F. Larocca, D. Nankivil, S. Farsiu, and J. A. Izatt, “Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system.” Biomed. Opt. Express 4, 2307–2321 (2013).
[Crossref]
[PubMed]
K. Komar, P. Stremplewski, M. Motoczynska, M. Szkulmowski, and M. Wojtkowski, “Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus,” Biomed. Opt. Express 4, 2683 (2013).
[Crossref]
[PubMed]
P. Bouchal, A. Bradu, and A. Gh. Podoleanu, “Gabor fusion technique in a Talbot bands optical coherence tomography system,” Opt. Express 20, 5368–5383 (2012).
[Crossref]
[PubMed]
K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO.” Biomed. Opt. Express 3, 2950–2963 (2012).
[Crossref]
[PubMed]
C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17, 080502 (2012).
[Crossref]
[PubMed]
A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[Crossref]
[PubMed]
D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope.” Biomed. Opt. Express 2, 2189–2201 (2011).
[Crossref]
[PubMed]
V.-F. Duma, K.-s. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT.” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]
[PubMed]
M. Pircher, E. Götzinger, and H. Sattmann, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18, 13935–13944 (2010).
[Crossref]
[PubMed]
W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second.” Opt. Express 18, 14685–14704 (2010).
[Crossref]
[PubMed]
Y. K. Tao, S. Farsiu, and J. a. Izatt, “Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography.” Biomed. Opt. Express 1, 431–440 (2010).
[Crossref]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 45, 182–183 (2009).
[Crossref]
A. Bradu, L. Ma, J. W. Bloor, and A. Gh. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2, 380–388 (2009).
[Crossref]
[PubMed]
A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27, 464–499 (2008).
[Crossref]
[PubMed]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
D. Woods and A. Gh. Podoleanu, “Controlling the shape of Talbot bands’ visibility,” Opt. Express 16, 9654–9670 (2008).
[Crossref]
[PubMed]
B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref]
[PubMed]
A. Gh. Podoleanu, “Unique interpretation of Talbot Bands and Fourier domain white light interferometry,” Opt. Express 15, 9867–9876 (2007).
[Crossref]
[PubMed]
A. Gh. Podoleanu and D. Woods, “Power-efficient Fourier domain optical coherence tomography setup for selection in the optical path difference sign using Talbot bands,” Opt. Lett. 32, 2300–2302 (2007).
[Crossref]
[PubMed]
L. Liu, N. Chen, and C. J. R. Sheppard, “Double-reflection polygon mirror for high-speed optical coherence microscopy,” Opt. Lett. 32, 3528 (2007).
[Crossref]
[PubMed]
Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt. 46, 8499–8505 (2007).
[Crossref]
[PubMed]
R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, and Others, “Performance of Fourier domain xvs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref]
[PubMed]
S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength.” Opt. Express 11, 3598–3604 (2003).
[Crossref]
[PubMed]
M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography.” Opt. Express 11, 2183–2189 (2003).
[Crossref]
[PubMed]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography.” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
A. Gh. Podoleanu and D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).
[Crossref]
S. Taplin, A. Gh. Podoleanu, D. Webb, and D. Jackson, “Displacement sensor using channelled spectrum dispersed on a linear CCD array,” Electron. Lett. 29, 896 (1993).
[Crossref]
L. D. Harris, R. A. Robb, T. S. Yuen, and E. L. Ritman, “Display and visualization of three-dimensional reconstructed anatomic morphology: experience with the thorax, heart, and coronary vasculature of dogs.” J. Comput. Assist. Tomogr. 3, 439–446 (1979).
[Crossref]
[PubMed]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography.” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
A. Bradu, L. Ma, J. W. Bloor, and A. Gh. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2, 380–388 (2009).
[Crossref]
[PubMed]
P. Bouchal, A. Bradu, and A. Gh. Podoleanu, “Gabor fusion technique in a Talbot bands optical coherence tomography system,” Opt. Express 20, 5368–5383 (2012).
[Crossref]
[PubMed]
A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[Crossref]
[PubMed]
A. Bradu, L. Ma, J. W. Bloor, and A. Gh. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2, 380–388 (2009).
[Crossref]
[PubMed]
B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref]
[PubMed]
B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref]
[PubMed]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17, 080502 (2012).
[Crossref]
[PubMed]
K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO.” Biomed. Opt. Express 3, 2950–2963 (2012).
[Crossref]
[PubMed]
J. F. de Boer, “Spectral/Fourier Domain Optical Coherence Tomography,” in “Opt. Coherence Tomogr. - Technol. Appl.”,W. Drexler and J. Fujimoto, eds. (Springer, 2008), Biological and Medical Physics, Biomedical Engineering.
