Abstract

To facilitate non-invasive diagnosis of anemia, specific equipment was developed, and non-invasive hemoglobin (HB) detection method based on back propagation artificial neural network (BP-ANN) was studied. In this paper, we combined a broadband light source composed of 9 LEDs with grating spectrograph and Si photodiode array, and then developed a high-performance spectrophotometric system. By using this equipment, fingertip spectra of 109 volunteers were measured. In order to deduct the interference of redundant data, principal component analysis (PCA) was applied to reduce the dimensionality of collected spectra. Then the principal components of the spectra were taken as input of BP-ANN model. On this basis we obtained the optimal network structure, in which node numbers of input layer, hidden layer, and output layer was 9, 11, and 1. Calibration and correction sample sets were used for analyzing the accuracy of non-invasive hemoglobin measurement, and prediction sample set was used for testing the adaptability of the model. The correlation coefficient of network model established by this method is 0.94, standard error of calibration, correction, and prediction are 11.29g/L, 11.47g/L, and 11.01g/L respectively. The result proves that there exist good correlations between spectra of three sample sets and actual hemoglobin level, and the model has a good robustness. It is indicated that the developed spectrophotometric system has potential for the non-invasive detection of HB levels with the method of BP-ANN combined with PCA.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Worldwide prevalence on anaemia 1993-2005”, http://www.who.int/vmnis/database/anaemia/ anaemia_status_summary/en/index.html .
  2. P. Williams and K. Norris, Near-Infrared technology in the agricultural and food industries, Second Edition ed. (American Association of Cereal Chemists, Inc., 2001).
  3. A. Moron and D. Cozzolino, “Application of near infrared reflectance spectroscopy for the analysis of organic C, total N and pH in soils of Uruguay,” J. Near Infrared10(1Spec.), 215–221 (2002).
    [CrossRef]
  4. M. A. Arnold and G. W. Small, “Noninvasive glucose sensing,” Anal. Chem.77(17), 5429–5439 (2005).
    [CrossRef] [PubMed]
  5. K. Yamakoshi and Y. Yamakoshi, “Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt.11(5), 054028 (2006).
    [CrossRef] [PubMed]
  6. A. Sakudo, Y. H. Kato, S. Tajima, H. Kuratsune, and K. Ikuta, “Visible and near-infrared spectral changes in the thumb of patients with chronic fatigue syndrome,” Clin. Chim. Acta403(1-2), 163–166 (2009).
    [CrossRef] [PubMed]
  7. Q. P. Lu, C. Chen, and Z. Q. Peng, “[Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy],” Optics and Precision Engineering20(4), 873–879 (2012).
    [CrossRef]
  8. H. Z. Gao, Q. P. Lu, H. Q. Ding, and S. W. Chen, “[Improvement of model performance for near-infrared non-invasive biochemical analysis by pathlength correction space method],” Optics and Precision Engineering21(8), 1974–1980 (2013).
    [CrossRef]
  9. H. M. Heise, “Glucose Measurements by Vibrational Spectroscopy,” in Handbook of Vibrational Spectroscopy (John Wiley & Sons, Ltd, 2006).
  10. K. Norris, “Making light work: Advances in near infrared spectroscopy “in Possible medical applications of NIR (Murray I & Cowe I A. UK: Ian Michael Publication, 1992), pp. 596-602.
  11. J. T. Kuenstner and K. H. Norris, “Near infrared hemoglobinometry,” J. Near Infrared3(1Spec.), 11–18 (1995).
    [CrossRef]
  12. G. Kumar and J. M. Schmitt, “Optimum wavelengths for measurement of blood hemoglobin content and tissue hydration by NIR spectrophotometry,” Proc. SPIE2678, 442–453 (1996).
    [CrossRef]
  13. S. Zhang, B. R. Soller, S. Kaur, K. Perras, and T. J. V. Salm, “Investigation of noninvasive in vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-squares regression,” Appl. Spectrosc.54(2), 294–299 (2000).
    [CrossRef]
  14. W. Pothisarn, W. Chewpraditkul, and P. P. Yupapin, “A non-invasive hemoglobin measurement based pulse oximetry,” Proc. SPIE4916, 498–504 (2002).
    [CrossRef]
  15. A. Dullenkopf, U. Lohmeyer, B. Salgo, A. C. Gerber, and M. Weiss, “Non-invasive monitoring of haemoglobin concentration in paediatric surgical patients using near-infrared spectroscopy,” Anaesthesia59(5), 453–458 (2004).
    [CrossRef] [PubMed]
  16. K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
    [CrossRef] [PubMed]
  17. Y. H. Park, J. H. Lee, H. G. Song, H. J. Byon, H. S. Kim, and J. T. Kim, “The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery,” Anesth. Analg.115(6), 1302–1307 (2012).
    [CrossRef] [PubMed]
  18. N. Shah, E. A. Osea, and G. J. Martinez, “Accuracy of noninvasive hemoglobin and invasive point-of-care hemoglobin testing compared with a laboratory analyzer,” Int. J. Lab. Hematol.36, 56–61 (2013).
    [PubMed]
  19. L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, and B. Vivien, “Comparison of the Accuracy of Noninvasive Hemoglobin Monitoring by Spectrophotometry (SpHb) and HemoCue® with Automated Laboratory Hemoglobin Measurement,” Anesthesiology115(3), 548–554 (2011).
    [CrossRef] [PubMed]

