Abstract

Multiwavelength UV-visible spectroscopy, Kramers-Kronig analysis, and several other experimental and theoretical tools have been applied over the last several decades to fathom absorption and scattering of light by suspensions of micron-sized pigmented particles, including red blood cells, but a satisfactory quantitative analysis of the difference between the absorption spectra of suspension of intact and lysed red blood cells is still lacking. It is stressed that such a comparison is meaningful only if the pertinent spectra are free from, or have been corrected for, scattering losses, and it is shown that Duysens’ theory can, whereas that of Vekshin cannot, account satisfactorily for the observed hypochromism of suspensions of red blood cells.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Merzlyak and K. Razi Naqvi, “On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis,” J. Photochem. Photobiol. B: Biol.58(2–3), 123–129 (2000).
    [CrossRef]
  2. T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
    [CrossRef]
  3. K. Razi Naqvi, M. N. Merzlyak, and T. B. Melø, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem Photobiol Sci.3(1), 132–137 (2004).
    [CrossRef] [PubMed]
  4. A. Nonoyama, A. Garcia-Lopez, L. Garcia-Rubio, G. Lepare, and R. L. Potter, “Hypochromicity in red blood cells: an experimental and theoretical investigation,” Biomedical Optics Express,2(8), 2126–2143 (2011).
    [CrossRef]
  5. L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim Biophys Acta.19(1), 1–12(1965)
    [PubMed]
  6. K. Razi Naqvi, T. B. Melø, B. Bangar Raju, T. Jávorfi, and G. Garab, “Comparison of the absorption spectra of trimers and aggregates of chlorophyll a/b light-harvesting complex LHCII,” Spectrochim. Acta Part A53(11), 267–269 (1999).
  7. M. N. Berberan Santos, “Beer’s law revisited,” J. Chem. Educ.67(9), 757–759 (1990).
    [CrossRef]
  8. R. S. Daniels, “A random number model for Beers law—atom shadowing,” J. Chem. Educ.76(1), 138–141 (1999).
    [CrossRef]
  9. J. Amesz, L. N. M. Duysens, and D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol.1(1), 59–74 (1961).
    [CrossRef] [PubMed]
  10. P. J. Halling, “Estimation of flattening coefficient for absorption and circular dichroism using simulation,” Anal. Biochem.387(1), 76–81 (2009).
    [CrossRef] [PubMed]
  11. P. Latimer and C. A. H. Eubanks, “Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic distortions,” Arch. Biochem. Biophys.98(2), 274–285 (1962).
    [CrossRef] [PubMed]
  12. R. A. MacRae, J. A. McClure, and P. Latimer, “Spectral transmission and scattering properties of red blood cells,” J. Opt. Soc. Am.51(12), 1366–1372 (1961).
    [CrossRef] [PubMed]
  13. N. L. Vekshin, “Screening hypochromism of biological macromolecules and suspensions,” J. Photochem. Photobiol. B: Biol.3(4), 625–630 (1989).
    [CrossRef]
  14. N. L. Vekshin, “Screening hypochromism in molecular aggregates and biopolymers,” J. Biol. Phys.25(4), 339–354 (1999).
    [CrossRef] [PubMed]
  15. C. Bustamante and M. F. Maestre, “Statistical effects in the absorption and optical activity of particulate suspensions,” Proc. Natl. Acad. Sci. USA85(22), 8482–8486 (1988).
    [CrossRef] [PubMed]
  16. G. Papageorgiou, “Absorption of light by non-refractive spherical shells,” J. Theor. Biol.30(2), 249–254 (1971).
    [CrossRef] [PubMed]
  17. L. Fukshansky, “On the theory of light absorption in non-homogeneous objects,” J. Math. Biol.6(2), 177–196 (1978).
    [CrossRef]
  18. M. Das, E. Rabinowitch, L. Szalay, and G. Papageorgiou, “The “sieve effect” in Chlorella suspensions,” J. Phys. Chem.71(11), 3543–3549 (1967).
    [CrossRef]
  19. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, Cambridge, 2010).
    [CrossRef]

2011 (1)

