Abstract

We have developed and investigated a novel optical approach, Laser Speckle Rheology (LSR), to evaluate a patient’s coagulation status by measuring the viscoelastic properties of blood during coagulation. In LSR, a blood sample is illuminated with laser light and temporal speckle intensity fluctuations are measured using a high-speed CMOS camera. During blood coagulation, changes in the viscoelastic properties of the clot restrict Brownian displacements of light scattering centers within the sample, altering the rate of speckle intensity fluctuations. As a result, blood coagulation status can be measured by relating the time scale of speckle intensity fluctuations with clinically relevant coagulation metrics including clotting time and fibrinogen content. Our results report a close correlation between coagulation metrics measured using LSR and conventional coagulation results of activated partial thromboplastin time, prothrombin time and functional fibrinogen levels, creating the unique opportunity to evaluate a patient’s coagulation status in real-time at the point of care.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Bunn and J. C. Aster, Pathophysiology of Blood Disorders (McGraw-Hill Medical, United States, 2011).
  2. M. Levi, “Disseminated intravascular coagulation: a disease-specific approach,” Semin. Thromb. Hemost.36(4), 363–365 (2010).
    [CrossRef] [PubMed]
  3. E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
    [CrossRef] [PubMed]
  4. P. Innerhofer and J. Kienast, “Principles of perioperative coagulopathy,” Best Pract. Res. Clin. Anaesthesiol.24(1), 1–14 (2010).
    [CrossRef] [PubMed]
  5. J. C. Duchesne and J. B. Holcomb, “Damage control resuscitation: addressing trauma-induced coagulopathy,” Br. J. Hosp. Med. (Lond.)70(1), 22–25 (2009).
    [PubMed]
  6. B. Hudzik, J. Szkodzinski, and L. Polonski, “Pulmonary embolism and intra-aortic thrombosis in essential thrombocythaemia,” Br. J. Haematol.158(5), 562 (2012).
    [CrossRef] [PubMed]
  7. G. Lippi, M. Franchini, M. Montagnana, and E. J. Favaloro, “Inherited disorders of blood coagulation,” Ann. Med.44(5), 405–418 (2012).
    [CrossRef] [PubMed]
  8. A. Tripodi and P. M. Mannucci, “The coagulopathy of chronic liver disease,” N. Engl. J. Med.365(2), 147–156 (2011).
    [CrossRef] [PubMed]
  9. H. Saito, T. Matsushita, and T. Kojima, “Historical perspective and future direction of coagulation research,” J. Thromb. Haemost.9(Suppl 1), 352–363 (2011).
    [CrossRef] [PubMed]
  10. D. Whiting and J. A. Dinardo, “TEG and ROTEM: Technology and clinical applications,” Am. J. Hematol. (2013).
  11. M. Kaibara, “Rheology of blood coagulation,” Biorheology33(2), 101–117 (1996).
    [CrossRef] [PubMed]
  12. C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
    [CrossRef] [PubMed]
  13. S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
    [CrossRef] [PubMed]
  14. S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt.11(2), 021006 (2006).
    [CrossRef] [PubMed]
  15. S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser Speckle Imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008).
    [CrossRef] [PubMed]
  16. Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011).
    [CrossRef] [PubMed]
  17. Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep.2, 316 (2012).
    [CrossRef] [PubMed]
  18. S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci.24(3), 439–445 (2009).
    [CrossRef] [PubMed]
  19. Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS ONE8(5), e65014 (2013).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, United States, 2007).
  21. D. A. Weitz and D. J. Pine, “Diffusing-Wave Spectroscopy,” in Dynamic Light Scattering, W. Brown, ed. (Oxford Univ. Press, New York, 1993).
  22. T. G. Mason, H. Gang, and D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A14(1), 139–149 (1997).
    [CrossRef]
  23. B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2), 021504 (2005).
    [CrossRef] [PubMed]
  24. G. Young, R. Zhang, R. Miller, D. Yassin, and D. J. Nugent, “Comparison of kaolin and tissue factor activated thromboelastography in haemophilia,” Haemophilia16(3), 518–524 (2010).
    [PubMed]
  25. D. Viuff, S. R. Andersen, B. B. SÃ. Rensen, and S. Lethagen, “Optimizing thrombelastography (TEG) assay conditions to monitor rFVIIa (NovoSeven®) therapy in haemophilia a patients,” Thromb. Res.126, 144–149 (2010).
    [CrossRef] [PubMed]
  26. P. I. Johansson, L. Bochsen, S. Andersen, and D. Viuff, “Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography,” Transfusion48(11), 2377–2383 (2008).
    [CrossRef] [PubMed]
  27. E. Gonzalez, F. M. Pieracci, E. E. Moore, and J. L. Kashuk, “Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography,” Semin. Thromb. Hemost.36(7), 723–737 (2010).
    [CrossRef] [PubMed]
  28. L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
    [CrossRef] [PubMed]
  29. M. Sjödahl and L. R. Benckert, “Systematic and random errors in electronic speckle photography,” Appl. Opt.33(31), 7461–7471 (1994).
    [CrossRef] [PubMed]
  30. D. Li, D. P. Kelly, R. Kirner, and J. T. Sheridan, “Speckle orientation in paraxial optical systems,” Appl. Opt.51(4), A1–A10 (2012).
    [CrossRef] [PubMed]
  31. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008).
    [CrossRef] [PubMed]
  32. E. M. VanCott and M. Laposata, “Coagulation,” in The Laboratory Test Handbook, 5th ed., D. S. Jacobs, D. K. Oxley, and W. R. DeMott, eds. (Lexi-comp, Cleveland, 2001), pp. 327–358.
  33. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
    [CrossRef] [PubMed]
  34. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
    [CrossRef] [PubMed]
  35. T. Lee, L. Tchvialeva, H. Lui, H. Zeng, and D. McLean, “In-Vivo Skin Roughness Measurement by Laser Speckle,” in Fringe 2013, W. Osten, ed. (Springer Berlin Heidelberg, 2014), pp. 933–936.
  36. B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 051505 (2002).
    [CrossRef] [PubMed]
  37. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett.74(7), 1250–1253 (1995).
    [CrossRef] [PubMed]
  38. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
    [CrossRef] [PubMed]
  39. L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum.70(8), 3214 (1999).
    [CrossRef]
  40. P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A16(7), 1651–1664 (1999).
    [CrossRef]
  41. T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta39(4), 371–378 (2000).
    [CrossRef]
  42. F. Scheffold, F. Cardinaux, S. Romer, P. Schurtenberger, S. Skipetrov, and L. Cipelletti, “Optical Microrheology of Soft Complex Materials,” in Wave Scattering in Complex Media: From Theory to Applications, B. Tiggelen and S. Skipetrov, eds. (Springer Netherlands, 2003), pp. 553–564.
  43. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express2(7), 1969–1985 (2011).
    [CrossRef] [PubMed]
  44. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2(6), 1553–1563 (2011).
    [CrossRef] [PubMed]
  45. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  46. J. W. Weisel, “The mechanical properties of fibrin for basic scientists and clinicians,” Biophys. Chem.112(2-3), 267–276 (2004).
    [CrossRef] [PubMed]
  47. S. Niewiarowski, E. Regoeczi, G. J. Stewart, A. F. Senyl, and J. F. Mustard, “Platelet interaction with polymerizing fibrin,” J. Clin. Invest.51(3), 685–700 (1972).
    [CrossRef] [PubMed]
  48. J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
    [CrossRef] [PubMed]
  49. T. J. Cheng, H. C. Chang, and T. M. Lin, “A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood,” Biosens. Bioelectron.13(2), 147–156 (1998).
    [CrossRef] [PubMed]
  50. L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
    [CrossRef] [PubMed]
  51. H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991).
    [CrossRef] [PubMed]
  52. L. G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, and L. G. Bachas, “Monitoring blood coagulation with magnetoelastic sensors,” Biosens. Bioelectron.18(5-6), 675–681 (2003).
    [CrossRef] [PubMed]
  53. L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005).
    [CrossRef] [PubMed]
  54. M. Jose, M. W. Kowarz, K. K. Sarbadhikari, and P. R. Ashe, “MEMS interstitial prothrombin time test,” US Patent 2009/0093697 A1 (Aug 11, 2008 2008).
  55. K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
    [CrossRef] [PubMed]
  56. T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
    [CrossRef] [PubMed]
  57. R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, “High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation,” Ultrasound Med. Biol.34(2), 252–264 (2008).
    [CrossRef] [PubMed]
  58. C. C. Huang and S. H. Wang, “Assessment of blood coagulation under various flow conditions with ultrasound backscattering,” IEEE Trans. Biomed. Eng.54(12), 2223–2230 (2007).
    [CrossRef] [PubMed]
  59. J. L. Gennisson, S. Lerouge, and G. Cloutier, “Assessment by transient elastography of the viscoelastic properties of blood during clotting,” Ultrasound Med. Biol.32(10), 1529–1537 (2006).
    [CrossRef] [PubMed]
  60. Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
    [CrossRef] [PubMed]
  61. M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
    [CrossRef] [PubMed]

