Abstract

We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm−1) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm−1), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm−1) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm−1) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, “In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography,” Opt. Express14(4), 1547–1556 (2006).
    [CrossRef] [PubMed]
  2. B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008).
    [CrossRef] [PubMed]
  3. B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
    [CrossRef] [PubMed]
  4. R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve47(4), 588–590 (2013).
    [CrossRef] [PubMed]
  5. K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
    [CrossRef] [PubMed]
  6. M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
    [CrossRef] [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  8. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Biological and Medical Physics, Biomedical Engineering (Springer-Verlag Berlin Heidelberg, 2008).
  9. T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
    [CrossRef] [PubMed]
  10. T. Shavlakadze, M. Davies, J. D. White, and M. D. Grounds, “Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-1 in MLC/mIGF-1 transgenic mice,” J. Histochem. Cytochem.52(7), 873–883 (2004).
    [CrossRef] [PubMed]
  11. M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005).
    [CrossRef] [PubMed]
  12. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
    [CrossRef] [PubMed]
  13. L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012).
    [CrossRef] [PubMed]
  14. P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.19(2), 021111 (2014).
    [CrossRef] [PubMed]
  15. L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013).
    [CrossRef] [PubMed]
  16. X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
    [CrossRef] [PubMed]
  17. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express12(2), 249–259 (2004).
    [CrossRef] [PubMed]
  18. F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005).
    [CrossRef] [PubMed]
  19. C. Y. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
    [CrossRef] [PubMed]
  20. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
    [CrossRef] [PubMed]
  21. Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
    [CrossRef] [PubMed]
  22. Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
    [CrossRef] [PubMed]
  23. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett.32(4), 385–387 (2007).
    [CrossRef] [PubMed]
  24. H. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: A comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
    [CrossRef] [PubMed]
  25. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
    [CrossRef]
  26. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
    [CrossRef]
  27. G. Hall, S. L. Jacques, K. W. Eliceiri, and P. J. Campagnola, “Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient,” Biomed. Opt. Express3(11), 2707–2719 (2012).
    [CrossRef] [PubMed]
  28. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Health Sci.04(01), 9–38 (2011).
    [CrossRef]
  29. J. J. Xia, E. P. Berg, J. W. Lee, and G. Yao, “Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region,” Meat Sci.75(1), 78–83 (2007).
    [CrossRef] [PubMed]
  30. A. M. K. Nilsson, R. Berg, and S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34(21), 4609–4619 (1995).
    [CrossRef] [PubMed]
  31. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
    [CrossRef] [PubMed]
  32. S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol.58(11), R37–R61 (2013).
    [CrossRef] [PubMed]
  33. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38(16), 3651–3661 (1999).
    [CrossRef] [PubMed]
  34. B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
    [CrossRef] [PubMed]
  35. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
    [CrossRef] [PubMed]
  36. X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
    [CrossRef] [PubMed]
  37. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express5(1), 322–337 (2014).
    [CrossRef] [PubMed]

2014 (3)

2013 (4)

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve47(4), 588–590 (2013).
[CrossRef] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol.58(11), R37–R61 (2013).
[CrossRef] [PubMed]

2012 (4)

2011 (5)

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Health Sci.04(01), 9–38 (2011).
[CrossRef]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
[CrossRef] [PubMed]

2010 (3)

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

2008 (3)

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008).
[CrossRef] [PubMed]

C. Y. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

2007 (2)

A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett.32(4), 385–387 (2007).
[CrossRef] [PubMed]

J. J. Xia, E. P. Berg, J. W. Lee, and G. Yao, “Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region,” Meat Sci.75(1), 78–83 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005).
[CrossRef] [PubMed]

2004 (3)

D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express12(2), 249–259 (2004).
[CrossRef] [PubMed]

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

T. Shavlakadze, M. Davies, J. D. White, and M. D. Grounds, “Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-1 in MLC/mIGF-1 transgenic mice,” J. Histochem. Cytochem.52(7), 873–883 (2004).
[CrossRef] [PubMed]

2003 (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

1999 (1)

1998 (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

1995 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Aalders, M. C.

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

Adie, S. G.

B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008).
[CrossRef] [PubMed]

A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett.32(4), 385–387 (2007).
[CrossRef] [PubMed]

Andersen, C. B.

Andersen, P. E.

Andersson-Engels, S.

Armstrong, J. J.

B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008).
[CrossRef] [PubMed]

A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett.32(4), 385–387 (2007).
[CrossRef] [PubMed]

Arthur, P.

H. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: A comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Baraznji Sassoon, D.

