Abstract

A 3D living-cell culture in hydrogel has been developed as a standardized low-tensile-strength tissue proxy for study of ultrafast, pulsetrain-burst laser-tissue interactions. The hydrogel is permeable to fluorescent biomarkers and optically transparent, allowing viable and necrotic cells to be imaged in 3D by confocal microscopy. Good cell-viability allowed us to distinguish between typical cell mortality and delayed subcellular tissue damage (e.g., apoptosis and DNA repair complex formation), caused by laser irradiation. The range of necrosis depended on laser intensity, but not on pulsetrain-burst duration. DNA double-strand breaks were quantified, giving a preliminary upper limit for genetic damage following laser treatment.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation

Zuoming Qian, Andrés Covarrubias, Alexander W. Grindal, Margarete K. Akens, Lothar Lilge, and Robin S. Marjoribanks
Biomed. Opt. Express 7(6) 2331-2341 (2016)

Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations

Kresimir Franjic, Michael L. Cowan, Darren Kraemer, and R. J. Dwayne Miller
Opt. Express 17(25) 22937-22959 (2009)

Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery

K. Kuetemeyer, R. Rezgui, H. Lubatschowski, and A. Heisterkamp
Biomed. Opt. Express 1(2) 587-597 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
    [Crossref]
  2. I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
    [PubMed]
  3. P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
    [Crossref] [PubMed]
  4. G. Sutton, S. J. Bali, and C. Hodge, “Femtosecond cataract surgery: transitioning to laser cataract,” Curr. Opin. Ophthalmol. 24(1), 3–8 (2013).
    [Crossref] [PubMed]
  5. C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
    [Crossref] [PubMed]
  6. D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
    [Crossref] [PubMed]
  7. R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
    [Crossref] [PubMed]
  8. H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol. 299(5), H1728–H1735 (2010).
    [Crossref] [PubMed]
  9. K. Kuetemeyer, G. Kensah, M. Heidrich, H. Meyer, U. Martin, I. Gruh, and A. Heisterkamp, “Two-photon induced collagen cross-linking in bioartificial cardiac tissue,” Opt. Express 19(17), 15996–16007 (2011).
    [Crossref] [PubMed]
  10. F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)
  11. M. H. Niemz, “Investigation and Spectral-Analysis of the Plasma-Induced Ablation Mechanism of Dental Hydroxyapatite,” Appl. Phys. B 58(4), 273–281 (1994).
    [Crossref]
  12. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  13. V. Nuzzo, I. Maxwell, S. Chung, E. Mazur, and A. Heisterkamp, “Subcellular Surgery and Nanoneurosurgery Using Femtosecond Laser Pulses,” Nato. Sci. Peace Sec. B. 2011, 203–218 (2011)
  14. A. Tunnermann and J. Limpert, “Ultrafast Fiber Laser Technology: Status and Prospects,” Laser Resonators and Beam Control XII 7579((2010)
  15. P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
    [Crossref] [PubMed]
  16. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  17. D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
    [Crossref] [PubMed]
  18. D. Manstein and H.-J. Laubach, “Fractional Photothermolysis,” in Lasers in Dermatology and Medicine K. Nouri, Ed., pp. 123–147, Springer, New York (2011).
  19. L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).
  20. P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of 'transparent' fused silica with 1-ps pulses and pulse trains,” Comm. Biomed. Appl. Ultrafast Lasers. 3616, 148–155 (1999).
    [Crossref]
  21. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006).
    [Crossref] [PubMed]
  22. C. Dille, P. Kaifosh, P. Forrester, A. G. Mordovanakis, L. Lilge, and R. Marjoribanks, “Ablation of Hard Dental Tissue Using Ultrashort Pulsetrain-Burst (>100MHz) Laser,” in CLEO, p. JThE67, Optical Society of America, Baltimore, Maryland (2009).
  23. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
    [Crossref] [PubMed]
  24. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
    [Crossref] [PubMed]
  25. L. Reinisch and R. H. Ossoff, “Plasma ablation of hard tissue by the free-electron laser,” Proc. SPIE 1854145 (1993).
  26. J. L. Drury and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials 24(24), 4337–4351 (2003).
    [Crossref] [PubMed]
  27. B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, “Hydrogels in Regenerative Medicine,” Adv. Mater. 21(32-33), 3307–3329 (2009).
    [Crossref] [PubMed]
  28. M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol. 33(3), 249–256 (2009).
    [Crossref] [PubMed]
  29. V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “New insight into agarose gel mechanical properties,” Biomacromolecules 1(4), 730–738 (2000).
    [Crossref] [PubMed]
  30. A. Vogel and V. Venugopalan, “Pulsed Laser Ablation of Soft Biological Tissues,” in Optical-Thermal Reponse of Laser-Irradiated Tissue A. J. Welch and M. J. C. van Gemert, Eds., (Springer Science + Business Media B. V. 2011), pp. 551–615.
  31. K. R. Shull, “Materials Science: A Hard Concept in Soft Matter,” Nature 489(7414), 36–37 (2012).
    [Crossref] [PubMed]
  32. J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
    [Crossref] [PubMed]
  33. F. G. Pérez-Gutiérrez, S. Camacho-López, and G. Aguilar, “Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses,” J. Biomed. Opt. 16(11), 115001 (2011).
    [Crossref] [PubMed]
  34. A. V. Cherian and K. R. Rau, “Pulsed-laser-induced damage in rat corneas: time-resolved imaging of physical effects and acute biological response,” J. Biomed. Opt. 13(2), 024009 (2008).
    [Crossref] [PubMed]
  35. M. F. Ali, “Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal,” Lasers Med. Sci. 26(2), 267–275 (2011).
    [Crossref] [PubMed]
  36. C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
    [Crossref] [PubMed]
  37. F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J. 6(2), 204–212 (2011).
    [Crossref] [PubMed]
  38. R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
    [Crossref]
  39. R. Mocharla, H. Mocharla, and M. E. Hodes, “A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations,” Nucleic Acids Res. 15(24), 10589 (1987).
    [Crossref] [PubMed]
  40. M. J. Waring, “Complex Formation between Ethidium Bromide and Nucleic Acids,” J. Mol. Biol. 13(1), 269–282 (1965).
    [Crossref] [PubMed]
  41. E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139,” J. Biol. Chem. 273(10), 5858–5868 (1998).
    [Crossref] [PubMed]
  42. N. Tinne, E. Lubking, H. Lubatschowski, A. Kruger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. 57(Suppl 1),302–305 (2012)
  43. Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
    [Crossref] [PubMed]
  44. J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, “Double-network hydrogels with extremely high mechanical strength,” Adv. Mater. 15(14), 1155–1158 (2003)
  45. N. K. Simha, C. S. Carlson, and J. L. Lewis, “Evaluation of fracture toughness of cartilage by micropenetration,” J. Mater. Sci. Mater. Med. 15(5), 631–639 (2004).
    [Crossref] [PubMed]
  46. R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
    [Crossref] [PubMed]
  47. J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of Intense, Ultrashort Laser Pulses on DNA Plasmids in their Native State: Strand Breakages Induced by In Situ Electrons and Radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
    [Crossref] [PubMed]