2013

Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS ONE8(5), e65014 (2013).
[CrossRef] [PubMed]

2012

Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep.2, 316 (2012).
[CrossRef] [PubMed]

B. Hudzik, J. Szkodzinski, and L. Polonski, “Pulmonary embolism and intra-aortic thrombosis in essential thrombocythaemia,” Br. J. Haematol.158(5), 562 (2012).
[CrossRef] [PubMed]

G. Lippi, M. Franchini, M. Montagnana, and E. J. Favaloro, “Inherited disorders of blood coagulation,” Ann. Med.44(5), 405–418 (2012).
[CrossRef] [PubMed]

D. Li, D. P. Kelly, R. Kirner, and J. T. Sheridan, “Speckle orientation in paraxial optical systems,” Appl. Opt.51(4), A1–A10 (2012).
[CrossRef] [PubMed]

2011

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011).
[CrossRef] [PubMed]

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express2(7), 1969–1985 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2(6), 1553–1563 (2011).
[CrossRef] [PubMed]

A. Tripodi and P. M. Mannucci, “The coagulopathy of chronic liver disease,” N. Engl. J. Med.365(2), 147–156 (2011).
[CrossRef] [PubMed]

H. Saito, T. Matsushita, and T. Kojima, “Historical perspective and future direction of coagulation research,” J. Thromb. Haemost.9(Suppl 1), 352–363 (2011).
[CrossRef] [PubMed]

J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
[CrossRef] [PubMed]

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

2010

L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
[CrossRef] [PubMed]

M. Levi, “Disseminated intravascular coagulation: a disease-specific approach,” Semin. Thromb. Hemost.36(4), 363–365 (2010).
[CrossRef] [PubMed]

E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
[CrossRef] [PubMed]

P. Innerhofer and J. Kienast, “Principles of perioperative coagulopathy,” Best Pract. Res. Clin. Anaesthesiol.24(1), 1–14 (2010).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
[CrossRef] [PubMed]

G. Young, R. Zhang, R. Miller, D. Yassin, and D. J. Nugent, “Comparison of kaolin and tissue factor activated thromboelastography in haemophilia,” Haemophilia16(3), 518–524 (2010).
[PubMed]

D. Viuff, S. R. Andersen, B. B. SÃ. Rensen, and S. Lethagen, “Optimizing thrombelastography (TEG) assay conditions to monitor rFVIIa (NovoSeven®) therapy in haemophilia a patients,” Thromb. Res.126, 144–149 (2010).
[CrossRef] [PubMed]