[Crossref]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, and Others, “Performance of Fourier domain xvs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref]
[PubMed]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography.” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, and R. D. Ferguson, “Dual OCT/SLO Imager with Three-Dimensional Tracker,in Ophthalmic Technol. XV,”, vol. 5688, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (Proceedings of SPIE Vol. 5688, 2005), vol. 5688, pp. 33–44.
[Crossref]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref]
[PubMed]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref]
[PubMed]
M. Pircher, E. Götzinger, and H. Sattmann, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18, 13935–13944 (2010).
[Crossref]
[PubMed]
M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography.” Opt. Lett. 31, 1821–1823 (2006).
[Crossref]
[PubMed]
D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, and R. D. Ferguson, “Dual OCT/SLO Imager with Three-Dimensional Tracker,in Ophthalmic Technol. XV,”, vol. 5688, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (Proceedings of SPIE Vol. 5688, 2005), vol. 5688, pp. 33–44.
[Crossref]
L. D. Harris, R. A. Robb, T. S. Yuen, and E. L. Ritman, “Display and visualization of three-dimensional reconstructed anatomic morphology: experience with the thorax, heart, and coronary vasculature of dogs.” J. Comput. Assist. Tomogr. 3, 439–446 (1979).
[Crossref]
[PubMed]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography.” Opt. Lett. 31, 1821–1823 (2006).
[Crossref]
[PubMed]
R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, and Others, “Performance of Fourier domain xvs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref]
[PubMed]
W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second.” Opt. Express 18, 14685–14704 (2010).
[Crossref]
[PubMed]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 45, 182–183 (2009).
[Crossref]
D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, and R. D. Ferguson, “Dual OCT/SLO Imager with Three-Dimensional Tracker,in Ophthalmic Technol. XV,”, vol. 5688, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (Proceedings of SPIE Vol. 5688, 2005), vol. 5688, pp. 33–44.
[Crossref]
S. Taplin, A. Gh. Podoleanu, D. Webb, and D. Jackson, “Displacement sensor using channelled spectrum dispersed on a linear CCD array,” Electron. Lett. 29, 896 (1993).
[Crossref]
B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref]
[PubMed]
C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17, 080502 (2012).
[Crossref]
[PubMed]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography.” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, and Others, “Performance of Fourier domain xvs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref]
[PubMed]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography.” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17, 080502 (2012).
[Crossref]
[PubMed]
A. Bradu, L. Ma, J. W. Bloor, and A. Gh. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2, 380–388 (2009).
[Crossref]
[PubMed]
D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, and R. D. Ferguson, “Dual OCT/SLO Imager with Three-Dimensional Tracker,in Ophthalmic Technol. XV,”, vol. 5688, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (Proceedings of SPIE Vol. 5688, 2005), vol. 5688, pp. 33–44.
[Crossref]
S. N. Markowitz and S. V. Reyes, “Microperimetry and clinical practice: an evidence-based review,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie (2012).
T. Mitsui, “Dynamic Range of Optical Reflectometry with Spectral Interferometry,” Jpn. J. Appl. Phys. 38, 6133–6137 (1999).
[Crossref]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
M. Pircher, E. Götzinger, and H. Sattmann, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18, 13935–13944 (2010).
[Crossref]
[PubMed]
M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography.” Opt. Lett. 31, 1821–1823 (2006).
[Crossref]
[PubMed]
P. Bouchal, A. Bradu, and A. Gh. Podoleanu, “Gabor fusion technique in a Talbot bands optical coherence tomography system,” Opt. Express 20, 5368–5383 (2012).
[Crossref]
[PubMed]
A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[Crossref]
[PubMed]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 45, 182–183 (2009).
[Crossref]
A. Bradu, L. Ma, J. W. Bloor, and A. Gh. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2, 380–388 (2009).
[Crossref]
[PubMed]
A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27, 464–499 (2008).
[Crossref]
[PubMed]
D. Woods and A. Gh. Podoleanu, “Controlling the shape of Talbot bands’ visibility,” Opt. Express 16, 9654–9670 (2008).
[Crossref]
[PubMed]
A. Gh. Podoleanu, “Unique interpretation of Talbot Bands and Fourier domain white light interferometry,” Opt. Express 15, 9867–9876 (2007).
[Crossref]
[PubMed]
A. Gh. Podoleanu and D. Woods, “Power-efficient Fourier domain optical coherence tomography setup for selection in the optical path difference sign using Talbot bands,” Opt. Lett. 32, 2300–2302 (2007).