F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005).
[CrossRef] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Health Sci.04(01), 9–38 (2011).
[CrossRef]

Berg, E. P.

J. J. Xia, E. P. Berg, J. W. Lee, and G. Yao, “Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region,” Meat Sci.75(1), 78–83 (2007).
[CrossRef] [PubMed]

Berg, R.

Birnkrant, D. J.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Biswal, N. C.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Boppart, M. D.

Boppart, S. A.

Bouma, B. E.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Brewer, M.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Bushby, K.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Campagnola, P. J.

Carlier, S. G.

C. Y. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

Case, L. E.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Chaney, E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve47(4), 588–590 (2013).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Chin, L.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013).
[CrossRef] [PubMed]

Clemens, P. R.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Constantin, C.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Cripe, L.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Curatolo, A.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Davies, M.

M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005).
[CrossRef] [PubMed]

T. Shavlakadze, M. Davies, J. D. White, and M. D. Grounds, “Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-1 in MLC/mIGF-1 transgenic mice,” J. Histochem. Cytochem.52(7), 873–883 (2004).
[CrossRef] [PubMed]

de Boer, J. F.

De Luca, A.

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

Drezek, R.

Dunn, A.

Edmond, M.

Eliceiri, K. W.

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Faber, D. J.

F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

Finkel, R.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Frosz, M. H.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Health Sci.04(01), 9–38 (2011).
[CrossRef]

Goderie, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Gong, P.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.19(2), 021111 (2014).
[CrossRef] [PubMed]

Gong, W.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve47(4), 588–590 (2013).
[CrossRef] [PubMed]

Gonzalo, N.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grounds, M.

H. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: A comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Grounds, M. D.

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008).
[CrossRef] [PubMed]

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005).
[CrossRef] [PubMed]

T. Shavlakadze, M. Davies, J. D. White, and M. D. Grounds, “Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-1 in MLC/mIGF-1 transgenic mice,” J. Histochem. Cytochem.52(7), 873–883 (2004).
[CrossRef] [PubMed]

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Hall, G.

Hansen, P. R.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hodgetts, S.

M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005).
[CrossRef] [PubMed]

Hoh, J. F. Y.

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

Kaufman, S. J.

Kaul, A.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Kinnett, K.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Kirk, R. W.

Klyen, B. R.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008).
[CrossRef] [PubMed]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Koljenovic, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Lee, J. W.

J. J. Xia, E. P. Berg, J. W. Lee, and G. Yao, “Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region,” Meat Sci.75(1), 78–83 (2007).
[CrossRef] [PubMed]

Leigh, M. S.

Lemij, H. G.

Levitz, D.

Liew, Y. M.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.19(2), 021111 (2014).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lorenser, D.

Lovering, R. M.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve47(4), 588–590 (2013).
[CrossRef] [PubMed]

Lynch, G. S.

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

McDonald, C.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

McLaughlin, R. A.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.19(2), 021111 (2014).
[CrossRef] [PubMed]

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012).
[CrossRef] [PubMed]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

Mo, J.

Munro, P. R. T.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.19(2), 021111 (2014).
[CrossRef] [PubMed]

Nagaraju, K.

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

Nguyen, F. T.

Nilsson, A. M. K.

Noble, P. B.

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013).
[CrossRef] [PubMed]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Okamura, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Oosterhuis, J. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Paduch, A.

Pandya, S.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Pasquesi, J. J.

Pasterkamp, G.

F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005).
[CrossRef] [PubMed]

Perrée, J.

F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005).
[CrossRef] [PubMed]

Poysky, J.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Pratt, S. J. P.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve47(4), 588–590 (2013).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Quirk, B. C.

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
[CrossRef] [PubMed]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Radley, H. G.

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008).
[CrossRef] [PubMed]

Radley-Crabb, H.

H. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: A comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Radley-Crabb, H. G.

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

Regar, E.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Richards-Kortum, R.

Robbins, P.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

Robbins, P. D.

Rosenthal, N.

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Sampson, D. D.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.19(2), 021111 (2014).
[CrossRef] [PubMed]

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013).
[CrossRef] [PubMed]

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008).
[CrossRef] [PubMed]

A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett.32(4), 385–387 (2007).
[CrossRef] [PubMed]

Sanders, M.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Saunders, C.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

Saunders, C. M.

Schlachter, S. C.

Schmitt, J. M.

C. Y. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Scolaro, L.

Serruys, P. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Shah, S. B.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve47(4), 588–590 (2013).
[CrossRef] [PubMed]

Shapiro, F.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Shavlakadze, T.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

H. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: A comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005).
[CrossRef] [PubMed]

T. Shavlakadze, M. Davies, J. D. White, and M. D. Grounds, “Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-1 in MLC/mIGF-1 transgenic mice,” J. Histochem. Cytochem.52(7), 873–883 (2004).
[CrossRef] [PubMed]

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Simpson, M. C.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swartling, J.