E. Gonzalez, F. M. Pieracci, E. E. Moore, and J. L. Kashuk, “Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography,” Semin. Thromb. Hemost.36(7), 723–737 (2010).
[CrossRef] [PubMed]

2009

L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
[CrossRef] [PubMed]

J. C. Duchesne and J. B. Holcomb, “Damage control resuscitation: addressing trauma-induced coagulopathy,” Br. J. Hosp. Med. (Lond.)70(1), 22–25 (2009).
[PubMed]

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci.24(3), 439–445 (2009).
[CrossRef] [PubMed]

2008

C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser Speckle Imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008).
[CrossRef] [PubMed]

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008).
[CrossRef] [PubMed]

P. I. Johansson, L. Bochsen, S. Andersen, and D. Viuff, “Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography,” Transfusion48(11), 2377–2383 (2008).
[CrossRef] [PubMed]

R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, “High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation,” Ultrasound Med. Biol.34(2), 252–264 (2008).
[CrossRef] [PubMed]

2007

C. C. Huang and S. H. Wang, “Assessment of blood coagulation under various flow conditions with ultrasound backscattering,” IEEE Trans. Biomed. Eng.54(12), 2223–2230 (2007).
[CrossRef] [PubMed]

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

2006

J. L. Gennisson, S. Lerouge, and G. Cloutier, “Assessment by transient elastography of the viscoelastic properties of blood during clotting,” Ultrasound Med. Biol.32(10), 1529–1537 (2006).
[CrossRef] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt.11(2), 021006 (2006).
[CrossRef] [PubMed]

2005

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2), 021504 (2005).
[CrossRef] [PubMed]

L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005).
[CrossRef] [PubMed]

2004

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

J. W. Weisel, “The mechanical properties of fibrin for basic scientists and clinicians,” Biophys. Chem.112(2-3), 267–276 (2004).
[CrossRef] [PubMed]

2003

L. G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, and L. G. Bachas, “Monitoring blood coagulation with magnetoelastic sensors,” Biosens. Bioelectron.18(5-6), 675–681 (2003).
[CrossRef] [PubMed]

2002

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 051505 (2002).
[CrossRef] [PubMed]

2000

T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta39(4), 371–378 (2000).
[CrossRef]

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

1999

L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum.70(8), 3214 (1999).
[CrossRef]

P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A16(7), 1651–1664 (1999).
[CrossRef]

1998

T. J. Cheng, H. C. Chang, and T. M. Lin, “A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood,” Biosens. Bioelectron.13(2), 147–156 (1998).
[CrossRef] [PubMed]

1997

1996

M. Kaibara, “Rheology of blood coagulation,” Biorheology33(2), 101–117 (1996).
[CrossRef] [PubMed]

1995

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett.74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

1994

1992

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

1991

H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991).
[CrossRef] [PubMed]

1988

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

1972

S. Niewiarowski, E. Regoeczi, G. J. Stewart, A. F. Senyl, and J. F. Mustard, “Platelet interaction with polymerizing fibrin,” J. Clin. Invest.51(3), 685–700 (1972).
[CrossRef] [PubMed]

Abgrall, J. F.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

Andersen, S.

P. I. Johansson, L. Bochsen, S. Andersen, and D. Viuff, “Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography,” Transfusion48(11), 2377–2383 (2008).
[CrossRef] [PubMed]

Andersen, S. R.

D. Viuff, S. R. Andersen, B. B. SÃ. Rensen, and S. Lethagen, “Optimizing thrombelastography (TEG) assay conditions to monitor rFVIIa (NovoSeven®) therapy in haemophilia a patients,” Thromb. Res.126, 144–149 (2010).
[CrossRef] [PubMed]

Andrews, M. K.

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
[CrossRef] [PubMed]

Ataka, T.

H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991).
[CrossRef] [PubMed]

Babigumira, J.

E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
[CrossRef] [PubMed]

Bachas, L. G.

L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005).
[CrossRef] [PubMed]

L. G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, and L. G. Bachas, “Monitoring blood coagulation with magnetoelastic sensors,” Biosens. Bioelectron.18(5-6), 675–681 (2003).
[CrossRef] [PubMed]

Barrett, G.

L. G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, and L. G. Bachas, “Monitoring blood coagulation with magnetoelastic sensors,” Biosens. Bioelectron.18(5-6), 675–681 (2003).
[CrossRef] [PubMed]

Benckert, L. R.

Benesch, J.

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

Bilenca, A.

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt.11(2), 021006 (2006).
[CrossRef] [PubMed]

Blouch, M. T.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

Boas, D. A.

Bochsen, L.

P. I. Johansson, L. Bochsen, S. Andersen, and D. Viuff, “Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography,” Transfusion48(11), 2377–2383 (2008).
[CrossRef] [PubMed]

Borggrefe, M.

C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
[CrossRef] [PubMed]

Bouma, B. E.

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci.24(3), 439–445 (2009).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser Speckle Imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt.11(2), 021006 (2006).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Cariou, J.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

Carp, S. A.

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Chan, L. N.

E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
[CrossRef] [PubMed]

Chan, R.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Chang, H. C.

T. J. Cheng, H. C. Chang, and T. M. Lin, “A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood,” Biosens. Bioelectron.13(2), 147–156 (1998).
[CrossRef] [PubMed]

Chau, A.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Cheng, R.

Cheng, T. J.

T. J. Cheng, H. C. Chang, and T. M. Lin, “A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood,” Biosens. Bioelectron.13(2), 147–156 (1998).
[CrossRef] [PubMed]

Choi, B.

Cipelletti, L.

L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum.70(8), 3214 (1999).
[CrossRef]

Cloutier, G.

