Abstract

Corneal collagen cross-linking (CXL) is a clinical treatment for keratoconus that structurally reinforces degenerating ocular tissue, thereby limiting disease progression. Clinical outcomes would benefit from noninvasive methods to assess tissue material properties in affected individuals. Regional variations in tissue properties were quantified before and after CXL in rabbit eyes using optical coherence elastography (OCE) imaging. Low-amplitude (<1µm) elastic waves were generated using micro air-pulse stimulation and the resulting wave amplitude and speed were measured using phase-stabilized swept-source OCE. OCE imaging following CXL treatment demonstrates increased corneal stiffness through faster elastic wave propagation speeds and lower wave amplitudes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011).
    [CrossRef] [PubMed]
  2. T. B. Edrington, K. Zadnik, and J. T. Barr, “Keratoconus,” Optom. Clin.4(3), 65–73 (1995).
    [PubMed]
  3. M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
    [CrossRef] [PubMed]
  4. K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
    [PubMed]
  5. H. Latorre-Ossa, J. L. Gennisson, E. De Brosses, and M. Tanter, “Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(4), 833–839 (2012).
    [CrossRef] [PubMed]
  6. D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
    [CrossRef] [PubMed]
  7. J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
    [CrossRef] [PubMed]
  8. G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci.53(1), 185–190 (2012).
    [CrossRef] [PubMed]
  9. B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express3(12), 3138–3152 (2012).
    [CrossRef] [PubMed]
  10. K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012).
    [CrossRef] [PubMed]
  11. M. Razani, A. Mariampillai, C. Sun, T. W. Luk, V. X. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012).
    [CrossRef] [PubMed]
  12. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
    [CrossRef] [PubMed]
  13. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
    [CrossRef] [PubMed]
  14. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  15. M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011).
    [CrossRef] [PubMed]
  16. R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
    [CrossRef]
  17. H. Wang, P. L. Prendiville, P. J. McDonnell, and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” J. Biomech.29(12), 1633–1636 (1996).
    [CrossRef] [PubMed]
  18. S. A. Greenstein, K. L. Fry, and P. S. Hersh, “In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial,” Cornea31(1), 21–25 (2012).
    [CrossRef] [PubMed]
  19. Y. Hon and A. K. Lam, “Corneal deformation measurement using Scheimpflug noncontact tonometry,” Optom. Vis. Sci.90(1), e1–e8 (2013).
    [CrossRef] [PubMed]
  20. D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system,” Opt. Express19(15), 14188–14199 (2011).
    [CrossRef] [PubMed]
  21. C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express3(3), 473–487 (2012).
    [CrossRef] [PubMed]
  22. S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
    [CrossRef]
  23. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
    [CrossRef] [PubMed]
  24. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” LaPhy18, 1080–1086 (2008).
  25. J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
    [CrossRef] [PubMed]
  26. M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
    [CrossRef] [PubMed]
  27. S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
    [CrossRef] [PubMed]
  28. S. Schumacher, L. Oeftiger, and M. Mrochen, “Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation,” Invest. Ophthalmol. Vis. Sci.52(12), 9048–9052 (2011).
    [CrossRef] [PubMed]
  29. G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
    [CrossRef] [PubMed]
  30. S. Kling, H. Ginis, and S. Marcos, “Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking,” Invest. Ophthalmol. Vis. Sci.53(8), 5010–5015 (2012).
    [CrossRef] [PubMed]
  31. A. Sinha Roy, K. M. Rocha, J. B. Randleman, R. D. Stulting, and W. J. Dupps., “Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus,” Exp. Eye Res.113, 92–104 (2013).
    [CrossRef] [PubMed]

2014

D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
[CrossRef] [PubMed]

2013

Y. Hon and A. K. Lam, “Corneal deformation measurement using Scheimpflug noncontact tonometry,” Optom. Vis. Sci.90(1), e1–e8 (2013).
[CrossRef] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

