Abstract

We present a novel lens-based broadband near-infrared spectroscopy system to simultaneously measure cerebral changes in tissue oxygenation and haemodynamics via estimation of the changes in haemoglobin concentration; in addition to oxygen utilization via the measurement of the oxidation state of cytochrome-c-oxidase (CCO). We demonstrate the use of the system in a cohort of 6 newborn infants with neonatal encephalopathy in the Neonatal Intensive Care Unit for continuous measurement periods of up to 5 days. NIRS data was collected from above the frontal lobe on the left and right hemispheres simultaneously with systemic data to allow multimodal data analysis. This allowed us to study the NIRS variables in response to global pathophysiological events and we focused our analysis to spontaneous oxygen desaturations. We identified changes from the NIRS variables during 236 oxygen desaturations from over 212 hours of data with a change from the baseline to nadir of −12 ± 3%. There was a consistent negative change in the Δ[HbD] (= oxygenated – deoxygenated haemoglobin) and Δ[oxCCO] measurements, mean decreases were 3.0 ± 1.7μM and 0.22 ± 0.11μM, and a positive change in the Δ[HbT] (= oxygenated + deoxygenated haemoglobin) measurements across all subjects, mean increase was 0.85 ± 0.58μM. We have shown with a feasibility study that the relationship between haemoglobin oxygenation changes and CCO oxidation changes during these desaturation events was significantly associated with a magnetic resonance spectroscopy (MRS)-measured biomarker of injury severity (r = 0.91, p<0.01).

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation

Phong Phan, David Highton, Jonathan Lai, Martin Smith, Clare Elwell, and Ilias Tachtsidis
Biomed. Opt. Express 7(11) 4424-4440 (2016)

Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension

S. Kleiser, D. Ostojic, B. Andresen, N. Nasseri, H. Isler, F. Scholkmann, T. Karen, G. Greisen, and M. Wolf
Biomed. Opt. Express 9(1) 86-101 (2018)

Perioperative cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle physiology