J. L. Gennisson, S. Lerouge, and G. Cloutier, “Assessment by transient elastography of the viscoelastic properties of blood during clotting,” Ultrasound Med. Biol.32(10), 1529–1537 (2006).
[CrossRef] [PubMed]

Cornelissen, C.

J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
[CrossRef] [PubMed]

Cosnier, M. L.

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

Crocker, J. C.

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 051505 (2002).
[CrossRef] [PubMed]

Cubizolles, M.

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

Cuccia, D. J.

Cui, X.

L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005).
[CrossRef] [PubMed]

Dasgupta, B. R.

B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2), 021504 (2005).
[CrossRef] [PubMed]

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 051505 (2002).
[CrossRef] [PubMed]

de Boer, J.

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci.24(3), 439–445 (2009).
[CrossRef] [PubMed]

Dempfle, C. E.

C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
[CrossRef] [PubMed]

Devine, E. B.

E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
[CrossRef] [PubMed]

Dinardo, J. A.

D. Whiting and J. A. Dinardo, “TEG and ROTEM: Technology and clinical applications,” Am. J. Hematol. (2013).

Dong, L.

Drechsel, H.

L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
[CrossRef] [PubMed]

Drysdale, T.

E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
[CrossRef] [PubMed]

Duchesne, J. C.

J. C. Duchesne and J. B. Holcomb, “Damage control resuscitation: addressing trauma-induced coagulopathy,” Br. J. Hosp. Med. (Lond.)70(1), 22–25 (2009).
[PubMed]

Duncan, D. D.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

Durian, D. J.

Durkin, A. J.

Elmas, E.

C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
[CrossRef] [PubMed]

Faivre, M.

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Favaloro, E. J.

G. Lippi, M. Franchini, M. Montagnana, and E. J. Favaloro, “Inherited disorders of blood coagulation,” Ann. Med.44(5), 405–418 (2012).
[CrossRef] [PubMed]

Franchini, M.

G. Lippi, M. Franchini, M. Montagnana, and E. J. Favaloro, “Inherited disorders of blood coagulation,” Ann. Med.44(5), 405–418 (2012).
[CrossRef] [PubMed]

Frisken, B. J.

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 051505 (2002).
[CrossRef] [PubMed]

Gang, H.

Gao, D.

L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005).
[CrossRef] [PubMed]

Gaynor, J. W.

L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
[CrossRef] [PubMed]

Gehring, F. K.

L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
[CrossRef] [PubMed]

Gennisson, J. L.

J. L. Gennisson, S. Lerouge, and G. Cloutier, “Assessment by transient elastography of the viscoelastic properties of blood during clotting,” Ultrasound Med. Biol.32(10), 1529–1537 (2006).
[CrossRef] [PubMed]

Gonzalez, E.

E. Gonzalez, F. M. Pieracci, E. E. Moore, and J. L. Kashuk, “Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography,” Semin. Thromb. Hemost.36(7), 723–737 (2010).
[CrossRef] [PubMed]

Grimes, C.

L. G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, and L. G. Bachas, “Monitoring blood coagulation with magnetoelastic sensors,” Biosens. Bioelectron.18(5-6), 675–681 (2003).
[CrossRef] [PubMed]

Gruel, Y.

R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, “High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation,” Ultrasound Med. Biol.34(2), 252–264 (2008).
[CrossRef] [PubMed]

Guern, Y.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

Gulati, A.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser Speckle Imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008).
[CrossRef] [PubMed]

Hajjarian, Z.

Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS ONE8(5), e65014 (2013).
[CrossRef] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep.2, 316 (2012).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011).
[CrossRef] [PubMed]

Halpern, E.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Hansson, K. M.

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

Helg, T.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Hill, C. C.

J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
[CrossRef] [PubMed]

Holcomb, J. B.

J. C. Duchesne and J. B. Holcomb, “Damage control resuscitation: addressing trauma-induced coagulopathy,” Br. J. Hosp. Med. (Lond.)70(1), 22–25 (2009).
[PubMed]

Homma, R.

H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991).
[CrossRef] [PubMed]

Höök, F.

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

Houser, S. L.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Huang, C. C.

C. C. Huang and S. H. Wang, “Assessment of blood coagulation under various flow conditions with ultrasound backscattering,” IEEE Trans. Biomed. Eng.54(12), 2223–2230 (2007).
[CrossRef] [PubMed]

Hudzik, B.

B. Hudzik, J. Szkodzinski, and L. Polonski, “Pulmonary embolism and intra-aortic thrombosis in essential thrombocythaemia,” Br. J. Haematol.158(5), 562 (2012).
[CrossRef] [PubMed]

Innerhofer, P.

P. Innerhofer and J. Kienast, “Principles of perioperative coagulopathy,” Best Pract. Res. Clin. Anaesthesiol.24(1), 1–14 (2010).
[CrossRef] [PubMed]

Irwin, D.

Jaffer, F. A.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011).
[CrossRef] [PubMed]

Jobes, D.

L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
[CrossRef] [PubMed]

Johansen, K.

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

Johansson, P. I.

P. I. Johansson, L. Bochsen, S. Andersen, and D. Viuff, “Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography,” Transfusion48(11), 2377–2383 (2008).
[CrossRef] [PubMed]

Kaibara, M.

M. Kaibara, “Rheology of blood coagulation,” Biorheology33(2), 101–117 (1996).
[CrossRef] [PubMed]

Kälsch, T.

C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
[CrossRef] [PubMed]

Kao, H.

E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
[CrossRef] [PubMed]

Karube, I.

H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991).
[CrossRef] [PubMed]

Kashuk, J. L.

E. Gonzalez, F. M. Pieracci, E. E. Moore, and J. L. Kashuk, “Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography,” Semin. Thromb. Hemost.36(7), 723–737 (2010).
[CrossRef] [PubMed]

Kelly, D. P.

Kienast, J.