A. Sinha Roy, K. M. Rocha, J. B. Randleman, R. D. Stulting, and W. J. Dupps., “Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus,” Exp. Eye Res.113, 92–104 (2013).
[CrossRef] [PubMed]

2012

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express3(3), 473–487 (2012).
[CrossRef] [PubMed]

S. Kling, H. Ginis, and S. Marcos, “Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking,” Invest. Ophthalmol. Vis. Sci.53(8), 5010–5015 (2012).
[CrossRef] [PubMed]

H. Latorre-Ossa, J. L. Gennisson, E. De Brosses, and M. Tanter, “Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(4), 833–839 (2012).
[CrossRef] [PubMed]

S. A. Greenstein, K. L. Fry, and P. S. Hersh, “In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial,” Cornea31(1), 21–25 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
[CrossRef] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci.53(1), 185–190 (2012).
[CrossRef] [PubMed]

B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express3(12), 3138–3152 (2012).
[CrossRef] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012).
[CrossRef] [PubMed]

M. Razani, A. Mariampillai, C. Sun, T. W. Luk, V. X. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012).
[CrossRef] [PubMed]

2011

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011).
[CrossRef] [PubMed]

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011).
[CrossRef] [PubMed]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system,” Opt. Express19(15), 14188–14199 (2011).
[CrossRef] [PubMed]

S. Schumacher, L. Oeftiger, and M. Mrochen, “Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation,” Invest. Ophthalmol. Vis. Sci.52(12), 9048–9052 (2011).
[CrossRef] [PubMed]

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

2010

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

2009

2008

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” LaPhy18, 1080–1086 (2008).

2004

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

2003

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

1998

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
[CrossRef] [PubMed]

1996

H. Wang, P. L. Prendiville, P. J. McDonnell, and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” J. Biomech.29(12), 1633–1636 (1996).
[CrossRef] [PubMed]

1995

T. B. Edrington, K. Zadnik, and J. T. Barr, “Keratoconus,” Optom. Clin.4(3), 65–73 (1995).
[PubMed]

Aglyamov, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

Aglyamov, S. R.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011).
[CrossRef] [PubMed]

Alempijevic, T.

J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
[CrossRef] [PubMed]

Alonso-Caneiro, D.

Baranov, S. A.

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

Barr, J. T.

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

T. B. Edrington, K. Zadnik, and J. T. Barr, “Keratoconus,” Optom. Clin.4(3), 65–73 (1995).
[PubMed]

Bullimore, M. A.

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

Chang, W. V.

H. Wang, P. L. Prendiville, P. J. McDonnell, and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” J. Biomech.29(12), 1633–1636 (1996).
[CrossRef] [PubMed]

Cheng, X.

Cruickshanks, K. J.

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

Dakovic, M.

J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
[CrossRef] [PubMed]

De Brosses, E.

H. Latorre-Ossa, J. L. Gennisson, E. De Brosses, and M. Tanter, “Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(4), 833–839 (2012).
[CrossRef] [PubMed]

Dorronsoro, C.

Dupps, W. J.

A. Sinha Roy, K. M. Rocha, J. B. Randleman, R. D. Stulting, and W. J. Dupps., “Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus,” Exp. Eye Res.113, 92–104 (2013).
[CrossRef] [PubMed]

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011).
[CrossRef] [PubMed]

Edrington, T. B.

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

T. B. Edrington, K. Zadnik, and J. T. Barr, “Keratoconus,” Optom. Clin.4(3), 65–73 (1995).
[PubMed]

Emelianov, S.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

Everett, D. F.

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

Fatemi, M.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011).
[CrossRef] [PubMed]

Ford, M. R.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011).
[CrossRef] [PubMed]

Fry, K. L.

S. A. Greenstein, K. L. Fry, and P. S. Hersh, “In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial,” Cornea31(1), 21–25 (2012).
[CrossRef] [PubMed]

Garra, B. S.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011).
[CrossRef] [PubMed]

Gennisson, J. L.