2013 (2)

H. Z. Gao, Q. P. Lu, H. Q. Ding, and S. W. Chen, “[Improvement of model performance for near-infrared non-invasive biochemical analysis by pathlength correction space method],” Optics and Precision Engineering21(8), 1974–1980 (2013).
[CrossRef]

N. Shah, E. A. Osea, and G. J. Martinez, “Accuracy of noninvasive hemoglobin and invasive point-of-care hemoglobin testing compared with a laboratory analyzer,” Int. J. Lab. Hematol.36, 56–61 (2013).
[PubMed]

2012 (2)

Y. H. Park, J. H. Lee, H. G. Song, H. J. Byon, H. S. Kim, and J. T. Kim, “The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery,” Anesth. Analg.115(6), 1302–1307 (2012).
[CrossRef] [PubMed]

Q. P. Lu, C. Chen, and Z. Q. Peng, “[Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy],” Optics and Precision Engineering20(4), 873–879 (2012).
[CrossRef]

2011 (1)

L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, and B. Vivien, “Comparison of the Accuracy of Noninvasive Hemoglobin Monitoring by Spectrophotometry (SpHb) and HemoCue® with Automated Laboratory Hemoglobin Measurement,” Anesthesiology115(3), 548–554 (2011).
[CrossRef] [PubMed]

2009 (1)

A. Sakudo, Y. H. Kato, S. Tajima, H. Kuratsune, and K. Ikuta, “Visible and near-infrared spectral changes in the thumb of patients with chronic fatigue syndrome,” Clin. Chim. Acta403(1-2), 163–166 (2009).
[CrossRef] [PubMed]

2006 (1)

K. Yamakoshi and Y. Yamakoshi, “Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt.11(5), 054028 (2006).
[CrossRef] [PubMed]

2005 (1)

M. A. Arnold and G. W. Small, “Noninvasive glucose sensing,” Anal. Chem.77(17), 5429–5439 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Dullenkopf, U. Lohmeyer, B. Salgo, A. C. Gerber, and M. Weiss, “Non-invasive monitoring of haemoglobin concentration in paediatric surgical patients using near-infrared spectroscopy,” Anaesthesia59(5), 453–458 (2004).
[CrossRef] [PubMed]

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

2002 (2)

W. Pothisarn, W. Chewpraditkul, and P. P. Yupapin, “A non-invasive hemoglobin measurement based pulse oximetry,” Proc. SPIE4916, 498–504 (2002).
[CrossRef]

A. Moron and D. Cozzolino, “Application of near infrared reflectance spectroscopy for the analysis of organic C, total N and pH in soils of Uruguay,” J. Near Infrared10(1Spec.), 215–221 (2002).
[CrossRef]

2000 (1)

1996 (1)

G. Kumar and J. M. Schmitt, “Optimum wavelengths for measurement of blood hemoglobin content and tissue hydration by NIR spectrophotometry,” Proc. SPIE2678, 442–453 (1996).
[CrossRef]

1995 (1)

J. T. Kuenstner and K. H. Norris, “Near infrared hemoglobinometry,” J. Near Infrared3(1Spec.), 11–18 (1995).
[CrossRef]

Apriotesei, R.

L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, and B. Vivien, “Comparison of the Accuracy of Noninvasive Hemoglobin Monitoring by Spectrophotometry (SpHb) and HemoCue® with Automated Laboratory Hemoglobin Measurement,” Anesthesiology115(3), 548–554 (2011).
[CrossRef] [PubMed]

Arnold, M. A.