P. Innerhofer and J. Kienast, “Principles of perioperative coagulopathy,” Best Pract. Res. Clin. Anaesthesiol.24(1), 1–14 (2010).
[CrossRef] [PubMed]

Kimura, K.

H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Kirner, R.

Klenkar, G.

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

Kojima, T.

H. Saito, T. Matsushita, and T. Kojima, “Historical perspective and future direction of coagulation research,” J. Thromb. Haemost.9(Suppl 1), 352–363 (2011).
[CrossRef] [PubMed]

Kouzoudis, D.

L. G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, and L. G. Bachas, “Monitoring blood coagulation with magnetoelastic sensors,” Biosens. Bioelectron.18(5-6), 675–681 (2003).
[CrossRef] [PubMed]

Kudrimoti, M.

Le Brun, G.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

Le Jeune, B.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

Lemieux, P. A.

Lemmens, H. J.

J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
[CrossRef] [PubMed]

Lermusiaux, P.

R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, “High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation,” Ultrasound Med. Biol.34(2), 252–264 (2008).
[CrossRef] [PubMed]

Lerouge, S.

J. L. Gennisson, S. Lerouge, and G. Cloutier, “Assessment by transient elastography of the viscoelastic properties of blood during clotting,” Ultrasound Med. Biol.32(10), 1529–1537 (2006).
[CrossRef] [PubMed]

Lethagen, S.

D. Viuff, S. R. Andersen, B. B. SÃ. Rensen, and S. Lethagen, “Optimizing thrombelastography (TEG) assay conditions to monitor rFVIIa (NovoSeven®) therapy in haemophilia a patients,” Thromb. Res.126, 144–149 (2010).
[CrossRef] [PubMed]

Levi, M.

M. Levi, “Disseminated intravascular coagulation: a disease-specific approach,” Semin. Thromb. Hemost.36(4), 363–365 (2010).
[CrossRef] [PubMed]

Lewis, J. K.

L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005).
[CrossRef] [PubMed]

Li, D.

Libgot-Callé, R.

R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, “High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation,” Ultrasound Med. Biol.34(2), 252–264 (2008).
[CrossRef] [PubMed]

Liedberg, B.

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

Lin, T. M.

T. J. Cheng, H. C. Chang, and T. M. Lin, “A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood,” Biosens. Bioelectron.13(2), 147–156 (1998).
[CrossRef] [PubMed]

Lindahl, T. L.

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

Lippi, G.

G. Lippi, M. Franchini, M. Montagnana, and E. J. Favaloro, “Inherited disorders of blood coagulation,” Ann. Med.44(5), 405–418 (2012).
[CrossRef] [PubMed]

Lotrian, J.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

Lücke, T.

C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
[CrossRef] [PubMed]

Lundström, I.

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

Mannucci, P. M.

A. Tripodi and P. M. Mannucci, “The coagulopathy of chronic liver disease,” N. Engl. J. Med.365(2), 147–156 (2011).
[CrossRef] [PubMed]

Mason, T. G.

T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta39(4), 371–378 (2000).
[CrossRef]

T. G. Mason, H. Gang, and D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A14(1), 139–149 (1997).
[CrossRef]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett.74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

Matsushita, T.

H. Saito, T. Matsushita, and T. Kojima, “Historical perspective and future direction of coagulation research,” J. Thromb. Haemost.9(Suppl 1), 352–363 (2011).
[CrossRef] [PubMed]

Mazhar, A.

Miller, R.

G. Young, R. Zhang, R. Miller, D. Yassin, and D. J. Nugent, “Comparison of kaolin and tissue factor activated thromboelastography in haemophilia,” Haemophilia16(3), 518–524 (2010).
[PubMed]

Minsky, M. S.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Miura, Y.

H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991).
[CrossRef] [PubMed]

Montagnana, M.

G. Lippi, M. Franchini, M. Montagnana, and E. J. Favaloro, “Inherited disorders of blood coagulation,” Ann. Med.44(5), 405–418 (2012).
[CrossRef] [PubMed]

Moore, E. E.

E. Gonzalez, F. M. Pieracci, E. E. Moore, and J. L. Kashuk, “Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography,” Semin. Thromb. Hemost.36(7), 723–737 (2010).
[CrossRef] [PubMed]

Motz, J. T.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Müller, L.

L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
[CrossRef] [PubMed]

Münch, E.

C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
[CrossRef] [PubMed]

Muramatsu, H.

H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991).
[CrossRef] [PubMed]

Mustard, J. F.

S. Niewiarowski, E. Regoeczi, G. J. Stewart, A. F. Senyl, and J. F. Mustard, “Platelet interaction with polymerizing fibrin,” J. Clin. Invest.51(3), 685–700 (1972).
[CrossRef] [PubMed]

Nadkarni, S. K.

Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS ONE8(5), e65014 (2013).
[CrossRef] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep.2, 316 (2012).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci.24(3), 439–445 (2009).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser Speckle Imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt.11(2), 021006 (2006).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Natalia, N.

J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
[CrossRef] [PubMed]

Négrier, C.

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

Nicolson, S.

L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
[CrossRef] [PubMed]

Niewiarowski, S.

S. Niewiarowski, E. Regoeczi, G. J. Stewart, A. F. Senyl, and J. F. Mustard, “Platelet interaction with polymerizing fibrin,” J. Clin. Invest.51(3), 685–700 (1972).
[CrossRef] [PubMed]

Northoff, H.

L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
[CrossRef] [PubMed]

Nougier, C.

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

Nugent, D. J.

G. Young, R. Zhang, R. Miller, D. Yassin, and D. J. Nugent, “Comparison of kaolin and tissue factor activated thromboelastography in haemophilia,” Haemophilia16(3), 518–524 (2010).
[PubMed]

Ossant, F.

R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, “High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation,” Ultrasound Med. Biol.34(2), 252–264 (2008).
[CrossRef] [PubMed]

Patat, F.