D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
[CrossRef] [PubMed]

H. Latorre-Ossa, J. L. Gennisson, E. De Brosses, and M. Tanter, “Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(4), 833–839 (2012).
[CrossRef] [PubMed]

Ginis, H.

S. Kling, H. Ginis, and S. Marcos, “Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking,” Invest. Ophthalmol. Vis. Sci.53(8), 5010–5015 (2012).
[CrossRef] [PubMed]

Gordon, M. O.

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

Greenstein, S. A.

S. A. Greenstein, K. L. Fry, and P. S. Hersh, “In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial,” Cornea31(1), 21–25 (2012).
[CrossRef] [PubMed]

Grenier, N.

D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
[CrossRef] [PubMed]

Guan, G.

Guthoff, R.

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

Hall, T. J.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011).
[CrossRef] [PubMed]

Heisterkamp, A.

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

Hersh, P. S.

S. A. Greenstein, K. L. Fry, and P. S. Hersh, “In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial,” Cornea31(1), 21–25 (2012).
[CrossRef] [PubMed]

Hillman, T. R.

Hon, Y.

Y. Hon and A. K. Lam, “Corneal deformation measurement using Scheimpflug noncontact tonometry,” Optom. Vis. Sci.90(1), e1–e8 (2013).
[CrossRef] [PubMed]

Hovakimyan, M.

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

Hu, Z.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011).
[CrossRef] [PubMed]

Huang, Z.

Ingram, D. R.

Jameson, M.

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

Ješic, R.

J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
[CrossRef] [PubMed]

Joslin, C. E.

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Kennedy, B. F.

Kennedy, K. M.

Kling, S.

C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express3(3), 473–487 (2012).
[CrossRef] [PubMed]

S. Kling, H. Ginis, and S. Marcos, “Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking,” Invest. Ophthalmol. Vis. Sci.53(8), 5010–5015 (2012).
[CrossRef] [PubMed]

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

Knappe, S.

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

Kolios, M. C.

Kollbaum, P. S.

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

Kovac, J. D.

J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
[CrossRef] [PubMed]

Kowalczyk, A.

Krüger, A.

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

Lam, A. K.

Y. Hon and A. K. Lam, “Corneal deformation measurement using Scheimpflug noncontact tonometry,” Optom. Vis. Sci.90(1), e1–e8 (2013).
[CrossRef] [PubMed]

Larin, K. V.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” LaPhy18, 1080–1086 (2008).

Latorre-Ossa, H.

H. Latorre-Ossa, J. L. Gennisson, E. De Brosses, and M. Tanter, “Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(4), 833–839 (2012).
[CrossRef] [PubMed]

Lazar, A. J.

Lev, D. C.

Li, C.

Li, J.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

Luk, T. W.

Maksimovic, R.

J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
[CrossRef] [PubMed]

Manapuram, R. K.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” LaPhy18, 1080–1086 (2008).

Manne, V. G. R.

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” LaPhy18, 1080–1086 (2008).

Marcos, S.

C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express3(3), 473–487 (2012).
[CrossRef] [PubMed]

S. Kling, H. Ginis, and S. Marcos, “Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking,” Invest. Ophthalmol. Vis. Sci.53(8), 5010–5015 (2012).
[CrossRef] [PubMed]

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

Mariampillai, A.

Mashiatulla, M.

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

McDonnell, P. J.

H. Wang, P. L. Prendiville, P. J. McDonnell, and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” J. Biomech.29(12), 1633–1636 (1996).
[CrossRef] [PubMed]

McLaughlin, R. A.

McMahon, T. T.

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

Menodiado, F. M.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

Merayo-Lloves, J.

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

Mitchell, G. L.

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

Mrochen, M.

S. Schumacher, L. Oeftiger, and M. Mrochen, “Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation,” Invest. Ophthalmol. Vis. Sci.52(12), 9048–9052 (2011).
[CrossRef] [PubMed]

Nguyen, T. M.

D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
[CrossRef] [PubMed]

Nichols, J. J.