A. Nonoyama, A. Garcia-Lopez, L. Garcia-Rubio, G. Lepare, and R. L. Potter, “Hypochromicity in red blood cells: an experimental and theoretical investigation,” Biomedical Optics Express,2(8), 2126–2143 (2011).
[CrossRef]

2009 (1)

P. J. Halling, “Estimation of flattening coefficient for absorption and circular dichroism using simulation,” Anal. Biochem.387(1), 76–81 (2009).
[CrossRef] [PubMed]

2006 (1)

T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
[CrossRef]

2004 (1)

K. Razi Naqvi, M. N. Merzlyak, and T. B. Melø, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem Photobiol Sci.3(1), 132–137 (2004).
[CrossRef] [PubMed]

2000 (1)

M. N. Merzlyak and K. Razi Naqvi, “On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis,” J. Photochem. Photobiol. B: Biol.58(2–3), 123–129 (2000).
[CrossRef]

1999 (3)

N. L. Vekshin, “Screening hypochromism in molecular aggregates and biopolymers,” J. Biol. Phys.25(4), 339–354 (1999).
[CrossRef] [PubMed]

K. Razi Naqvi, T. B. Melø, B. Bangar Raju, T. Jávorfi, and G. Garab, “Comparison of the absorption spectra of trimers and aggregates of chlorophyll a/b light-harvesting complex LHCII,” Spectrochim. Acta Part A53(11), 267–269 (1999).

R. S. Daniels, “A random number model for Beers law—atom shadowing,” J. Chem. Educ.76(1), 138–141 (1999).
[CrossRef]

1990 (1)

M. N. Berberan Santos, “Beer’s law revisited,” J. Chem. Educ.67(9), 757–759 (1990).
[CrossRef]

1989 (1)

N. L. Vekshin, “Screening hypochromism of biological macromolecules and suspensions,” J. Photochem. Photobiol. B: Biol.3(4), 625–630 (1989).
[CrossRef]

1988 (1)

C. Bustamante and M. F. Maestre, “Statistical effects in the absorption and optical activity of particulate suspensions,” Proc. Natl. Acad. Sci. USA85(22), 8482–8486 (1988).
[CrossRef] [PubMed]

1978 (1)

L. Fukshansky, “On the theory of light absorption in non-homogeneous objects,” J. Math. Biol.6(2), 177–196 (1978).
[CrossRef]

1971 (1)

G. Papageorgiou, “Absorption of light by non-refractive spherical shells,” J. Theor. Biol.30(2), 249–254 (1971).
[CrossRef] [PubMed]

1967 (1)

M. Das, E. Rabinowitch, L. Szalay, and G. Papageorgiou, “The “sieve effect” in Chlorella suspensions,” J. Phys. Chem.71(11), 3543–3549 (1967).
[CrossRef]

1965 (1)

L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim Biophys Acta.19(1), 1–12(1965)
[PubMed]

1962 (1)

P. Latimer and C. A. H. Eubanks, “Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic distortions,” Arch. Biochem. Biophys.98(2), 274–285 (1962).
[CrossRef] [PubMed]

1961 (2)

R. A. MacRae, J. A. McClure, and P. Latimer, “Spectral transmission and scattering properties of red blood cells,” J. Opt. Soc. Am.51(12), 1366–1372 (1961).
[CrossRef] [PubMed]

J. Amesz, L. N. M. Duysens, and D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol.1(1), 59–74 (1961).
[CrossRef] [PubMed]

Amesz, J.

J. Amesz, L. N. M. Duysens, and D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol.1(1), 59–74 (1961).
[CrossRef] [PubMed]

Bangar Raju, B.

K. Razi Naqvi, T. B. Melø, B. Bangar Raju, T. Jávorfi, and G. Garab, “Comparison of the absorption spectra of trimers and aggregates of chlorophyll a/b light-harvesting complex LHCII,” Spectrochim. Acta Part A53(11), 267–269 (1999).

Berberan Santos, M. N.

M. N. Berberan Santos, “Beer’s law revisited,” J. Chem. Educ.67(9), 757–759 (1990).
[CrossRef]

Brandt, D. C.

J. Amesz, L. N. M. Duysens, and D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol.1(1), 59–74 (1961).
[CrossRef] [PubMed]

Bustamante, C.