R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, “High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation,” Ultrasound Med. Biol.34(2), 252–264 (2008).
[CrossRef] [PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Peltié, P.

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

Piederrière, Y.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

Pieracci, F. M.

E. Gonzalez, F. M. Pieracci, E. E. Moore, and J. L. Kashuk, “Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography,” Semin. Thromb. Hemost.36(7), 723–737 (2010).
[CrossRef] [PubMed]

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Planat-Chrétien, A.

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

Polonski, L.

B. Hudzik, J. Szkodzinski, and L. Polonski, “Pulmonary embolism and intra-aortic thrombosis in essential thrombocythaemia,” Br. J. Haematol.158(5), 562 (2012).
[CrossRef] [PubMed]

Pouteau, P.

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

Puckett, L. G.

L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005).
[CrossRef] [PubMed]

L. G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, and L. G. Bachas, “Monitoring blood coagulation with magnetoelastic sensors,” Biosens. Bioelectron.18(5-6), 675–681 (2003).
[CrossRef] [PubMed]

Raffini, L.

L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
[CrossRef] [PubMed]

Regoeczi, E.

S. Niewiarowski, E. Regoeczi, G. J. Stewart, A. F. Senyl, and J. F. Mustard, “Platelet interaction with polymerizing fibrin,” J. Clin. Invest.51(3), 685–700 (1972).
[CrossRef] [PubMed]

Reilly, D.

E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
[CrossRef] [PubMed]

Rensen, B. B. SÃ.

D. Viuff, S. R. Andersen, B. B. SÃ. Rensen, and S. Lethagen, “Optimizing thrombelastography (TEG) assay conditions to monitor rFVIIa (NovoSeven®) therapy in haemophilia a patients,” Thromb. Res.126, 144–149 (2010).
[CrossRef] [PubMed]

Reynolds, E. J.

J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
[CrossRef] [PubMed]

Rice, T. B.

Saito, H.

H. Saito, T. Matsushita, and T. Kojima, “Historical perspective and future direction of coagulation research,” J. Thromb. Haemost.9(Suppl 1), 352–363 (2011).
[CrossRef] [PubMed]

Sandström, P.

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

Schwed, A.

L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
[CrossRef] [PubMed]

Senyl, A. F.

S. Niewiarowski, E. Regoeczi, G. J. Stewart, A. F. Senyl, and J. F. Mustard, “Platelet interaction with polymerizing fibrin,” J. Clin. Invest.51(3), 685–700 (1972).
[CrossRef] [PubMed]

Shang, Y.

Sheridan, J. T.

Sinn, S.

L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
[CrossRef] [PubMed]

Sjödahl, M.

Stevens, S. D.

Stewart, G. J.

S. Niewiarowski, E. Regoeczi, G. J. Stewart, A. F. Senyl, and J. F. Mustard, “Platelet interaction with polymerizing fibrin,” J. Clin. Invest.51(3), 685–700 (1972).
[CrossRef] [PubMed]

Sullivan, S.

E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
[CrossRef] [PubMed]

Suvajac, N.

C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
[CrossRef] [PubMed]

Szkodzinski, J.

B. Hudzik, J. Szkodzinski, and L. Polonski, “Pulmonary embolism and intra-aortic thrombosis in essential thrombocythaemia,” Br. J. Haematol.158(5), 562 (2012).
[CrossRef] [PubMed]

Tanzer, M.

L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
[CrossRef] [PubMed]

Tearney, G. J.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci.24(3), 439–445 (2009).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser Speckle Imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt.11(2), 021006 (2006).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Tee, S. Y.

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 051505 (2002).
[CrossRef] [PubMed]

Tengvall, P.

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

Thai, J.

J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
[CrossRef] [PubMed]

Thompson, O. B.

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
[CrossRef] [PubMed]

Tripodi, A.

A. Tripodi and P. M. Mannucci, “The coagulopathy of chronic liver disease,” N. Engl. J. Med.365(2), 147–156 (2011).
[CrossRef] [PubMed]

Tromberg, B. J.

Urbas, A.

L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005).
[CrossRef] [PubMed]

van der Starre, P. J.

J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
[CrossRef] [PubMed]

Vikinge, T. P.

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

Viuff, D.

D. Viuff, S. R. Andersen, B. B. SÃ. Rensen, and S. Lethagen, “Optimizing thrombelastography (TEG) assay conditions to monitor rFVIIa (NovoSeven®) therapy in haemophilia a patients,” Thromb. Res.126, 144–149 (2010).
[CrossRef] [PubMed]

P. I. Johansson, L. Bochsen, S. Andersen, and D. Viuff, “Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography,” Transfusion48(11), 2377–2383 (2008).
[CrossRef] [PubMed]

Wang, S. H.

C. C. Huang and S. H. Wang, “Assessment of blood coagulation under various flow conditions with ultrasound backscattering,” IEEE Trans. Biomed. Eng.54(12), 2223–2230 (2007).
[CrossRef] [PubMed]

Weisel, J. W.

J. W. Weisel, “The mechanical properties of fibrin for basic scientists and clinicians,” Biophys. Chem.112(2-3), 267–276 (2004).
[CrossRef] [PubMed]

Weitz, D. A.

B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2), 021504 (2005).
[CrossRef] [PubMed]

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 051505 (2002).
[CrossRef] [PubMed]

L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum.70(8), 3214 (1999).
[CrossRef]

T. G. Mason, H. Gang, and D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A14(1), 139–149 (1997).
[CrossRef]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett.74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Wells-Gray, E. M.

Wendel, H. P.

L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
[CrossRef] [PubMed]

Wetterö, J.

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

Whiting, D.

D. Whiting and J. A. Dinardo, “TEG and ROTEM: Technology and clinical applications,” Am. J. Hematol. (2013).

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Xi, J.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011).
[CrossRef] [PubMed]

Yassin, D.