[Crossref]
[PubMed]
A. Gh. Podoleanu and D. A. Jackson, “Noise Analysis of a Combined Optical Coherence Tomograph and a Confocal Scanning Ophthalmoscope,” Appl. Opt. 38, 2116 (1999).
[Crossref]
A. Gh. Podoleanu and D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).
[Crossref]
S. Taplin, A. Gh. Podoleanu, D. Webb, and D. Jackson, “Displacement sensor using channelled spectrum dispersed on a linear CCD array,” Electron. Lett. 29, 896 (1993).
[Crossref]
B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref]
[PubMed]
S. N. Markowitz and S. V. Reyes, “Microperimetry and clinical practice: an evidence-based review,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie (2012).
L. D. Harris, R. A. Robb, T. S. Yuen, and E. L. Ritman, “Display and visualization of three-dimensional reconstructed anatomic morphology: experience with the thorax, heart, and coronary vasculature of dogs.” J. Comput. Assist. Tomogr. 3, 439–446 (1979).
[Crossref]
[PubMed]
L. D. Harris, R. A. Robb, T. S. Yuen, and E. L. Ritman, “Display and visualization of three-dimensional reconstructed anatomic morphology: experience with the thorax, heart, and coronary vasculature of dogs.” J. Comput. Assist. Tomogr. 3, 439–446 (1979).
[Crossref]
[PubMed]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO.” Biomed. Opt. Express 3, 2950–2963 (2012).
[Crossref]
[PubMed]
D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope.” Biomed. Opt. Express 2, 2189–2201 (2011).
[Crossref]
[PubMed]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27, 464–499 (2008).
[Crossref]
[PubMed]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref]
[PubMed]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
S. Taplin, A. Gh. Podoleanu, D. Webb, and D. Jackson, “Displacement sensor using channelled spectrum dispersed on a linear CCD array,” Electron. Lett. 29, 896 (1993).
[Crossref]
K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO.” Biomed. Opt. Express 3, 2950–2963 (2012).
[Crossref]
[PubMed]
D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope.” Biomed. Opt. Express 2, 2189–2201 (2011).
[Crossref]
[PubMed]
D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, and R. D. Ferguson, “Dual OCT/SLO Imager with Three-Dimensional Tracker,in Ophthalmic Technol. XV,”, vol. 5688, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (Proceedings of SPIE Vol. 5688, 2005), vol. 5688, pp. 33–44.
[Crossref]
S. Taplin, A. Gh. Podoleanu, D. Webb, and D. Jackson, “Displacement sensor using channelled spectrum dispersed on a linear CCD array,” Electron. Lett. 29, 896 (1993).
[Crossref]
K. Komar, P. Stremplewski, M. Motoczynska, M. Szkulmowski, and M. Wojtkowski, “Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus,” Biomed. Opt. Express 4, 2683 (2013).
[Crossref]
[PubMed]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography.” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 45, 182–183 (2009).
[Crossref]
D. Woods and A. Gh. Podoleanu, “Controlling the shape of Talbot bands’ visibility,” Opt. Express 16, 9654–9670 (2008).
[Crossref]
[PubMed]
A. Gh. Podoleanu and D. Woods, “Power-efficient Fourier domain optical coherence tomography setup for selection in the optical path difference sign using Talbot bands,” Opt. Lett. 32, 2300–2302 (2007).
[Crossref]
[PubMed]
L. D. Harris, R. A. Robb, T. S. Yuen, and E. L. Ritman, “Display and visualization of three-dimensional reconstructed anatomic morphology: experience with the thorax, heart, and coronary vasculature of dogs.” J. Comput. Assist. Tomogr. 3, 439–446 (1979).
[Crossref]
[PubMed]
A. Gh. Podoleanu and D. A. Jackson, “Noise Analysis of a Combined Optical Coherence Tomograph and a Confocal Scanning Ophthalmoscope,” Appl. Opt. 38, 2116 (1999).
[Crossref]
Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt. 46, 8499–8505 (2007).
[Crossref]
[PubMed]
V.-F. Duma, K.-s. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT.” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]
[PubMed]
K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO.” Biomed. Opt. Express 3, 2950–2963 (2012).
[Crossref]
[PubMed]
F. Larocca, D. Nankivil, S. Farsiu, and J. A. Izatt, “Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system.” Biomed. Opt. Express 4, 2307–2321 (2013).
[Crossref]
[PubMed]
K. Komar, P. Stremplewski, M. Motoczynska, M. Szkulmowski, and M. Wojtkowski, “Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus,” Biomed. Opt. Express 4, 2683 (2013).