Tearney, G. J.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Terrill, J.

H. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: A comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Thrane, L.

Tomezsko, J.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Tonkin, J.

H. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: A comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Torrisi, J.

M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005).
[CrossRef] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Health Sci.04(01), 9–38 (2011).
[CrossRef]

Valanciunaite, J.

van der Meer, F. J.

F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005).
[CrossRef] [PubMed]

van der Steen, A. F. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

van Leenders, G. L. J. H.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

van Leeuwen, T. G.

F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

van Noorden, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

van Soest, G.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Vermeer, K. A.

Virmani, R.

C. Y. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

Wang, T.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Wang, X.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Weda, J. J. A.

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

White, J.

M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005).
[CrossRef] [PubMed]

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

White, J. D.

T. Shavlakadze, M. Davies, J. D. White, and M. D. Grounds, “Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-1 in MLC/mIGF-1 transgenic mice,” J. Histochem. Cytochem.52(7), 873–883 (2004).
[CrossRef] [PubMed]

Wood, B. A.

Wood, F. M.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.19(2), 021111 (2014).
[CrossRef] [PubMed]

Xia, J. J.

J. J. Xia, E. P. Berg, J. W. Lee, and G. Yao, “Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region,” Meat Sci.75(1), 78–83 (2007).
[CrossRef] [PubMed]

Xu, C. Y.

C. Y. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

Yang, X.

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Yao, G.

J. J. Xia, E. P. Berg, J. W. Lee, and G. Yao, “Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region,” Meat Sci.75(1), 78–83 (2007).
[CrossRef] [PubMed]

Zhu, Q.

Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

Zysk, A. M.

Appl. Opt. (2)

Biomed. Opt. Express (5)

Cell Tissue Res. (1)

M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

J. Appl. Physiol. (1)

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

J. Biomed. Opt. (9)

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.19(2), 021111 (2014).
[CrossRef] [PubMed]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013).
[CrossRef] [PubMed]

B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

C. Y. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011).
[CrossRef] [PubMed]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

J. Histochem. Cytochem. (1)

T. Shavlakadze, M. Davies, J. D. White, and M. D. Grounds, “Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-1 in MLC/mIGF-1 transgenic mice,” J. Histochem. Cytochem.52(7), 873–883 (2004).
[CrossRef] [PubMed]

J. Innov. Opt. Health Sci. (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Health Sci.04(01), 9–38 (2011).
[CrossRef]

Lancet Neurol. (1)

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005).
[CrossRef] [PubMed]

Meat Sci. (1)

J. J. Xia, E. P. Berg, J. W. Lee, and G. Yao, “Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region,” Meat Sci.75(1), 78–83 (2007).
[CrossRef] [PubMed]

Mol. Ther. (1)

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Muscle Nerve (1)

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve47(4), 588–590 (2013).
[CrossRef] [PubMed]

Neurobiol. Dis. (1)

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

Neuromuscul. Disord. (1)

H. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: A comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (2)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol.58(11), R37–R61 (2013).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Biological and Medical Physics, Biomedical Engineering (Springer-Verlag Berlin Heidelberg, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Images of healthy skeletal muscle tissue, obtained from the tibialis anterior of a wild-type C57Bl/10ScSn mouse. (a) Photograph of the anterior surface of the muscle, indicating the lateral area (x-y) over which the subsequent 3D-OCT data set was obtained (dashed outline). For clarity, this image is scaled × 2 compared to the following images (b) – (d). (b) Co-registered H&E-stained histology identifying tissue morphology. (c) En face (x-y) OCT image at depth z = 350 µm from the imaging glass-window / tissue interface. (d) Parametric map of attenuation coefficients µt(x,y). Points with µt < 0 are masked white. The outlined region in images (b) – (d) indicates the ROI selected for subsequent comparison and quantitative analysis. All scale bars 1 mm.

Fig. 2
Fig. 2

Images of dystrophic skeletal muscle tissue containing a necrotic lesion, obtained from the triceps of a treadmill-exercised mdx mouse. (a) Photograph of the dorsal surface of the muscle showing a blue-stained region of EBD accumulation, indicating the presence of leaky myofibers. (b) Co-registered H&E-stained histology identifying tissue morphology. (c) En face (x-y) OCT image at depth z = 350 µm from the imaging glass-window / tissue interface. (d) Parametric map of attenuation coefficients µt(x,y). Points with µt < 0 are masked white. The outlined region in (b) – (d) indicates the ROI selected for subsequent comparison and quantitative analysis. All scale bars 1 mm.