Mathieu Dehaes, Henry H. Cheng, Erin M. Buckley, Pei-Yi Lin, Silvina Ferradal, Kathryn Williams, Rutvi Vyas, Katherine Hagan, Daniel Wigmore, Erica McDavitt, Janet S. Soul, Maria Angela Franceschini, Jane W. Newburger, and P. Ellen Grant
Biomed. Opt. Express 6(12) 4749-4767 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
    [Crossref] [PubMed]
  2. M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36(4), 807–834 (2009).
    [Crossref] [PubMed]
  3. D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
    [Crossref] [PubMed]
  4. F. Zheng, R. Sheinberg, M.-S. Yee, M. Ono, Y. Zheng, and C. W. Hogue, “Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review,” Anesth. Analg. 116(3), 663–676 (2013).
    [Crossref] [PubMed]
  5. G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
    [Crossref] [PubMed]
  6. F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
    [Crossref] [PubMed]
  7. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
    [Crossref] [PubMed]
  8. M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
    [Crossref] [PubMed]
  9. H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St. Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
    [Crossref] [PubMed]
  10. A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
    [Crossref] [PubMed]
  11. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
    [Crossref] [PubMed]
  12. I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
    [Crossref] [PubMed]
  13. P. P. Drury, L. Bennet, L. C. Booth, J. O. Davidson, G. Wassink, and A. J. Gunn, “Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep,” PLoS ONE 7(6), e39273 (2012).
    [Crossref] [PubMed]
  14. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
    [Crossref] [PubMed]
  15. I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
    [Crossref] [PubMed]
  16. A. Ghosh, I. Tachtsidis, C. Kolyva, C. E. Cooper, M. Smith, and C. E. Elwell, “Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation,” Adv. Exp. Med. Biol. 737, 119–124 (2012).
    [Crossref] [PubMed]
  17. A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome C oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
    [Crossref] [PubMed]
  18. J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
    [Crossref] [PubMed]
  19. A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
    [Crossref]
  20. C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
    [Crossref] [PubMed]
  21. N. N. Finer, C. M. Robertson, R. T. Richards, L. E. Pinnell, and K. L. Peters, “Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome,” J. Pediatr. 98(1), 112–117 (1981).
    [Crossref] [PubMed]
  22. A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
    [Crossref] [PubMed]
  23. R. M. Pressler, G. B. Boylan, M. Morton, C. D. Binnie, and J. M. Rennie, “Early serial EEG in hypoxic ischaemic encephalopathy,” Clin. Neurophysiol. 112(1), 31–37 (2001).
    [Crossref] [PubMed]
  24. P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
    [Crossref] [PubMed]
  25. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
    [Crossref] [PubMed]
  26. C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
    [Crossref] [PubMed]
  27. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
    [Crossref] [PubMed]
  28. F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
    [Crossref] [PubMed]
  29. K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
    [Crossref] [PubMed]
  30. K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
    [Crossref] [PubMed]
  31. C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
    [Crossref] [PubMed]
  32. H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
    [Crossref] [PubMed]
  33. M. Diop, E. Wright, V. Toronov, T. Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
    [Crossref] [PubMed]
  34. O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49(32), 6324–6332 (2010).
    [Crossref] [PubMed]
  35. Y. Sakata, M. Abajian, M. O. Ripple, and R. Springett, “Measurement of the oxidation state of mitochondrial cytochrome c from the neocortex of the mammalian brain,” Biomed. Opt. Express 3(8), 1933–1946 (2012).
    [Crossref] [PubMed]
  36. M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol. 4(11), e1000212 (2008).
    [Crossref] [PubMed]
  37. A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
    [PubMed]
  38. P. Wintermark, A. Hansen, S. K. Warfield, D. Dukhovny, and J. S. Soul, “Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia,” Neuroimage 85(1), 287–293 (2014).
    [Crossref] [PubMed]
  39. A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
    [Crossref] [PubMed]
  40. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A Tissue Oxygenation Monitor using NIR Spatially Resolved Spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
    [Crossref]
  41. A. Li, R. Kwong, A. Cerussi, S. Merritt, C. Hayakawa, and B. Tromberg, “Method for recovering quantitative broadband diffuse optical spectra from layered media,” Appl. Opt. 46(21), 4828–4833 (2007).
    [Crossref] [PubMed]

2014 (4)

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

M. Diop, E. Wright, V. Toronov, T. Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

P. Wintermark, A. Hansen, S. K. Warfield, D. Dukhovny, and J. S. Soul, “Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia,” Neuroimage 85(1), 287–293 (2014).
[Crossref] [PubMed]

2013 (3)

A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
[Crossref] [PubMed]

F. Zheng, R. Sheinberg, M.-S. Yee, M. Ono, Y. Zheng, and C. W. Hogue, “Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review,” Anesth. Analg. 116(3), 663–676 (2013).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome C oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

2012 (6)

P. P. Drury, L. Bennet, L. C. Booth, J. O. Davidson, G. Wassink, and A. J. Gunn, “Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep,” PLoS ONE 7(6), e39273 (2012).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, C. E. Cooper, M. Smith, and C. E. Elwell, “Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation,” Adv. Exp. Med. Biol. 737, 119–124 (2012).
[Crossref] [PubMed]

Y. Sakata, M. Abajian, M. O. Ripple, and R. Springett, “Measurement of the oxidation state of mitochondrial cytochrome c from the neocortex of the mammalian brain,” Biomed. Opt. Express 3(8), 1933–1946 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St. Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

2011 (3)

C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
[Crossref] [PubMed]

2010 (4)

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49(32), 6324–6332 (2010).
[Crossref] [PubMed]

2009 (2)

M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36(4), 807–834 (2009).
[Crossref] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

2008 (3)

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[Crossref] [PubMed]

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol. 4(11), e1000212 (2008).
[Crossref] [PubMed]

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

2007 (5)

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

A. Li, R. Kwong, A. Cerussi, S. Merritt, C. Hayakawa, and B. Tromberg, “Method for recovering quantitative broadband diffuse optical spectra from layered media,” Appl. Opt. 46(21), 4828–4833 (2007).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

2004 (1)

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

2002 (1)