[Crossref]
[PubMed]
Y. K. Tao, S. Farsiu, and J. a. Izatt, “Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography.” Biomed. Opt. Express 1, 431–440 (2010).
[Crossref]
D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope.” Biomed. Opt. Express 2, 2189–2201 (2011).
[Crossref]
[PubMed]
A. Gh. Podoleanu and D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).
[Crossref]
S. Taplin, A. Gh. Podoleanu, D. Webb, and D. Jackson, “Displacement sensor using channelled spectrum dispersed on a linear CCD array,” Electron. Lett. 29, 896 (1993).
[Crossref]
M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 45, 182–183 (2009).
[Crossref]
V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[Crossref]
[PubMed]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography.” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[Crossref]
[PubMed]
C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17, 080502 (2012).
[Crossref]
[PubMed]
A. Bradu, L. Ma, J. W. Bloor, and A. Gh. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2, 380–388 (2009).
[Crossref]
[PubMed]
L. D. Harris, R. A. Robb, T. S. Yuen, and E. L. Ritman, “Display and visualization of three-dimensional reconstructed anatomic morphology: experience with the thorax, heart, and coronary vasculature of dogs.” J. Comput. Assist. Tomogr. 3, 439–446 (1979).
[Crossref]
[PubMed]
T. Mitsui, “Dynamic Range of Optical Reflectometry with Spectral Interferometry,” Jpn. J. Appl. Phys. 38, 6133–6137 (1999).
[Crossref]
A. Gh. Podoleanu, “Unique interpretation of Talbot Bands and Fourier domain white light interferometry,” Opt. Express 15, 9867–9876 (2007).
[Crossref]
[PubMed]
P. Bouchal, A. Bradu, and A. Gh. Podoleanu, “Gabor fusion technique in a Talbot bands optical coherence tomography system,” Opt. Express 20, 5368–5383 (2012).
[Crossref]
[PubMed]
D. Woods and A. Gh. Podoleanu, “Controlling the shape of Talbot bands’ visibility,” Opt. Express 16, 9654–9670 (2008).
[Crossref]
[PubMed]
B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref]
[PubMed]
R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112–4133 (2009).
[Crossref]
[PubMed]
M. Pircher, E. Götzinger, and H. Sattmann, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18, 13935–13944 (2010).
[Crossref]
[PubMed]
W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second.” Opt. Express 18, 14685–14704 (2010).
[Crossref]
[PubMed]
R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, and Others, “Performance of Fourier domain xvs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref]
[PubMed]
S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength.” Opt. Express 11, 3598–3604 (2003).
[Crossref]
[PubMed]
M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography.” Opt. Express 11, 2183–2189 (2003).
[Crossref]
[PubMed]
M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography.” Opt. Lett. 31, 1821–1823 (2006).
[Crossref]
[PubMed]
A. Gh. Podoleanu and D. Woods, “Power-efficient Fourier domain optical coherence tomography setup for selection in the optical path difference sign using Talbot bands,” Opt. Lett. 32, 2300–2302 (2007).
[Crossref]
[PubMed]
L. Liu, N. Chen, and C. J. R. Sheppard, “Double-reflection polygon mirror for high-speed optical coherence microscopy,” Opt. Lett. 32, 3528 (2007).
[Crossref]
[PubMed]
A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27, 464–499 (2008).
[Crossref]
[PubMed]
“OCT/SLO - Optos,” http://www.optos.com/en-GB/Products/Ultra-widefield-imaging/OCT-imaging/OCTSLO/ .
S. N. Markowitz and S. V. Reyes, “Microperimetry and clinical practice: an evidence-based review,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie (2012).
J. F. de Boer, “Spectral/Fourier Domain Optical Coherence Tomography,” in “Opt. Coherence Tomogr. - Technol. Appl.”,W. Drexler and J. Fujimoto, eds. (Springer, 2008), Biological and Medical Physics, Biomedical Engineering.
[Crossref]
“3D OCT-2000 Spectral Domain OCT — Topcon Medical Systems, Inc.” http://www.topconmedical.com/products/3doct2000.htm .
D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, and R. D. Ferguson, “Dual OCT/SLO Imager with Three-Dimensional Tracker,in Ophthalmic Technol. XV,”, vol. 5688, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (Proceedings of SPIE Vol. 5688, 2005), vol. 5688, pp. 33–44.
[Crossref]
A.N.S.Institute, “Safe use of lasers,” Publ. by Laser Inst. Am. pp. ANSI Z 136.1–2000 (2007).