M. A. Arnold and G. W. Small, “Noninvasive glucose sensing,” Anal. Chem.77(17), 5429–5439 (2005).
[CrossRef] [PubMed]

Byon, H. J.

Y. H. Park, J. H. Lee, H. G. Song, H. J. Byon, H. S. Kim, and J. T. Kim, “The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery,” Anesth. Analg.115(6), 1302–1307 (2012).
[CrossRef] [PubMed]

Carli, P.

L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, and B. Vivien, “Comparison of the Accuracy of Noninvasive Hemoglobin Monitoring by Spectrophotometry (SpHb) and HemoCue® with Automated Laboratory Hemoglobin Measurement,” Anesthesiology115(3), 548–554 (2011).
[CrossRef] [PubMed]

Chen, C.

Q. P. Lu, C. Chen, and Z. Q. Peng, “[Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy],” Optics and Precision Engineering20(4), 873–879 (2012).
[CrossRef]

Chen, S. W.

H. Z. Gao, Q. P. Lu, H. Q. Ding, and S. W. Chen, “[Improvement of model performance for near-infrared non-invasive biochemical analysis by pathlength correction space method],” Optics and Precision Engineering21(8), 1974–1980 (2013).
[CrossRef]

Chewpraditkul, W.

W. Pothisarn, W. Chewpraditkul, and P. P. Yupapin, “A non-invasive hemoglobin measurement based pulse oximetry,” Proc. SPIE4916, 498–504 (2002).
[CrossRef]

Chinzei, T.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Combes, X.

L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, and B. Vivien, “Comparison of the Accuracy of Noninvasive Hemoglobin Monitoring by Spectrophotometry (SpHb) and HemoCue® with Automated Laboratory Hemoglobin Measurement,” Anesthesiology115(3), 548–554 (2011).
[CrossRef] [PubMed]

Cozzolino, D.

A. Moron and D. Cozzolino, “Application of near infrared reflectance spectroscopy for the analysis of organic C, total N and pH in soils of Uruguay,” J. Near Infrared10(1Spec.), 215–221 (2002).
[CrossRef]

Ding, H. Q.

H. Z. Gao, Q. P. Lu, H. Q. Ding, and S. W. Chen, “[Improvement of model performance for near-infrared non-invasive biochemical analysis by pathlength correction space method],” Optics and Precision Engineering21(8), 1974–1980 (2013).
[CrossRef]

Dullenkopf, A.

A. Dullenkopf, U. Lohmeyer, B. Salgo, A. C. Gerber, and M. Weiss, “Non-invasive monitoring of haemoglobin concentration in paediatric surgical patients using near-infrared spectroscopy,” Anaesthesia59(5), 453–458 (2004).
[CrossRef] [PubMed]

Gao, H. Z.

H. Z. Gao, Q. P. Lu, H. Q. Ding, and S. W. Chen, “[Improvement of model performance for near-infrared non-invasive biochemical analysis by pathlength correction space method],” Optics and Precision Engineering21(8), 1974–1980 (2013).
[CrossRef]

Gerber, A. C.

A. Dullenkopf, U. Lohmeyer, B. Salgo, A. C. Gerber, and M. Weiss, “Non-invasive monitoring of haemoglobin concentration in paediatric surgical patients using near-infrared spectroscopy,” Anaesthesia59(5), 453–458 (2004).
[CrossRef] [PubMed]

Hashimoto, M.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Ikuta, K.

A. Sakudo, Y. H. Kato, S. Tajima, H. Kuratsune, and K. Ikuta, “Visible and near-infrared spectral changes in the thumb of patients with chronic fatigue syndrome,” Clin. Chim. Acta403(1-2), 163–166 (2009).
[CrossRef] [PubMed]

Imoto, S.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Kato, Y. H.

A. Sakudo, Y. H. Kato, S. Tajima, H. Kuratsune, and K. Ikuta, “Visible and near-infrared spectral changes in the thumb of patients with chronic fatigue syndrome,” Clin. Chim. Acta403(1-2), 163–166 (2009).
[CrossRef] [PubMed]

Kaur, S.

Kim, H. S.

Y. H. Park, J. H. Lee, H. G. Song, H. J. Byon, H. S. Kim, and J. T. Kim, “The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery,” Anesth. Analg.115(6), 1302–1307 (2012).
[CrossRef] [PubMed]

Kim, J. T.