G. Young, R. Zhang, R. Miller, D. Yassin, and D. J. Nugent, “Comparison of kaolin and tissue factor activated thromboelastography in haemophilia,” Haemophilia16(3), 518–524 (2010).
[PubMed]

Yelin, D.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser Speckle Imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008).
[CrossRef] [PubMed]

Young, G.

G. Young, R. Zhang, R. Miller, D. Yassin, and D. J. Nugent, “Comparison of kaolin and tissue factor activated thromboelastography in haemophilia,” Haemophilia16(3), 518–524 (2010).
[PubMed]

Yu, G.

Zhang, R.

G. Young, R. Zhang, R. Miller, D. Yassin, and D. J. Nugent, “Comparison of kaolin and tissue factor activated thromboelastography in haemophilia,” Haemophilia16(3), 518–524 (2010).
[PubMed]

Zheng, X. L.

L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
[CrossRef] [PubMed]

Ziegler, C.

L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
[CrossRef] [PubMed]

Anal. Chem.

L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010).
[CrossRef] [PubMed]

Ann. Med.

G. Lippi, M. Franchini, M. Montagnana, and E. J. Favaloro, “Inherited disorders of blood coagulation,” Ann. Med.44(5), 405–418 (2012).
[CrossRef] [PubMed]

Appl. Opt.

Best Pract. Res. Clin. Anaesthesiol.

P. Innerhofer and J. Kienast, “Principles of perioperative coagulopathy,” Best Pract. Res. Clin. Anaesthesiol.24(1), 1–14 (2010).
[CrossRef] [PubMed]

Biomed. Opt. Express

Biophys. Chem.

J. W. Weisel, “The mechanical properties of fibrin for basic scientists and clinicians,” Biophys. Chem.112(2-3), 267–276 (2004).
[CrossRef] [PubMed]

Biorheology

M. Kaibara, “Rheology of blood coagulation,” Biorheology33(2), 101–117 (1996).
[CrossRef] [PubMed]

Biosens. Bioelectron.

H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991).
[CrossRef] [PubMed]

L. G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, and L. G. Bachas, “Monitoring blood coagulation with magnetoelastic sensors,” Biosens. Bioelectron.18(5-6), 675–681 (2003).
[CrossRef] [PubMed]

L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005).
[CrossRef] [PubMed]

T. J. Cheng, H. C. Chang, and T. M. Lin, “A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood,” Biosens. Bioelectron.13(2), 147–156 (1998).
[CrossRef] [PubMed]

K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007).
[CrossRef] [PubMed]

T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000).
[CrossRef] [PubMed]

Blood Coagul. Fibrinolysis

C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008).
[CrossRef] [PubMed]

Br. J. Anaesth.

J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011).
[CrossRef] [PubMed]

Br. J. Haematol.

B. Hudzik, J. Szkodzinski, and L. Polonski, “Pulmonary embolism and intra-aortic thrombosis in essential thrombocythaemia,” Br. J. Haematol.158(5), 562 (2012).
[CrossRef] [PubMed]

Br. J. Hosp. Med. (Lond.)

J. C. Duchesne and J. B. Holcomb, “Damage control resuscitation: addressing trauma-induced coagulopathy,” Br. J. Hosp. Med. (Lond.)70(1), 22–25 (2009).
[PubMed]

Circulation

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005).
[CrossRef] [PubMed]

Haemophilia

G. Young, R. Zhang, R. Miller, D. Yassin, and D. J. Nugent, “Comparison of kaolin and tissue factor activated thromboelastography in haemophilia,” Haemophilia16(3), 518–524 (2010).
[PubMed]

IEEE Trans. Biomed. Eng.

C. C. Huang and S. H. Wang, “Assessment of blood coagulation under various flow conditions with ultrasound backscattering,” IEEE Trans. Biomed. Eng.54(12), 2223–2230 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004).
[CrossRef] [PubMed]

M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
[CrossRef] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt.11(2), 021006 (2006).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser Speckle Imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011).
[CrossRef] [PubMed]

J. Clin. Invest.

S. Niewiarowski, E. Regoeczi, G. J. Stewart, A. F. Senyl, and J. F. Mustard, “Platelet interaction with polymerizing fibrin,” J. Clin. Invest.51(3), 685–700 (1972).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Thromb. Haemost.

H. Saito, T. Matsushita, and T. Kojima, “Historical perspective and future direction of coagulation research,” J. Thromb. Haemost.9(Suppl 1), 352–363 (2011).
[CrossRef] [PubMed]

Lasers Med. Sci.

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci.24(3), 439–445 (2009).
[CrossRef] [PubMed]

Med. Phys.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

N. Engl. J. Med.

A. Tripodi and P. M. Mannucci, “The coagulopathy of chronic liver disease,” N. Engl. J. Med.365(2), 147–156 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Pediatr. Cardiol.

L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009).
[CrossRef] [PubMed]

Pharmacotherapy

E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2), 021504 (2005).
[CrossRef] [PubMed]

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 051505 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett.74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

PLoS ONE

Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS ONE8(5), e65014 (2013).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum.70(8), 3214 (1999).
[CrossRef]

Rheol. Acta

T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta39(4), 371–378 (2000).
[CrossRef]

Sci. Rep.

Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep.2, 316 (2012).
[CrossRef] [PubMed]

Semin. Thromb. Hemost.

M. Levi, “Disseminated intravascular coagulation: a disease-specific approach,” Semin. Thromb. Hemost.36(4), 363–365 (2010).
[CrossRef] [PubMed]

E. Gonzalez, F. M. Pieracci, E. E. Moore, and J. L. Kashuk, “Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography,” Semin. Thromb. Hemost.36(7), 723–737 (2010).
[CrossRef] [PubMed]

Thromb. Res.

