Abstract

Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
    [PubMed]
  2. E. A. H. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci.47(3), 1251–1254 (2006).
    [CrossRef] [PubMed]
  3. S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci.87(9), 656–662 (2010).
    [CrossRef] [PubMed]
  4. D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci.81(4), 283–286 (2004).
    [CrossRef] [PubMed]
  5. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford 2000), pp.250–258.
  6. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
    [CrossRef] [PubMed]
  7. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  8. N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology115(10), 1679–1686 (2008).
    [CrossRef] [PubMed]
  9. A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
    [CrossRef] [PubMed]
  10. D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
    [CrossRef] [PubMed]
  11. M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt.17(5), 055001 (2012).
    [CrossRef] [PubMed]
  12. R. Navarro, F. Palos, and L. González, “Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A24(8), 2175–2185 (2007).
    [CrossRef] [PubMed]
  13. R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens,” J. Opt. Soc. Am. A24(9), 2911–2920 (2007).
    [CrossRef] [PubMed]
  14. G. Smith, D. A. Atchison, and B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A9(12), 2111–2117 (1992).
    [CrossRef] [PubMed]
  15. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49(6), 2531–2540 (2008).
    [CrossRef] [PubMed]
  16. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
    [CrossRef] [PubMed]
  17. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer Verlag, Berlin, 1980 ) pp. 65–67.
  18. H. von Helmholtz, Treatise on Physiological Optics, Vol. 1, translated from the 3rd German edition by J. P. C. Southall, Optical Society of America, Rochester, p.100. (1924).
  19. D. A. Atchison, “Age-related paraxial schematic emmetropic eyes,” Ophthalmic Physiol. Opt.29(1), 58–64 (2009).
    [CrossRef] [PubMed]
  20. W. N. Charman, Adnan, and D. A. Atchison, “Gradients of refractive index in the crystalline lens and transient changes in refraction among patients with diabetes,” Biomed. Opt. Express3(12), 3033–3042 (2012).
    [PubMed]
  21. S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
    [CrossRef] [PubMed]
  22. A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
    [CrossRef] [PubMed]
  23. C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci.84(10), 990–995 (2007).
    [CrossRef] [PubMed]
  24. R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci.36(3), 703–707 (1995).
    [PubMed]
  25. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
    [CrossRef] [PubMed]
  26. C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J.-M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett.38(2), 85–87 (2013).
    [CrossRef] [PubMed]
  27. M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res.43(22), 2363–2375 (2003).
    [CrossRef] [PubMed]
  28. K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
    [CrossRef] [PubMed]
  29. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision8(4), 29 (2008)
  30. F. J. Slataper, “Age norms of refraction and vision,” Arch. Ophthalmol.43(3), 466–481 (1950).
    [CrossRef]
  31. H. Saunders, “Age-dependence of human refractive errors,” Ophthalmic Physiol. Opt.1(3), 159–174 (1981).
    [CrossRef] [PubMed]

2013 (3)

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
[CrossRef] [PubMed]

C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J.-M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett.38(2), 85–87 (2013).
[CrossRef] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

2012 (2)

2011 (1)

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

2010 (1)

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci.87(9), 656–662 (2010).
[CrossRef] [PubMed]

2009 (1)

D. A. Atchison, “Age-related paraxial schematic emmetropic eyes,” Ophthalmic Physiol. Opt.29(1), 58–64 (2009).
[CrossRef] [PubMed]

2008 (5)

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology115(10), 1679–1686 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision8(4), 29 (2008)

2007 (3)

2006 (1)

E. A. H. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci.47(3), 1251–1254 (2006).
[CrossRef] [PubMed]

2005 (1)

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

2004 (1)

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci.81(4), 283–286 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res.43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

2001 (2)

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

1999 (1)

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
[CrossRef] [PubMed]

1998 (1)

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

1995 (1)

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci.36(3), 703–707 (1995).
[PubMed]

1992 (1)

1981 (1)

H. Saunders, “Age-dependence of human refractive errors,” Ophthalmic Physiol. Opt.1(3), 159–174 (1981).
[CrossRef] [PubMed]

1950 (1)

F. J. Slataper, “Age norms of refraction and vision,” Arch. Ophthalmol.43(3), 466–481 (1950).
[CrossRef]

Adnan,

Amelinckx, A.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Arrieta, E.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
[CrossRef] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Atchison, D. A.