Y. H. Park, J. H. Lee, H. G. Song, H. J. Byon, H. S. Kim, and J. T. Kim, “The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery,” Anesth. Analg.115(6), 1302–1307 (2012).
[CrossRef] [PubMed]

Kubota, Y.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Kuenstner, J. T.

J. T. Kuenstner and K. H. Norris, “Near infrared hemoglobinometry,” J. Near Infrared3(1Spec.), 11–18 (1995).
[CrossRef]

Kumagai, S.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Kumar, G.

G. Kumar and J. M. Schmitt, “Optimum wavelengths for measurement of blood hemoglobin content and tissue hydration by NIR spectrophotometry,” Proc. SPIE2678, 442–453 (1996).
[CrossRef]

Kuratsune, H.

A. Sakudo, Y. H. Kato, S. Tajima, H. Kuratsune, and K. Ikuta, “Visible and near-infrared spectral changes in the thumb of patients with chronic fatigue syndrome,” Clin. Chim. Acta403(1-2), 163–166 (2009).
[CrossRef] [PubMed]

Lamhaut, L.

L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, and B. Vivien, “Comparison of the Accuracy of Noninvasive Hemoglobin Monitoring by Spectrophotometry (SpHb) and HemoCue® with Automated Laboratory Hemoglobin Measurement,” Anesthesiology115(3), 548–554 (2011).
[CrossRef] [PubMed]

Lee, J. H.

Y. H. Park, J. H. Lee, H. G. Song, H. J. Byon, H. S. Kim, and J. T. Kim, “The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery,” Anesth. Analg.115(6), 1302–1307 (2012).
[CrossRef] [PubMed]

Lejay, M.

L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, and B. Vivien, “Comparison of the Accuracy of Noninvasive Hemoglobin Monitoring by Spectrophotometry (SpHb) and HemoCue® with Automated Laboratory Hemoglobin Measurement,” Anesthesiology115(3), 548–554 (2011).
[CrossRef] [PubMed]

Lohmeyer, U.

A. Dullenkopf, U. Lohmeyer, B. Salgo, A. C. Gerber, and M. Weiss, “Non-invasive monitoring of haemoglobin concentration in paediatric surgical patients using near-infrared spectroscopy,” Anaesthesia59(5), 453–458 (2004).
[CrossRef] [PubMed]

Lu, Q. P.

H. Z. Gao, Q. P. Lu, H. Q. Ding, and S. W. Chen, “[Improvement of model performance for near-infrared non-invasive biochemical analysis by pathlength correction space method],” Optics and Precision Engineering21(8), 1974–1980 (2013).
[CrossRef]

Q. P. Lu, C. Chen, and Z. Q. Peng, “[Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy],” Optics and Precision Engineering20(4), 873–879 (2012).
[CrossRef]

Martinez, G. J.

N. Shah, E. A. Osea, and G. J. Martinez, “Accuracy of noninvasive hemoglobin and invasive point-of-care hemoglobin testing compared with a laboratory analyzer,” Int. J. Lab. Hematol.36, 56–61 (2013).
[PubMed]

Mito, H.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Moriya, J.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Moron, A.

A. Moron and D. Cozzolino, “Application of near infrared reflectance spectroscopy for the analysis of organic C, total N and pH in soils of Uruguay,” J. Near Infrared10(1Spec.), 215–221 (2002).
[CrossRef]

Norris, K. H.

J. T. Kuenstner and K. H. Norris, “Near infrared hemoglobinometry,” J. Near Infrared3(1Spec.), 11–18 (1995).
[CrossRef]

Numada, S.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Osea, E. A.

N. Shah, E. A. Osea, and G. J. Martinez, “Accuracy of noninvasive hemoglobin and invasive point-of-care hemoglobin testing compared with a laboratory analyzer,” Int. J. Lab. Hematol.36, 56–61 (2013).
[PubMed]

Ozawa, T.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Park, Y. H.

Y. H. Park, J. H. Lee, H. G. Song, H. J. Byon, H. S. Kim, and J. T. Kim, “The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery,” Anesth. Analg.115(6), 1302–1307 (2012).
[CrossRef] [PubMed]

Peng, Z. Q.

Q. P. Lu, C. Chen, and Z. Q. Peng, “[Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy],” Optics and Precision Engineering20(4), 873–879 (2012).
[CrossRef]

Perras, K.