C. Bustamante and M. F. Maestre, “Statistical effects in the absorption and optical activity of particulate suspensions,” Proc. Natl. Acad. Sci. USA85(22), 8482–8486 (1988).
[CrossRef] [PubMed]

Buzády, A.

T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
[CrossRef]

Daniels, R. S.

R. S. Daniels, “A random number model for Beers law—atom shadowing,” J. Chem. Educ.76(1), 138–141 (1999).
[CrossRef]

Das, M.

M. Das, E. Rabinowitch, L. Szalay, and G. Papageorgiou, “The “sieve effect” in Chlorella suspensions,” J. Phys. Chem.71(11), 3543–3549 (1967).
[CrossRef]

Duysens, L. N. M.

L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim Biophys Acta.19(1), 1–12(1965)
[PubMed]

J. Amesz, L. N. M. Duysens, and D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol.1(1), 59–74 (1961).
[CrossRef] [PubMed]

Erostyák, J.

T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
[CrossRef]

Eubanks, C. A. H.

P. Latimer and C. A. H. Eubanks, “Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic distortions,” Arch. Biochem. Biophys.98(2), 274–285 (1962).
[CrossRef] [PubMed]

Fukshansky, L.

L. Fukshansky, “On the theory of light absorption in non-homogeneous objects,” J. Math. Biol.6(2), 177–196 (1978).
[CrossRef]

Gál, J.

T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
[CrossRef]

Garab, G.

T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
[CrossRef]

K. Razi Naqvi, T. B. Melø, B. Bangar Raju, T. Jávorfi, and G. Garab, “Comparison of the absorption spectra of trimers and aggregates of chlorophyll a/b light-harvesting complex LHCII,” Spectrochim. Acta Part A53(11), 267–269 (1999).

Garcia-Lopez, A.

A. Nonoyama, A. Garcia-Lopez, L. Garcia-Rubio, G. Lepare, and R. L. Potter, “Hypochromicity in red blood cells: an experimental and theoretical investigation,” Biomedical Optics Express,2(8), 2126–2143 (2011).
[CrossRef]

Garcia-Rubio, L.

A. Nonoyama, A. Garcia-Lopez, L. Garcia-Rubio, G. Lepare, and R. L. Potter, “Hypochromicity in red blood cells: an experimental and theoretical investigation,” Biomedical Optics Express,2(8), 2126–2143 (2011).
[CrossRef]

Halling, P. J.

P. J. Halling, “Estimation of flattening coefficient for absorption and circular dichroism using simulation,” Anal. Biochem.387(1), 76–81 (2009).
[CrossRef] [PubMed]

Jávorfi, T.

T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
[CrossRef]

K. Razi Naqvi, T. B. Melø, B. Bangar Raju, T. Jávorfi, and G. Garab, “Comparison of the absorption spectra of trimers and aggregates of chlorophyll a/b light-harvesting complex LHCII,” Spectrochim. Acta Part A53(11), 267–269 (1999).

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, Cambridge, 2010).
[CrossRef]

Latimer, P.

P. Latimer and C. A. H. Eubanks, “Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic distortions,” Arch. Biochem. Biophys.98(2), 274–285 (1962).
[CrossRef] [PubMed]

R. A. MacRae, J. A. McClure, and P. Latimer, “Spectral transmission and scattering properties of red blood cells,” J. Opt. Soc. Am.51(12), 1366–1372 (1961).
[CrossRef] [PubMed]

Lepare, G.

A. Nonoyama, A. Garcia-Lopez, L. Garcia-Rubio, G. Lepare, and R. L. Potter, “Hypochromicity in red blood cells: an experimental and theoretical investigation,” Biomedical Optics Express,2(8), 2126–2143 (2011).
[CrossRef]

MacRae, R. A.

Maestre, M. F.

C. Bustamante and M. F. Maestre, “Statistical effects in the absorption and optical activity of particulate suspensions,” Proc. Natl. Acad. Sci. USA85(22), 8482–8486 (1988).
[CrossRef] [PubMed]

McClure, J. A.

Melø, T. B.