W. N. Charman, Adnan, and D. A. Atchison, “Gradients of refractive index in the crystalline lens and transient changes in refraction among patients with diabetes,” Biomed. Opt. Express3(12), 3033–3042 (2012).
[PubMed]

D. A. Atchison, “Age-related paraxial schematic emmetropic eyes,” Ophthalmic Physiol. Opt.29(1), 58–64 (2009).
[CrossRef] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision8(4), 29 (2008)

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci.84(10), 990–995 (2007).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci.81(4), 283–286 (2004).
[CrossRef] [PubMed]

G. Smith, D. A. Atchison, and B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A9(12), 2111–2117 (1992).
[CrossRef] [PubMed]

Augusteyn, R. C.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Bahrami, M.

M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt.17(5), 055001 (2012).
[CrossRef] [PubMed]

Birkenfeld, J.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
[CrossRef] [PubMed]

Borja, D.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Bullimore, M. A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

Campbell, M. C. W.

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
[CrossRef] [PubMed]

Charman, W. N.

Cheong, S. H.

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci.87(9), 656–662 (2010).
[CrossRef] [PubMed]

Collins, M. J.

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci.87(9), 656–662 (2010).
[CrossRef] [PubMed]

de Castro, A.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

de Freitas, C.

Drexler, W.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Dubbelman, M.

N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology115(10), 1679–1686 (2008).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res.43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Fercher, A. F.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Findl, O.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Garner, L. F.

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci.36(3), 703–707 (1995).
[PubMed]

Glasser, A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
[CrossRef] [PubMed]

Goncharov, A. V.

M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt.17(5), 055001 (2012).
[CrossRef] [PubMed]

González, L.

González, L. M.

Hampson, K. M.

E. A. H. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci.47(3), 1251–1254 (2006).
[CrossRef] [PubMed]

Hemenger, R. P.

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci.36(3), 703–707 (1995).
[PubMed]

Hitzenberger, C. K.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Ho, A.

C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J.-M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett.38(2), 85–87 (2013).
[CrossRef] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Jain, R.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Jones, C. E.

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci.84(10), 990–995 (2007).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Kao, C. Y.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

Kashyap, P.

E. A. H. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci.47(3), 1251–1254 (2006).
[CrossRef] [PubMed]

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision8(4), 29 (2008)

Kostense, P. J.

N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology115(10), 1679–1686 (2008).
[CrossRef] [PubMed]

Maceo, B.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
[CrossRef] [PubMed]

Mallen, E. A. H.

E. A. H. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci.47(3), 1251–1254 (2006).
[CrossRef] [PubMed]

Manns, F.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
[CrossRef] [PubMed]

C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J.-M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett.38(2), 85–87 (2013).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Marcos, S.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision8(4), 29 (2008)

Meder, R.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Mutti, D. O.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

Navarro, R.

Ooi, C. S.

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci.36(3), 703–707 (1995).
[PubMed]

Palos, F.

Parel, J. M.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Parel, J.-M.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
[CrossRef] [PubMed]

C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J.-M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett.38(2), 85–87 (2013).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Patz, S.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

Pierscionek, B. K.

Polak, B. C. P.

N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology115(10), 1679–1686 (2008).
[CrossRef] [PubMed]

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision8(4), 29 (2008)

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci.84(10), 990–995 (2007).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Read, S. A.

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci.87(9), 656–662 (2010).
[CrossRef] [PubMed]

Richdale, K.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

Ringens, P. J.

N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology115(10), 1679–1686 (2008).
[CrossRef] [PubMed]

Rosen, A. M.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Ruggeri, M.

Saunders, H.

H. Saunders, “Age-dependence of human refractive errors,” Ophthalmic Physiol. Opt.1(3), 159–174 (1981).
[CrossRef] [PubMed]

Schmalbrock, P.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

Schmetterer, L.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Siedlecki, D.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

Sinnott, L. T.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

Slataper, F. J.