Pothisarn, W.

W. Pothisarn, W. Chewpraditkul, and P. P. Yupapin, “A non-invasive hemoglobin measurement based pulse oximetry,” Proc. SPIE4916, 498–504 (2002).
[CrossRef]

Saigo, K.

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Sakudo, A.

A. Sakudo, Y. H. Kato, S. Tajima, H. Kuratsune, and K. Ikuta, “Visible and near-infrared spectral changes in the thumb of patients with chronic fatigue syndrome,” Clin. Chim. Acta403(1-2), 163–166 (2009).
[CrossRef] [PubMed]

Salgo, B.

A. Dullenkopf, U. Lohmeyer, B. Salgo, A. C. Gerber, and M. Weiss, “Non-invasive monitoring of haemoglobin concentration in paediatric surgical patients using near-infrared spectroscopy,” Anaesthesia59(5), 453–458 (2004).
[CrossRef] [PubMed]

Salm, T. J. V.

Schmitt, J. M.

G. Kumar and J. M. Schmitt, “Optimum wavelengths for measurement of blood hemoglobin content and tissue hydration by NIR spectrophotometry,” Proc. SPIE2678, 442–453 (1996).
[CrossRef]

Shah, N.

N. Shah, E. A. Osea, and G. J. Martinez, “Accuracy of noninvasive hemoglobin and invasive point-of-care hemoglobin testing compared with a laboratory analyzer,” Int. J. Lab. Hematol.36, 56–61 (2013).
[PubMed]

Small, G. W.

M. A. Arnold and G. W. Small, “Noninvasive glucose sensing,” Anal. Chem.77(17), 5429–5439 (2005).
[CrossRef] [PubMed]

Soller, B. R.

Song, H. G.

Y. H. Park, J. H. Lee, H. G. Song, H. J. Byon, H. S. Kim, and J. T. Kim, “The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery,” Anesth. Analg.115(6), 1302–1307 (2012).
[CrossRef] [PubMed]

Tajima, S.

A. Sakudo, Y. H. Kato, S. Tajima, H. Kuratsune, and K. Ikuta, “Visible and near-infrared spectral changes in the thumb of patients with chronic fatigue syndrome,” Clin. Chim. Acta403(1-2), 163–166 (2009).
[CrossRef] [PubMed]

Vivien, B.

L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, and B. Vivien, “Comparison of the Accuracy of Noninvasive Hemoglobin Monitoring by Spectrophotometry (SpHb) and HemoCue® with Automated Laboratory Hemoglobin Measurement,” Anesthesiology115(3), 548–554 (2011).
[CrossRef] [PubMed]

Weiss, M.

A. Dullenkopf, U. Lohmeyer, B. Salgo, A. C. Gerber, and M. Weiss, “Non-invasive monitoring of haemoglobin concentration in paediatric surgical patients using near-infrared spectroscopy,” Anaesthesia59(5), 453–458 (2004).
[CrossRef] [PubMed]

Yamakoshi, K.

K. Yamakoshi and Y. Yamakoshi, “Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt.11(5), 054028 (2006).
[CrossRef] [PubMed]

Yamakoshi, Y.

K. Yamakoshi and Y. Yamakoshi, “Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt.11(5), 054028 (2006).
[CrossRef] [PubMed]

Yupapin, P. P.

W. Pothisarn, W. Chewpraditkul, and P. P. Yupapin, “A non-invasive hemoglobin measurement based pulse oximetry,” Proc. SPIE4916, 498–504 (2002).
[CrossRef]

Zhang, S.

Am. J. Clin. Pathol. (1)

K. Saigo, S. Imoto, M. Hashimoto, H. Mito, J. Moriya, T. Chinzei, Y. Kubota, S. Numada, T. Ozawa, and S. Kumagai, “Noninvasive Monitoring of Hemoglobin. The Effects of WBC Counts on Measurement,” Am. J. Clin. Pathol.121(1), 51–55 (2004).
[CrossRef] [PubMed]

Anaesthesia (1)

A. Dullenkopf, U. Lohmeyer, B. Salgo, A. C. Gerber, and M. Weiss, “Non-invasive monitoring of haemoglobin concentration in paediatric surgical patients using near-infrared spectroscopy,” Anaesthesia59(5), 453–458 (2004).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. A. Arnold and G. W. Small, “Noninvasive glucose sensing,” Anal. Chem.77(17), 5429–5439 (2005).
[CrossRef] [PubMed]

