoS ONE6(2), e14647 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A.86(20), 7914–7918 (1989).
[CrossRef] [PubMed]

Protein Sci. (1)

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci.13(10), 2825–2828 (2004).
[CrossRef] [PubMed]

Q. J. Microsc. Sci. (1)

R. Barer and S. Joseph, “Refractometry of living cells, part I. Basic principles,” Q. J. Microsc. Sci.95, 399–423 (1954).

Rev. Sci. Instrum. (1)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004).
[CrossRef]

Traffic (1)

I. A. Sparkes, T. Ketelaar, N. C. A. de Ruijter, and C. Hawes, “Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum,” Traffic10(5), 567–571 (2009).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (11099 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Fluorescent PBs induced in (a) Chinese Hamster Ovary (CHO) and (b) Nicotiana benthamiana (tobacco) cells.

Fig. 2
Fig. 2

T-matrix simulation [38] of the maximum force on a PB for different radii. (nPB = 1.44). The maximum force within the linear region of the force curve is also shown.

Fig. 3
Fig. 3

Determination of the index of refraction of PBs by means of immersion refractometry. (a) Percentage of bright PBs under phase contrast microscopy as a function of the refractive index of the suspension mixture and typical appearance of negative-contrast, almost index-matched, and positive-contrast PBs. (b) Brightness cross-section of the three PB images in (a).

Fig. 4
Fig. 4

Power spectra and Lorentzian fittings (red) of a trapped PB (green) and a latex microsphere of d = 1.16 µm (gray). Samples were suspended in a medium with a refractive index mimicking that of the cytosol (nc = 1.37).

Fig. 5
Fig. 5

Comparison between the measured (dots) and predicted (solid line) stiffness for different PB sizes in (a) x and (b) y directions. The theoretical curve for the polystyrene microspheres is also included (dashed line). Each point is the average of 2-3 different samples. Error bars represent standard deviations.

Fig. 6
Fig. 6

A PB is trapped and pulled out near the nucleus (N). A membrane tether still connects the particle to a cytoplasmic strand that is streaming quickly. (a)-(c) The anchor site (arrow) moves together with the stream of the cytoplasm (from left to right). Scale bar: 10 µm.

Fig. 7
Fig. 7

(a) PBs (arrows) and Golgi bodies (arrowheads) are observed in a cortical region of the cell. The network organization of the ER is also visible (lower center). The box shows the region where images (b)-(e) were collected. (b)-(e) image sequence showing a Golgi body (arrowhead) moving through the cytoplasm, which is indicative of an intact cytoskeleton (time between frames = 0.5 s). Scale bar: 5 µm (a) and 2 µm (b-e).

Fig. 8
Fig. 8

A PB attached to an ER tubule is pulled through an empty region of the cytoplasm. The arrow indicates the approximate position of the optical trap. A circular movement of the laser spot creates a four-way junction of ER tubules, which intersect at right angles. Scale bar: 2 µm. See Media 1, first 14 seconds (scale bar in media: 2 µm).

Fig. 9
Fig. 9

The four-way junction artificially created with the optical trap quickly evolves into two three-way junctions. The vertical segment grows until all angles measure 120°, minimizing network length and thus free energy. The red stars mark the position of putative anchor points. Scale bar: 2 µm. See Media 1, between seconds 14 and 16.

Fig. 10
Fig. 10

The structure in Fig. 9 evolves into a single Y-junction and seems to align with an actin bundle as a moving Golgi (arrowhead) follows a trajectory coincident with that part of the network. Scale bar: 2 µm. See Media 1, after second 27.

Tables (1)

Tables Icon

Table 1 Intracellular targets and characteristics of the resulting optical traps.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n PS = n S +( n/c )c,
n PB = n S + d p ( ( d PB d S )/( d p d S ) )( n/c ),
d P =1.410+0.145exp( M/ 13 )g/ c m 3 ,
n PB =1.451.50,
n s =1.324,
( n / c ) 1064 =( n / c )( 0.940+ 20000 / λ 2 )=0.177,
n PB ( 1064 )=1.431.48.

Metrics