F. J. Slataper, “Age norms of refraction and vision,” Arch. Ophthalmol.43(3), 466–481 (1950).
[CrossRef]

Smith, G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision8(4), 29 (2008)

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci.81(4), 283–286 (2004).
[CrossRef] [PubMed]

G. Smith, D. A. Atchison, and B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A9(12), 2111–2117 (1992).
[CrossRef] [PubMed]

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision8(4), 29 (2008)

Uhlhorn, S.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

Uhlhorn, S. R.

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res.43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

Vrensen, G. F.

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res.43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

Wassenaar, P. A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res.43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

Wiemer, N. G. M.

N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology115(10), 1679–1686 (2008).
[CrossRef] [PubMed]

Woodman, E. C.

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci.87(9), 656–662 (2010).
[CrossRef] [PubMed]

Zadnik, K.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

Ziebarth, N.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

F. J. Slataper, “Age norms of refraction and vision,” Arch. Ophthalmol.43(3), 466–481 (1950).
[CrossRef]

Biomed. Opt. Express (1)

Invest. Ophthalmol. Vis. Sci. (7)

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci.36(3), 703–707 (1995).
[PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.54(9), 6197–6207 (2013).
[CrossRef] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci.54(2), 1095–1105 (2013).
[CrossRef] [PubMed]

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

E. A. H. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci.47(3), 1251–1254 (2006).
[CrossRef] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci.49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt.17(5), 055001 (2012).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Vision (1)

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision8(4), 29 (2008)

Ophthalmic Physiol. Opt. (2)

H. Saunders, “Age-dependence of human refractive errors,” Ophthalmic Physiol. Opt.1(3), 159–174 (1981).
[CrossRef] [PubMed]

D. A. Atchison, “Age-related paraxial schematic emmetropic eyes,” Ophthalmic Physiol. Opt.29(1), 58–64 (2009).
[CrossRef] [PubMed]

Ophthalmology (1)

N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology115(10), 1679–1686 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Optom. Vis. Sci. (4)

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci.84(10), 990–995 (2007).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci.87(9), 656–662 (2010).
[CrossRef] [PubMed]

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci.81(4), 283–286 (2004).
[CrossRef] [PubMed]

Vision Res. (5)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res.43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

Other (3)

Y. Le Grand and S. G. El Hage, Physiological Optics (Springer Verlag, Berlin, 1980 ) pp. 65–67.

H. von Helmholtz, Treatise on Physiological Optics, Vol. 1, translated from the 3rd German edition by J. P. C. Southall, Optical Society of America, Rochester, p.100. (1924).

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford 2000), pp.250–258.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top - variation in the average and equivalent refractive indices of a lens with the gradient of refractive index given by Eq. (1) as a function of the lens parameter p describing the index gradient: surface and central refractive indices are 1.37 and 1.415, respectively, and other details relevant to equivalent index are as in Table 1. Bottom - variation in the refractive error of the eye model given in Table 1 when the lens parameter p is changed.

Fig. 2
Fig. 2

Average and equivalent refractive indices for the crystalline lens as a function of age, as deduced using eye models based on Atchison [19]. The central and surface indices of the lens are assumed to remain constant at 1.415 and 1.37 respectively. See text for details.

Fig. 3
Fig. 3

Estimates of nav as a function of age. The thick black solid curve (see also Fig. 2) gives estimates made on the basis of the present model using Eq. (2) for p. For estimates based on the p-values given by Kasthurirangan et al. [15] (triangles), at 23 years the upper symbol is for the unaccommodated case and the lower symbol is for an accommodated case.

Fig. 4
Fig. 4

Variation of equivalent refractive index with age from different authors. The thick red dashed curve (see also Fig. 2) gives estimates made on the basis of the present model using Eq. (2) for p.

Tables (1)

Tables Icon

Table 1 Parameters of model eye

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n(ξ)= n c +( n s n c ) ( ξ 2 ) p
p= 1.1x1 0 7 ag e 4 + 2.85
[ t norm ] = 0 1 n( ξ )dξ = 0 1 { n c + ( n s n c ) ( ξ 2 ) p }.dξ= [ n c ξ + ( n s n c ) ( ξ ) 2p+1 /( 2p+1 ) ] 0 1 = n c + ( n s n c )/( 2p+1 ) = n av

Metrics