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

2001 (1)

R. M. Pressler, G. B. Boylan, M. Morton, C. D. Binnie, and J. M. Rennie, “Early serial EEG in hypoxic ischaemic encephalopathy,” Clin. Neurophysiol. 112(1), 31–37 (2001).
[Crossref] [PubMed]

1999 (1)

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

1995 (2)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
[Crossref] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

1994 (1)

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

1991 (1)

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

1981 (1)

N. N. Finer, C. M. Robertson, R. T. Richards, L. E. Pinnell, and K. L. Peters, “Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome,” J. Pediatr. 98(1), 112–117 (1981).
[Crossref] [PubMed]

Abajian, M.

Aggarwal, A.

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

Aldridge, R. F.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Armstrong, J.

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Azzopardi, D.

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Baer, E.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Bainbridge, A.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Banaji, M.

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol. 4(11), e1000212 (2008).
[Crossref] [PubMed]

Bennet, L.

P. P. Drury, L. Bennet, L. C. Booth, J. O. Davidson, G. Wassink, and A. J. Gunn, “Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep,” PLoS ONE 7(6), e39273 (2012).
[Crossref] [PubMed]

Binnie, C. D.

R. M. Pressler, G. B. Boylan, M. Morton, C. D. Binnie, and J. M. Rennie, “Early serial EEG in hypoxic ischaemic encephalopathy,” Clin. Neurophysiol. 112(1), 31–37 (2001).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

Booth, L. C.

P. P. Drury, L. Bennet, L. C. Booth, J. O. Davidson, G. Wassink, and A. J. Gunn, “Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep,” PLoS ONE 7(6), e39273 (2012).
[Crossref] [PubMed]

Boylan, G. B.

R. M. Pressler, G. B. Boylan, M. Morton, C. D. Binnie, and J. M. Rennie, “Early serial EEG in hypoxic ischaemic encephalopathy,” Clin. Neurophysiol. 112(1), 31–37 (2001).
[Crossref] [PubMed]

Brenner, M.

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Broad, K. D.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Brocklehurst, P.

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Brown, G.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Brown, G. C.

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

Cady, E. B.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Caicedo, A.

A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
[Crossref] [PubMed]

Carp, S. A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

Casaer, P.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Cerussi, A.

Clemence, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
[Crossref] [PubMed]

Cooper, C. E.

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, C. E. Cooper, M. Smith, and C. E. Elwell, “Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation,” Adv. Exp. Med. Biol. 737, 119–124 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
[Crossref] [PubMed]

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol. 4(11), e1000212 (2008).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Cope, M.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
[Crossref] [PubMed]

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

Davidson, J. O.

P. P. Drury, L. Bennet, L. C. Booth, J. O. Davidson, G. Wassink, and A. J. Gunn, “Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep,” PLoS ONE 7(6), e39273 (2012).
[Crossref] [PubMed]

Dehaes, M.

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

Delpy, D. T.

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
[Crossref] [PubMed]

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

Devlieger, H.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Diop, M.

M. Diop, E. Wright, V. Toronov, T. Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St. Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

Dirnagl, U.

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

Drury, P. P.

P. P. Drury, L. Bennet, L. C. Booth, J. O. Davidson, G. Wassink, and A. J. Gunn, “Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep,” PLoS ONE 7(6), e39273 (2012).
[Crossref] [PubMed]

Dukhovny, D.

P. Wintermark, A. Hansen, S. K. Warfield, D. Dukhovny, and J. S. Soul, “Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia,” Neuroimage 85(1), 287–293 (2014).
[Crossref] [PubMed]

Duncan, A.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
[Crossref] [PubMed]

Edwards, A. D.

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

Elliott, J. T.

Elliott, M. J.

A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
[Crossref] [PubMed]

Elwell, C.

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome C oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

Elwell, C. E.

A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, C. E. Cooper, M. Smith, and C. E. Elwell, “Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation,” Adv. Exp. Med. Biol. 737, 119–124 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[Crossref] [PubMed]

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol. 4(11), e1000212 (2008).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
[Crossref] [PubMed]

Faulkner, S. D.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Fenoglio, A.