Anesth. Analg. (1)

Y. H. Park, J. H. Lee, H. G. Song, H. J. Byon, H. S. Kim, and J. T. Kim, “The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery,” Anesth. Analg.115(6), 1302–1307 (2012).
[CrossRef] [PubMed]

Anesthesiology (1)

L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, and B. Vivien, “Comparison of the Accuracy of Noninvasive Hemoglobin Monitoring by Spectrophotometry (SpHb) and HemoCue® with Automated Laboratory Hemoglobin Measurement,” Anesthesiology115(3), 548–554 (2011).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Clin. Chim. Acta (1)

A. Sakudo, Y. H. Kato, S. Tajima, H. Kuratsune, and K. Ikuta, “Visible and near-infrared spectral changes in the thumb of patients with chronic fatigue syndrome,” Clin. Chim. Acta403(1-2), 163–166 (2009).
[CrossRef] [PubMed]

Int. J. Lab. Hematol. (1)

N. Shah, E. A. Osea, and G. J. Martinez, “Accuracy of noninvasive hemoglobin and invasive point-of-care hemoglobin testing compared with a laboratory analyzer,” Int. J. Lab. Hematol.36, 56–61 (2013).
[PubMed]

J. Biomed. Opt. (1)

K. Yamakoshi and Y. Yamakoshi, “Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt.11(5), 054028 (2006).
[CrossRef] [PubMed]

J. Near Infrared (2)

A. Moron and D. Cozzolino, “Application of near infrared reflectance spectroscopy for the analysis of organic C, total N and pH in soils of Uruguay,” J. Near Infrared10(1Spec.), 215–221 (2002).
[CrossRef]

J. T. Kuenstner and K. H. Norris, “Near infrared hemoglobinometry,” J. Near Infrared3(1Spec.), 11–18 (1995).
[CrossRef]

Optics and Precision Engineering (2)

Q. P. Lu, C. Chen, and Z. Q. Peng, “[Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy],” Optics and Precision Engineering20(4), 873–879 (2012).
[CrossRef]

H. Z. Gao, Q. P. Lu, H. Q. Ding, and S. W. Chen, “[Improvement of model performance for near-infrared non-invasive biochemical analysis by pathlength correction space method],” Optics and Precision Engineering21(8), 1974–1980 (2013).
[CrossRef]

Proc. SPIE (2)

G. Kumar and J. M. Schmitt, “Optimum wavelengths for measurement of blood hemoglobin content and tissue hydration by NIR spectrophotometry,” Proc. SPIE2678, 442–453 (1996).
[CrossRef]

W. Pothisarn, W. Chewpraditkul, and P. P. Yupapin, “A non-invasive hemoglobin measurement based pulse oximetry,” Proc. SPIE4916, 498–504 (2002).
[CrossRef]

Other (4)

H. M. Heise, “Glucose Measurements by Vibrational Spectroscopy,” in Handbook of Vibrational Spectroscopy (John Wiley & Sons, Ltd, 2006).

K. Norris, “Making light work: Advances in near infrared spectroscopy “in Possible medical applications of NIR (Murray I & Cowe I A. UK: Ian Michael Publication, 1992), pp. 596-602.

Worldwide prevalence on anaemia 1993-2005”, http://www.who.int/vmnis/database/anaemia/ anaemia_status_summary/en/index.html .

P. Williams and K. Norris, Near-Infrared technology in the agricultural and food industries, Second Edition ed. (American Association of Cereal Chemists, Inc., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of the near-infrared spectrophotometric system.

Fig. 2
Fig. 2

Schematic representation of non-invasive measurement of HB levels by transmittance mode using the NIR spectrophotometric system. Finger fixed device is shown in the inset.

Fig. 3
Fig. 3

Distance-distance plot of 109 samples.

Fig. 4
Fig. 4

Relationship among principal component, number of hidden layer nodes and standard deviation of correction set. F refers to principal component factors. When F is equal to 9 and the number of hidden layer nodes is 11, the model gets the minimum standard error.

Fig. 5
Fig. 5

A scatter diagram showing comparison of the actual and analysis HB values. (a) Correction set. (b) Prediction set.

Tables (1)

Tables Icon

Table 1 Distribution of HB concentration in sample sets (g/L)

Metrics