K. Razi Naqvi, M. N. Merzlyak, and T. B. Melø, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem Photobiol Sci.3(1), 132–137 (2004).
[CrossRef] [PubMed]

K. Razi Naqvi, T. B. Melø, B. Bangar Raju, T. Jávorfi, and G. Garab, “Comparison of the absorption spectra of trimers and aggregates of chlorophyll a/b light-harvesting complex LHCII,” Spectrochim. Acta Part A53(11), 267–269 (1999).

Menczel, L.

T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
[CrossRef]

Merzlyak, M. N.

K. Razi Naqvi, M. N. Merzlyak, and T. B. Melø, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem Photobiol Sci.3(1), 132–137 (2004).
[CrossRef] [PubMed]

M. N. Merzlyak and K. Razi Naqvi, “On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis,” J. Photochem. Photobiol. B: Biol.58(2–3), 123–129 (2000).
[CrossRef]

Nonoyama, A.

A. Nonoyama, A. Garcia-Lopez, L. Garcia-Rubio, G. Lepare, and R. L. Potter, “Hypochromicity in red blood cells: an experimental and theoretical investigation,” Biomedical Optics Express,2(8), 2126–2143 (2011).
[CrossRef]

Papageorgiou, G.

G. Papageorgiou, “Absorption of light by non-refractive spherical shells,” J. Theor. Biol.30(2), 249–254 (1971).
[CrossRef] [PubMed]

M. Das, E. Rabinowitch, L. Szalay, and G. Papageorgiou, “The “sieve effect” in Chlorella suspensions,” J. Phys. Chem.71(11), 3543–3549 (1967).
[CrossRef]

Potter, R. L.

A. Nonoyama, A. Garcia-Lopez, L. Garcia-Rubio, G. Lepare, and R. L. Potter, “Hypochromicity in red blood cells: an experimental and theoretical investigation,” Biomedical Optics Express,2(8), 2126–2143 (2011).
[CrossRef]

Rabinowitch, E.

M. Das, E. Rabinowitch, L. Szalay, and G. Papageorgiou, “The “sieve effect” in Chlorella suspensions,” J. Phys. Chem.71(11), 3543–3549 (1967).
[CrossRef]

Razi Naqvi, K.

T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
[CrossRef]

K. Razi Naqvi, M. N. Merzlyak, and T. B. Melø, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem Photobiol Sci.3(1), 132–137 (2004).
[CrossRef] [PubMed]

M. N. Merzlyak and K. Razi Naqvi, “On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis,” J. Photochem. Photobiol. B: Biol.58(2–3), 123–129 (2000).
[CrossRef]

K. Razi Naqvi, T. B. Melø, B. Bangar Raju, T. Jávorfi, and G. Garab, “Comparison of the absorption spectra of trimers and aggregates of chlorophyll a/b light-harvesting complex LHCII,” Spectrochim. Acta Part A53(11), 267–269 (1999).

Szalay, L.

M. Das, E. Rabinowitch, L. Szalay, and G. Papageorgiou, “The “sieve effect” in Chlorella suspensions,” J. Phys. Chem.71(11), 3543–3549 (1967).
[CrossRef]

Vekshin, N. L.

N. L. Vekshin, “Screening hypochromism in molecular aggregates and biopolymers,” J. Biol. Phys.25(4), 339–354 (1999).
[CrossRef] [PubMed]

N. L. Vekshin, “Screening hypochromism of biological macromolecules and suspensions,” J. Photochem. Photobiol. B: Biol.3(4), 625–630 (1989).
[CrossRef]

Anal. Biochem. (1)

P. J. Halling, “Estimation of flattening coefficient for absorption and circular dichroism using simulation,” Anal. Biochem.387(1), 76–81 (2009).
[CrossRef] [PubMed]

Arch. Biochem. Biophys. (1)

P. Latimer and C. A. H. Eubanks, “Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic distortions,” Arch. Biochem. Biophys.98(2), 274–285 (1962).
[CrossRef] [PubMed]

Biochim Biophys Acta. (1)

L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim Biophys Acta.19(1), 1–12(1965)
[PubMed]

Biomedical Optics Express, (1)

A. Nonoyama, A. Garcia-Lopez, L. Garcia-Rubio, G. Lepare, and R. L. Potter, “Hypochromicity in red blood cells: an experimental and theoretical investigation,” Biomedical Optics Express,2(8), 2126–2143 (2011).
[CrossRef]