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

Finer, N. N.

N. N. Finer, C. M. Robertson, R. T. Richards, L. E. Pinnell, and K. L. Peters, “Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome,” J. Pediatr. 98(1), 112–117 (1981).
[Crossref] [PubMed]

Franceschini, M. A.

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

Ghosh, A.

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome C oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, C. E. Cooper, M. Smith, and C. E. Elwell, “Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation,” Adv. Exp. Med. Biol. 737, 119–124 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

Golay, X.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Grant, P. E.

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

Greisen, G.

M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36(4), 807–834 (2009).
[Crossref] [PubMed]

Gunn, A. J.

P. P. Drury, L. Bennet, L. C. Booth, J. O. Davidson, G. Wassink, and A. J. Gunn, “Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep,” PLoS ONE 7(6), e39273 (2012).
[Crossref] [PubMed]

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Halliday, H.

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Hansen, A.

P. Wintermark, A. Hansen, S. K. Warfield, D. Dukhovny, and J. S. Soul, “Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia,” Neuroimage 85(1), 287–293 (2014).
[Crossref] [PubMed]

Hayakawa, C.

Heekeren, H. R.

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

Highton, D.

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome C oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

Hogue, C. W.

F. Zheng, R. Sheinberg, M.-S. Yee, M. Ono, Y. Zheng, and C. W. Hogue, “Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review,” Anesth. Analg. 116(3), 663–676 (2013).
[Crossref] [PubMed]

Hoskote, A.

A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
[Crossref] [PubMed]

Juszczak, E.

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Kirkbride, V.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Kohl, M.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

Kohl-Bareis, M.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

Kolyva, C.

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome C oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, C. E. Cooper, M. Smith, and C. E. Elwell, “Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation,” Adv. Exp. Med. Biol. 737, 119–124 (2012).
[Crossref] [PubMed]

Kreuter, K.

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Krishnamoorthy, K. S.

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

Kwong, R.

Lee, J.

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Lee, T. Y.

M. Diop, E. Wright, V. Toronov, T. Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

Lee, T.-Y.

Lemmers, P.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

Leunens, V.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Leung, T. S.

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

Levene, M.

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Li, A.

Lin, P.-Y.

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

Lorek, A.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Mallet, A.

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol. 4(11), e1000212 (2008).
[Crossref] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Matcher, S. J.

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

McCormick, D. C.

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

Meek, J. H.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
[Crossref] [PubMed]

Merritt, S.

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Meyns, B.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Miserez, M.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Moroz, T.

Morton, M.

R. M. Pressler, G. B. Boylan, M. Morton, C. D. Binnie, and J. M. Rennie, “Early serial EEG in hypoxic ischaemic encephalopathy,” Clin. Neurophysiol. 112(1), 31–37 (2001).
[Crossref] [PubMed]

Muehlemann, T.

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

Naulaers, G.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Nicholls, P.

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol. 4(11), e1000212 (2008).
[Crossref] [PubMed]

Obrig, H.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

Ono, M.

F. Zheng, R. Sheinberg, M.-S. Yee, M. Ono, Y. Zheng, and C. W. Hogue, “Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review,” Anesth. Analg. 116(3), 663–676 (2013).
[Crossref] [PubMed]

Owen-Reece, H.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Papademetriou, M. D.

A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
[Crossref] [PubMed]

Patel, M.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

Peebles, D.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Penrice, J.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Peters, K. L.

N. N. Finer, C. M. Robertson, R. T. Richards, L. E. Pinnell, and K. L. Peters, “Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome,” J. Pediatr. 98(1), 112–117 (1981).
[Crossref] [PubMed]

Pinnell, L. E.

N. N. Finer, C. M. Robertson, R. T. Richards, L. E. Pinnell, and K. L. Peters, “Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome,” J. Pediatr. 98(1), 112–117 (1981).
[Crossref] [PubMed]

Pressler, R. M.