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

Oeftiger, L.

S. Schumacher, L. Oeftiger, and M. Mrochen, “Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation,” Invest. Ophthalmol. Vis. Sci.52(12), 9048–9052 (2011).
[CrossRef] [PubMed]

Pascual, D.

Pérez-Escudero, A.

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

Pérez-Merino, P.

Pineda, R.

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci.53(1), 185–190 (2012).
[CrossRef] [PubMed]

Pollock, R. E.

Prendiville, P. L.

H. Wang, P. L. Prendiville, P. J. McDonnell, and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” J. Biomech.29(12), 1633–1636 (1996).
[CrossRef] [PubMed]

Quirk, B. C.

Randleman, J. B.

A. Sinha Roy, K. M. Rocha, J. B. Randleman, R. D. Stulting, and W. J. Dupps., “Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus,” Exp. Eye Res.113, 92–104 (2013).
[CrossRef] [PubMed]

Razani, M.

Remon, L.

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

Roberts, C. J.

D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
[CrossRef] [PubMed]

Robinet, A.

D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
[CrossRef] [PubMed]

Rocha, K. M.

A. Sinha Roy, K. M. Rocha, J. B. Randleman, R. D. Stulting, and W. J. Dupps., “Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus,” Exp. Eye Res.113, 92–104 (2013).
[CrossRef] [PubMed]

Rollins, A. M.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011).
[CrossRef] [PubMed]

Roy, A. S.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011).
[CrossRef] [PubMed]

Sampson, D. D.

Sarvazyan, A.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011).
[CrossRef] [PubMed]

Scarcelli, G.

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci.53(1), 185–190 (2012).
[CrossRef] [PubMed]

Schanzlin, D. J.

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

Schmitt, J.

Schumacher, S.

S. Schumacher, L. Oeftiger, and M. Mrochen, “Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation,” Invest. Ophthalmol. Vis. Sci.52(12), 9048–9052 (2011).
[CrossRef] [PubMed]

Seferovic, P.

J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
[CrossRef] [PubMed]

Seiler, T.

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

Shin, J. A.

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

Singh, M.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

Sinha Roy, A.

A. Sinha Roy, K. M. Rocha, J. B. Randleman, R. D. Stulting, and W. J. Dupps., “Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus,” Exp. Eye Res.113, 92–104 (2013).
[CrossRef] [PubMed]

Spoerl, E.

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

Stachs, O.

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

Stanisavljevic, D.

J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
[CrossRef] [PubMed]

Sterling, J. L.

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

Stulting, R. D.

A. Sinha Roy, K. M. Rocha, J. B. Randleman, R. D. Stulting, and W. J. Dupps., “Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus,” Exp. Eye Res.113, 92–104 (2013).
[CrossRef] [PubMed]

Sudheendran, N.

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

Sun, C.

Szkulmowski, M.

Tanter, M.

D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
[CrossRef] [PubMed]

H. Latorre-Ossa, J. L. Gennisson, E. De Brosses, and M. Tanter, “Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(4), 833–839 (2012).
[CrossRef] [PubMed]

Touboul, D.

D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
[CrossRef] [PubMed]

Twa, M. D.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

Urban, M. W.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011).
[CrossRef] [PubMed]

Vantipalli, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

Wagner, H.

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

Wang, H.

H. Wang, P. L. Prendiville, P. J. McDonnell, and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” J. Biomech.29(12), 1633–1636 (1996).
[CrossRef] [PubMed]

Wang, R. K.

Wang, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

Wojtkowski, M.

Wollensak, G.

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

Wree, A.

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

Yang, V. X.

Yun, S. H.

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci.53(1), 185–190 (2012).
[CrossRef] [PubMed]

Zadnik, K.

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

T. B. Edrington, K. Zadnik, and J. T. Barr, “Keratoconus,” Optom. Clin.4(3), 65–73 (1995).
[PubMed]

Zhivov, A.