D. Viuff, S. R. Andersen, B. B. SÃ. Rensen, and S. Lethagen, “Optimizing thrombelastography (TEG) assay conditions to monitor rFVIIa (NovoSeven®) therapy in haemophilia a patients,” Thromb. Res.126, 144–149 (2010).
[CrossRef] [PubMed]

Transfusion

P. I. Johansson, L. Bochsen, S. Andersen, and D. Viuff, “Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography,” Transfusion48(11), 2377–2383 (2008).
[CrossRef] [PubMed]

Ultrasound Med. Biol.

R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, “High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation,” Ultrasound Med. Biol.34(2), 252–264 (2008).
[CrossRef] [PubMed]

J. L. Gennisson, S. Lerouge, and G. Cloutier, “Assessment by transient elastography of the viscoelastic properties of blood during clotting,” Ultrasound Med. Biol.32(10), 1529–1537 (2006).
[CrossRef] [PubMed]

Other

M. Jose, M. W. Kowarz, K. K. Sarbadhikari, and P. R. Ashe, “MEMS interstitial prothrombin time test,” US Patent 2009/0093697 A1 (Aug 11, 2008 2008).

F. Scheffold, F. Cardinaux, S. Romer, P. Schurtenberger, S. Skipetrov, and L. Cipelletti, “Optical Microrheology of Soft Complex Materials,” in Wave Scattering in Complex Media: From Theory to Applications, B. Tiggelen and S. Skipetrov, eds. (Springer Netherlands, 2003), pp. 553–564.

T. Lee, L. Tchvialeva, H. Lui, H. Zeng, and D. McLean, “In-Vivo Skin Roughness Measurement by Laser Speckle,” in Fringe 2013, W. Osten, ed. (Springer Berlin Heidelberg, 2014), pp. 933–936.

D. Whiting and J. A. Dinardo, “TEG and ROTEM: Technology and clinical applications,” Am. J. Hematol. (2013).

E. M. VanCott and M. Laposata, “Coagulation,” in The Laboratory Test Handbook, 5th ed., D. S. Jacobs, D. K. Oxley, and W. R. DeMott, eds. (Lexi-comp, Cleveland, 2001), pp. 327–358.

H. F. Bunn and J. C. Aster, Pathophysiology of Blood Disorders (McGraw-Hill Medical, United States, 2011).

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, United States, 2007).

D. A. Weitz and D. J. Pine, “Diffusing-Wave Spectroscopy,” in Dynamic Light Scattering, W. Brown, ed. (Oxford Univ. Press, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(A) Laser speckle patterns captured from a human blood sample showing time-dependent speckle intensity modulation during coagulation at 0, 4, 6 and 10 min following coagulation activation with kaolin. (B) Blood sample cartridge employed for LSR measurements (Grace Bio-Labs). The cartridge consists of a small chamber (volume = 100 μL) made of a blood compatible silicon base sandwiched between thin (0.15 mm) polycarbonate sheets. The clear polycarbonate sheet provides a clear optical window for LSR measurements. (C) Schematic diagram of the LSR optical setup used for blood coagulation assessment. Polarized light (690 nm, 9 mW) from a diode laser (Newport Corp., LPM690-30C) was focused (spot size 100 µm) on the imaging chamber containing ~100 µL of kaolin-activated blood. Cross-polarized laser speckle patterns were acquired at 180° back-scattering geometry via a beam-splitter using a high speed CMOS camera (Basler AG, acA2000-340km) equipped with a focusing lens (Edmund Optics, NT59-872). The captured speckle patterns were transferred to a computer for further processing.

Fig. 2
Fig. 2

(A) Speckle intensity autocorrelation curve, g2(t), measured at 0, 6, 10, and 12 minutes during coagulation process from a human blood sample. It was observed that g2(t) decay slowed down as blood coagulation progressed. No significant change in the g2(t) decay trend was observed after completion of clot formation. Slower g2(t) decay and the corresponding increase in speckle autocorrelation time constant (τ) indicated an increase in clot viscoelastic modulus during coagulation process. (B) Speckle autocorrelation time constant, τ (primary y-axis), and the viscoelastic modulus |G*(ω)|ω = 1 Hz (secondary y-axis) plotted as a function of coagulation time for a human blood sample. Similar trends were observed for both the τ, and |G*| curves during coagulation. In each case, the average value of the three LSR τ-measurements is plotted and the error bars depict standard deviations.

Fig. 3
Fig. 3

Time trace of the speckle autocorrelation time constant, τ(t), (A) Blood sample with normal aPTT and PT showed shorter clotting time, CTLSR in comparison to blood sample with prolonged aPTT and PT values. (B) Maximum clot stiffness (τMax) can also be estimated from the τ(t) curve. Increased τMax is measured for the blood sample from the patient with high fibrinogen level indicating increased clot viscoelastic modulus in comparison with the blood sample from a normal fibrinogen patient.

Fig. 4
Fig. 4

Comparison of LSR clotting time (CTLSR) measured with (A) activated partial thromboplastin time (aPTT) and (B) Prothrombin time (PT) in 50 patient blood samples. (C) Comparison of maximum clot stiffness, τMax with fibrinogen levels in 25 blood samples. A statistically significant strong positive correlation with conventional coagulation tests (CCT) results in all cases demonstrates the utility of LSR for blood coagulation assessment.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g 2 (t)= I( t 0 )I( t 0 +t) pixels I ( t 0 ) 2 pixels I ( t 0 +t) 2 pixels t 0
g 2 (t)=β e 2γ k 2 Δ r 2 (t) + 3 μ a μ s (1g) +1
G * ( ω )= K b T aπ Δ r 2 (1/ω) Γ[ 1+α(ω) ]
G * ( ω )= K B T πa r 0 2 (1+j τ D ω)= K B T πa r 0 2 +j K B T τ D ω πa r 0 2

Metrics