R. M. Pressler, G. B. Boylan, M. Morton, C. D. Binnie, and J. M. Rennie, “Early serial EEG in hypoxic ischaemic encephalopathy,” Clin. Neurophysiol. 112(1), 31–37 (2001).
[Crossref] [PubMed]

Price, D.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Pritchard, C.

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

Pucci, O.

Rennie, J. M.

R. M. Pressler, G. B. Boylan, M. Morton, C. D. Binnie, and J. M. Rennie, “Early serial EEG in hypoxic ischaemic encephalopathy,” Clin. Neurophysiol. 112(1), 31–37 (2001).
[Crossref] [PubMed]

Reynolds, E. O.

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

Reynolds, E. O. R.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Richards, R. T.

N. N. Finer, C. M. Robertson, R. T. Richards, L. E. Pinnell, and K. L. Peters, “Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome,” J. Pediatr. 98(1), 112–117 (1981).
[Crossref] [PubMed]

Ripple, M. O.

Robertson, C. M.

N. N. Finer, C. M. Robertson, R. T. Richards, L. E. Pinnell, and K. L. Peters, “Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome,” J. Pediatr. 98(1), 112–117 (1981).
[Crossref] [PubMed]

Robertson, N. J.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Roche-Labarbe, N.

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

Rosa Fortuno, C.

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

Roth, S. C.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

Sakata, Y.

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

Selb, J.

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

Sheinberg, R.

F. Zheng, R. Sheinberg, M.-S. Yee, M. Ono, Y. Zheng, and C. W. Hogue, “Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review,” Anesth. Analg. 116(3), 663–676 (2013).
[Crossref] [PubMed]

Smith, M.

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome C oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, C. E. Cooper, M. Smith, and C. E. Elwell, “Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation,” Adv. Exp. Med. Biol. 737, 119–124 (2012).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

Soul, J. S.

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

P. Wintermark, A. Hansen, S. K. Warfield, D. Dukhovny, and J. S. Soul, “Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia,” Neuroimage 85(1), 287–293 (2014).
[Crossref] [PubMed]

Spichtig, S.

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

Springett, R.

St Lawrence, K.

M. Diop, E. Wright, V. Toronov, T. Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49(32), 6324–6332 (2010).
[Crossref] [PubMed]

St. Lawrence, K.

Steinbrink, J.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

Strohm, B.

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Surova, A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

Tachtsidis, I.

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome C oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, C. E. Cooper, M. Smith, and C. E. Elwell, “Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation,” Adv. Exp. Med. Biol. 737, 119–124 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Takei, Y.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Themelis, G.

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

Thomas, D. L.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Thoresen, M.

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Tisdall, M.

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

Tisdall, M. M.

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

Toronov, V.

Tromberg, B.

Tromberg, B. J.

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Tyszczuk, L.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
[Crossref] [PubMed]

Uludag, K.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

van Bel, F.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

Van Huffel, S.

A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
[Crossref] [PubMed]

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Villringer, A.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

von Pannwitz, W.

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

Warfield, S. K.

P. Wintermark, A. Hansen, S. K. Warfield, D. Dukhovny, and J. S. Soul, “Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia,” Neuroimage 85(1), 287–293 (2014).
[Crossref] [PubMed]

Warren, E. K.

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

Wassink, G.

P. P. Drury, L. Bennet, L. C. Booth, J. O. Davidson, G. Wassink, and A. J. Gunn, “Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep,” PLoS ONE 7(6), e39273 (2012).
[Crossref] [PubMed]

Weindling, M.

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

Wenzel, R.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

Whitelaw, A.

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Wintermark, P.

P. Wintermark, A. Hansen, S. K. Warfield, D. Dukhovny, and J. S. Soul, “Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia,” Neuroimage 85(1), 287–293 (2014).
[Crossref] [PubMed]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36(4), 807–834 (2009).
[Crossref] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Wright, E.

M. Diop, E. Wright, V. Toronov, T. Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

Wyatt, J. S.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

Wylezinska, M.

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Yee, M.-S.

F. Zheng, R. Sheinberg, M.-S. Yee, M. Ono, Y. Zheng, and C. W. Hogue, “Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review,” Anesth. Analg. 116(3), 663–676 (2013).
[Crossref] [PubMed]

Yeganeh, H. Z.