J. Biol. Phys. (1)

N. L. Vekshin, “Screening hypochromism in molecular aggregates and biopolymers,” J. Biol. Phys.25(4), 339–354 (1999).
[CrossRef] [PubMed]

J. Chem. Educ. (2)

M. N. Berberan Santos, “Beer’s law revisited,” J. Chem. Educ.67(9), 757–759 (1990).
[CrossRef]

R. S. Daniels, “A random number model for Beers law—atom shadowing,” J. Chem. Educ.76(1), 138–141 (1999).
[CrossRef]

J. Math. Biol. (1)

L. Fukshansky, “On the theory of light absorption in non-homogeneous objects,” J. Math. Biol.6(2), 177–196 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol. B: Biol. (3)

N. L. Vekshin, “Screening hypochromism of biological macromolecules and suspensions,” J. Photochem. Photobiol. B: Biol.3(4), 625–630 (1989).
[CrossRef]

M. N. Merzlyak and K. Razi Naqvi, “On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis,” J. Photochem. Photobiol. B: Biol.58(2–3), 123–129 (2000).
[CrossRef]

T. Jávorfi, J. Erostyák, J. Gál, A. Buzády, L. Menczel, G. Garab, and K. Razi Naqvi, “Quantitative spectrophotometry using integrating cavities,” J. Photochem. Photobiol. B: Biol.82(2), 127–131 (2006).
[CrossRef]

J. Phys. Chem. (1)

M. Das, E. Rabinowitch, L. Szalay, and G. Papageorgiou, “The “sieve effect” in Chlorella suspensions,” J. Phys. Chem.71(11), 3543–3549 (1967).
[CrossRef]

J. Theor. Biol. (2)

G. Papageorgiou, “Absorption of light by non-refractive spherical shells,” J. Theor. Biol.30(2), 249–254 (1971).
[CrossRef] [PubMed]

J. Amesz, L. N. M. Duysens, and D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol.1(1), 59–74 (1961).
[CrossRef] [PubMed]

Photochem Photobiol Sci. (1)

K. Razi Naqvi, M. N. Merzlyak, and T. B. Melø, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem Photobiol Sci.3(1), 132–137 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

C. Bustamante and M. F. Maestre, “Statistical effects in the absorption and optical activity of particulate suspensions,” Proc. Natl. Acad. Sci. USA85(22), 8482–8486 (1988).
[CrossRef] [PubMed]

Spectrochim. Acta Part A (1)

K. Razi Naqvi, T. B. Melø, B. Bangar Raju, T. Jávorfi, and G. Garab, “Comparison of the absorption spectra of trimers and aggregates of chlorophyll a/b light-harvesting complex LHCII,” Spectrochim. Acta Part A53(11), 267–269 (1999).

Other (1)

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, Cambridge, 2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Plots of A(λ), A′(λ) (representing absorption spectra of suspensions of lysed and intact human red blood cells, respectively), and of A′c(λ), a model spectrum calculated by applying Eq. (11). Corrections for scattering were applied by recording two spectra at different distances from the input port of an integrating sphere and analyzing the data in accordance with the method developed by Latimer and Eubanks [11]. For obtaining red blood cells, approximately 150 μl of freshly collected human peripheral blood was added to 5 ml of 0.6% NaCl solution containing 7 mM trisodium citrate as an anticoagulant; erythrocytes were sedimented at 1000 g, washed twice and resuspended either in 0.6% NaCl (intact cells) or in distilled water (lysed cells). For more experimental details, see [3].

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

= σ N l ,
= σ N l = σ ( N / k ) l .
σ = s U C = s ( 1 T C ) ,
A A = = σ σ k = s ( 1 T C ) σ k ,
Y = σ k / s ,
= ( 1 T C ) Y .
T c = e σ ( k / s d ) d = e σ k / s = e Y , c = σ k / s = Y ,
c = 1 T c c = 1 e σ n c d σ n c d
T s = 2 [ 1 ( 1 + d ) e d ] d 2 ,
Y = 2 3 σ n s d = 2 3 d .
s = 3 ( 1 T s ) 2 d ,
A c = A 1 exp ( c ) c

Metrics