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express

Cornea

S. A. Greenstein, K. L. Fry, and P. S. Hersh, “In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial,” Cornea31(1), 21–25 (2012).
[CrossRef] [PubMed]

M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011).
[CrossRef] [PubMed]

M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004).
[CrossRef] [PubMed]

Curr. Med. Imaging Rev.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011).
[CrossRef] [PubMed]

Eur. J. Radiol.

J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012).
[CrossRef] [PubMed]

Exp. Eye Res.

A. Sinha Roy, K. M. Rocha, J. B. Randleman, R. D. Stulting, and W. J. Dupps., “Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus,” Exp. Eye Res.113, 92–104 (2013).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

H. Latorre-Ossa, J. L. Gennisson, E. De Brosses, and M. Tanter, “Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(4), 833–839 (2012).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014).
[CrossRef] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci.53(1), 185–190 (2012).
[CrossRef] [PubMed]

K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998).
[PubMed]

S. Kling, H. Ginis, and S. Marcos, “Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking,” Invest. Ophthalmol. Vis. Sci.53(8), 5010–5015 (2012).
[CrossRef] [PubMed]

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

S. Schumacher, L. Oeftiger, and M. Mrochen, “Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation,” Invest. Ophthalmol. Vis. Sci.52(12), 9048–9052 (2011).
[CrossRef] [PubMed]

J. Biomech.

H. Wang, P. L. Prendiville, P. J. McDonnell, and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” J. Biomech.29(12), 1633–1636 (1996).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011).
[CrossRef] [PubMed]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

J. Cataract Refract. Surg.

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

LaPhy

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” LaPhy18, 1080–1086 (2008).

Laser Phys. Lett.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Optom. Clin.

T. B. Edrington, K. Zadnik, and J. T. Barr, “Keratoconus,” Optom. Clin.4(3), 65–73 (1995).
[PubMed]

Optom. Vis. Sci.

Y. Hon and A. K. Lam, “Corneal deformation measurement using Scheimpflug noncontact tonometry,” Optom. Vis. Sci.90(1), e1–e8 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Phase-sensitive optical coherence tomography-based elastography imaging system comprised of a swept-source laser OCT imaging subsystem and a synchronized micro air pulse tissue stimulator (MAPS system). Inset shows the location of sample stimulation (*) relative to the recording positions (•)

Fig. 2
Fig. 2

Corneal tissue response to air pulse stimulation with and without cross-linking treatment. Symbol (*) indicates the approximate location of tissue stimulation. Surface wave amplitude in untreated corneal tissue (A) and after UV cross-linking (B); corneal surface wave amplitude was reduced in treated tissue and could not be measured beyond ~1 mm. Temporal delay observed between tissue surface stimulation and observed surface displacement. Surface wave propagation speed was slower in un-treated tissue as indicated by greater delay times shown by red-shifted colors (C) when compared to tissue after UV cross-linking (D). Note that the time-delay color scales (panels C and D) are the same, but truncated in D where it was not possible to observe surface waves. Lower surface wave amplitude and faster propagation speeds (shorter delay times) are consistent with higher material stiffness.

Fig. 3
Fig. 3

Elastic wave propagation speed by OCE in the rabbit cornea after CXL. Using a greater tissue stimulation force, it is possible to determine elastic wave propagation over the entire recording surface even in tissue that was made stiffer by the cross-linking treatment. Blue-shifted colors represent shorter time delay between measured points, corresponding to greater elastic wave propagation speed. (*) = point of tissue stimulation (n = 1).

Fig. 4
Fig. 4

Comparison of rabbit corneal tissue properties from elastography imaging and mechanical extensiometry measurements before and after cross-linking treatment (n = 4). (A) Comparison of elastic wave amplitude normalized to maximum amplitude. (B) Elastic wave propagation velocity in untreated and cross-linked corneal tissue. (C) Estimation of Young’s modulus of the rabbit cornea from mechanical extensiometry measurements of central tissue strips; error bars represent ± one standard deviation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Amplitude=(λ/2π)×phase,

Metrics