Zheng, F.

F. Zheng, R. Sheinberg, M.-S. Yee, M. Ono, Y. Zheng, and C. W. Hogue, “Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review,” Anesth. Analg. 116(3), 663–676 (2013).
[Crossref] [PubMed]

Zheng, Y.

F. Zheng, R. Sheinberg, M.-S. Yee, M. Ono, Y. Zheng, and C. W. Hogue, “Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review,” Anesth. Analg. 116(3), 663–676 (2013).
[Crossref] [PubMed]

Zhu, T.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (5)

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients During Hypercapnoea: A Broadband NIRS Study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, C. E. Cooper, M. Smith, and C. E. Elwell, “Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation,” Adv. Exp. Med. Biol. 737, 119–124 (2012).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome C oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[Crossref] [PubMed]

A. Caicedo, M. D. Papademetriou, C. E. Elwell, A. Hoskote, M. J. Elliott, S. Van Huffel, and I. Tachtsidis, “Canonical Correlation Analysis in the Study of Cerebral and Peripheral Haemodynamics Interrelations with Systemic Variables in Neonates Supported on ECMO,” Adv. Exp. Med. Biol. 765, 23–29 (2013).
[Crossref] [PubMed]

Anal. Biochem. (1)

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

Anesth. Analg. (1)

F. Zheng, R. Sheinberg, M.-S. Yee, M. Ono, Y. Zheng, and C. W. Hogue, “Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review,” Anesth. Analg. 116(3), 663–676 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (4)

Brit. Med. J (1)

A. D. Edwards, P. Brocklehurst, A. J. Gunn, H. Halliday, E. Juszczak, M. Levene, B. Strohm, M. Thoresen, A. Whitelaw, and D. Azzopardi, “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data,” Brit. Med. J 340, c363 (2010).
[Crossref] [PubMed]

Clin. Neurophysiol. (1)

R. M. Pressler, G. B. Boylan, M. Morton, C. D. Binnie, and J. M. Rennie, “Early serial EEG in hypoxic ischaemic encephalopathy,” Clin. Neurophysiol. 112(1), 31–37 (2001).
[Crossref] [PubMed]

Clin. Perinatol. (1)

M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36(4), 807–834 (2009).
[Crossref] [PubMed]

Hum. Brain Mapp. (1)

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy, and E. O. Reynolds, “Quantification of concentration changes in neonatal human cerebral oxidized cytochrome oxidase,” J. Appl. Physiol. 71(5), 1907–1913 (1991).
[PubMed]

J. Biomed. Opt. (3)

M. Diop, E. Wright, V. Toronov, T. Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (3)

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[Crossref] [PubMed]

M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J. S. Soul, M. A. Franceschini, and P. E. Grant, “Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia,” J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014).
[Crossref] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19(6), 592–603 (1999).
[Crossref] [PubMed]

J. Pediatr. (1)

N. N. Finer, C. M. Robertson, R. T. Richards, L. E. Pinnell, and K. L. Peters, “Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome,” J. Pediatr. 98(1), 112–117 (1981).
[Crossref] [PubMed]

Neonatology (2)

G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, M. Weindling, and H. Devlieger, “Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets,” Neonatology 92(2), 120–126 (2007).
[Crossref] [PubMed]

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

Neuroimage (3)

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

P. Wintermark, A. Hansen, S. K. Warfield, D. Dukhovny, and J. S. Soul, “Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia,” Neuroimage 85(1), 287–293 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Pediatr. Res. (1)

A. Lorek, Y. Takei, E. B. Cady, J. S. Wyatt, J. Penrice, A. D. Edwards, D. Peebles, M. Wylezinska, H. Owen-Reece, V. Kirkbride, C. E. Cooper, R. F. Aldridge, S. C. Roth, G. Brown, D. T. Delpy, and E. O. R. Reynolds, “Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy,” Pediatr. Res. 36(6), 699–706 (1994).
[Crossref] [PubMed]

Philos. Trans. A Math Phys. Eng. Sci. (2)

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
[Crossref] [PubMed]