Fig. 3
Fig. 3

Quantitative comparison of the attenuation coefficients obtained from a region of intact myofibers within healthy skeletal muscle tissue and a necrotic lesion from within dystrophic skeletal muscle tissue. (a) – (c) Top Row (green outline): Intact myofibers of the tibialis anterior skeletal muscle from a healthy C57 mouse. (d) – (f) Bottom row (red outline): Necrotic lesion containing necrotic myofibers and inflammatory cells, from the triceps skeletal muscle of a treadmill-exercised dystrophic mdx mouse. (a) & (d) Co-registered H&E-stained histology indicating biological features of interest: (a) intact myofibers (IM, white arrowheads), peripheral nuclei (PN, thin white arrows); (d) necrotic myofibers (NM, black arrowheads), inflammatory cells (IC, thick black arrows). (b) & (e) Zoomed en face (x, y) OCT image at depth z = 350 µm from the imaging glass-window / tissue interface. (f) & (g) Parametric maps of attenuation coefficients µt(x,y). All scale bars 250 µm. (g) Histogram of attenuation coefficients µt for the selected ROIs containing intact myofibers from healthy tissue (green) and a necrotic lesion from dystrophic skeletal muscle tissue (red), with associated normal distribution (dashed and dot-dashed, respectively) fitted using the calculated mean ± standard deviation.

Fig. 4
Fig. 4

Quantitative comparison of the attenuation coefficients obtained from two different regions, intact myofibers and a necrotic lesion, selected from within the same sample of dystrophic skeletal muscle tissue. (a) – (c) Top row: Images of the entire muscle sample (symbols described in the text). Scale bars 1 mm. (d) – (f) Middle row (blue outline): Zoomed images from the region of intact myofibers. Scale bars 250 µm. (g) – (i) Bottom row (red outline): Zoomed images from the necrotic lesion containing necrotic myofibers and inflammatory cells. (a), (d) & (g) Co-registered H&E-stained histology indicating biological features of interest: (d) intact myofibers (IM, white arrowheads), central nuclei (CN, thin black arrows), and inflammatory cells (IC, thick black arrows); (g) necrotic myofibers (NM, black arrowheads) and adipose cells (AC, doubled-headed white arrow). (b), (e) & (h) En face (x-y) OCT images at depth z = 350 µm from imaging glass-window / tissue interface. (c), (f) & (i) Parametric maps of attenuation coefficients µt(x,y). Points with µt < 0 are masked white. (j) Histogram of attenuation coefficients µt for intact myofibers (blue) versus a necrotic lesion (red) from within the dystrophic skeletal muscle tissue, with an associated normal distribution fitted using the mean ± standard deviation calculated from each chosen ROI.

Fig. 5
Fig. 5

Quantitative comparison of the attenuation coefficients from two different regions, intact myofibers versus necrotic myofibers without inflammatory cells, from within the same sample of dystrophic skeletal muscle tissue. (a) – (c) Top row: Large-scale images of the muscle sample (symbols described in the text). Scale bars 1 mm. (d) – (f) Middle row (blue outline): Zoomed images of intact myofibers. Scale bars 250 µm. (g) – (i) Bottom row (orange outline): Zoomed images of necrotic myofibers without the presence of inflammatory cells. Scale bars 250 µm. (a), (d) & (g) Co-registered H&E-stained histology indicating biological features of interest: (d) intact myofibers (IM, white arrowheads), peripheral nuclei (PN, thin white arrows), and inflammatory cells (IC, thick black arrows); (g) necrotic myofibers (NM, black arrowheads). (b), (e) & (h) En face (x-y) OCT images. (c), (f) & (i) Parametric maps of attenuation coefficients µt(x, y). (j) Histogram of attenuation coefficients µt for intact myofibers (blue) versus necrotic myofibers (without inflammatory cells) with an associated normal distribution fitted using the mean ± standard deviation calculated from each ROI.

Fig. 6
Fig. 6

Attenuation coefficients µt (mean ± standard error) of intact myofibers from C57 mice muscles (n = 10), intact myofibers from mdx mice muscles (n = 10), necrotic myofibers from mdx mice muscles (n = 2), and necrotic lesions from mdx mice muscles (n = 6), calculated from all muscle samples.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i 2 ( z )F( z )S( z )ρ e 2 μ t z ,
ln[ i s 2 ( z ) i 0 2 ( z ) ]2( μ t μ t0 ).

Metrics