C. E. Elwell and C. E. Cooper, “Making light work: illuminating the future of biomedical optics,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4358–4379 (2011).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).
[Crossref] [PubMed]

Physiol. Meas. (3)

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

PLOS Comput. Biol. (1)

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol. 4(11), e1000212 (2008).
[Crossref] [PubMed]

PLoS ONE (1)

P. P. Drury, L. Bennet, L. C. Booth, J. O. Davidson, G. Wassink, and A. J. Gunn, “Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep,” PLoS ONE 7(6), e39273 (2012).
[Crossref] [PubMed]

Other (2)

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage, doi: (2013).
[Crossref]

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A Tissue Oxygenation Monitor using NIR Spatially Resolved Spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Instrumentation diagram with experimental set up. b) Detector optode with optode holder. c) Ferrule of detector fibres for input into spectrograph vertically. d) Optode holder design with dimensions of fibre diameters (all detector fibres have the same diameter) and source-detector distances. e) Image of CYRIL system in NICU. f) Image of CYRIL optodes on a subject.

Fig. 2
Fig. 2

Acton LS 785 Spectrograph (Princeton Instruments, USA).

Fig. 3
Fig. 3

Schematic showing modified Beer-Lambert law and the input variables. Intensity spectra, I, are recorded simultaneously at all detectors (red = left side channel (detectors 1 to 4), blue = right side channel (detectors 5 to 8)) and the ROIs of each detector are binned. The intensity spectra are converted to change in attenuation, ΔA, and the change in concentration changes, Δc, are calculated using the UCLn algorithm with the specific extinction coefficient of the chromophores, ε, and the pathlength.

Fig. 4
Fig. 4

Example of SpO2 desaturation from channel 1 (left side) and channel 2 (right side) on subject 003 with start and nadir of desaturation marked for SpO2 and corresponding position in NIRS signals.

Fig. 5
Fig. 5

a) Example of intensity spectra before desaturation (SpO2 = 100%) and at the nadir of desaturation (SpO2 = 77%) in subject 003, left side channel, from the longest source-detector distance. A shift in the peak of the spectrum is observed. b) Change in attenuation between intensities shown in a) – this relates to Δ[HbO2] = ~-6 μM, Δ[HHb] = ~3 μM and Δ[oxCCO] = ~-1.5μM.

Fig. 6
Fig. 6

Attenuation-change spectra back-calculated from the calculated concentration changes during the largest SpO2 desaturation observed in each subject (subject number labelled on graphs). The presented spectra are the average of all spectra during the desaturation on the left side channel. The difference between the 3- and the 2-chromophore fit is plotted.

Tables (5)

Tables Icon

Table 1 Clinical details of subjects studied, including days on which NIRS and MR scans were performed.

Tables Icon

Table 2 Summary of spectrometer (combined spectrograph and CCD) specifications.

Tables Icon

Table 3 Number of desaturations, n, and mean ± standard deviation (SD) (to 2 significant figures) for all systemic variables during the desaturations per subject, and across all subjects. Thalamic Lac/NAA measured by MRS. Changes in MABP were not available (N/A) for 3 of the 6 subjects.

Tables Icon

Table 4 Pearson correlation coefficients (r) of magnitude of changes in >5% SpO2 desaturations for each subject across all days. *p<0.05, **p<0.01.

Tables Icon

Table 5 Pearson correlation coefficients, r, from magnitude of changes during oxygen desaturations correlated against MRS-measured Lac/NAA ratio. **p<0.01.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ Δ[Hb O 2 ] Δ[HHb] Δ[oxCCO] ]= 1 pathlength [ ε Hb O 2 ( λ 1 ) ε HHb ( λ 1 ) ε oxCCO ( λ 1 ) ε Hb O 2 ( λ 2 ) ε HHb ( λ 2 ) ε oxCCO ( λ 2 ) ε Hb O 2 ( λ n ) ε HHb ( λ n ) ε oxCCO ( λ n ) ] 1 [ ΔA( λ 1 ) ΔA( λ 2 ) ΔA( λ n ) ].

Metrics