2013 (2)

G. Sutton, S. J. Bali, and C. Hodge, “Femtosecond cataract surgery: transitioning to laser cataract,” Curr. Opin. Ophthalmol. 24(1), 3–8 (2013).
[Crossref] [PubMed]

F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)

2012 (6)

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

K. R. Shull, “Materials Science: A Hard Concept in Soft Matter,” Nature 489(7414), 36–37 (2012).
[Crossref] [PubMed]

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

N. Tinne, E. Lubking, H. Lubatschowski, A. Kruger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. 57(Suppl 1),302–305 (2012)

2011 (9)

M. F. Ali, “Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal,” Lasers Med. Sci. 26(2), 267–275 (2011).
[Crossref] [PubMed]

C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
[Crossref] [PubMed]

F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J. 6(2), 204–212 (2011).
[Crossref] [PubMed]

F. G. Pérez-Gutiérrez, S. Camacho-López, and G. Aguilar, “Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses,” J. Biomed. Opt. 16(11), 115001 (2011).
[Crossref] [PubMed]

P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
[Crossref] [PubMed]

V. Nuzzo, I. Maxwell, S. Chung, E. Mazur, and A. Heisterkamp, “Subcellular Surgery and Nanoneurosurgery Using Femtosecond Laser Pulses,” Nato. Sci. Peace Sec. B. 2011, 203–218 (2011)

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of Intense, Ultrashort Laser Pulses on DNA Plasmids in their Native State: Strand Breakages Induced by In Situ Electrons and Radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

K. Kuetemeyer, G. Kensah, M. Heidrich, H. Meyer, U. Martin, I. Gruh, and A. Heisterkamp, “Two-photon induced collagen cross-linking in bioartificial cardiac tissue,” Opt. Express 19(17), 15996–16007 (2011).
[Crossref] [PubMed]

2010 (1)

H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol. 299(5), H1728–H1735 (2010).
[Crossref] [PubMed]

2009 (4)

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[Crossref] [PubMed]

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[Crossref] [PubMed]

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, “Hydrogels in Regenerative Medicine,” Adv. Mater. 21(32-33), 3307–3329 (2009).
[Crossref] [PubMed]

M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol. 33(3), 249–256 (2009).
[Crossref] [PubMed]

2008 (1)

A. V. Cherian and K. R. Rau, “Pulsed-laser-induced damage in rat corneas: time-resolved imaging of physical effects and acute biological response,” J. Biomed. Opt. 13(2), 024009 (2008).
[Crossref] [PubMed]

2007 (1)

Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
[Crossref] [PubMed]

2006 (2)

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006).
[Crossref] [PubMed]

2005 (2)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

2004 (2)

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

N. K. Simha, C. S. Carlson, and J. L. Lewis, “Evaluation of fracture toughness of cartilage by micropenetration,” J. Mater. Sci. Mater. Med. 15(5), 631–639 (2004).
[Crossref] [PubMed]

2003 (4)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, “Double-network hydrogels with extremely high mechanical strength,” Adv. Mater. 15(14), 1155–1158 (2003)

J. L. Drury and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials 24(24), 4337–4351 (2003).
[Crossref] [PubMed]

2000 (1)

V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “New insight into agarose gel mechanical properties,” Biomacromolecules 1(4), 730–738 (2000).
[Crossref] [PubMed]

1999 (2)

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of 'transparent' fused silica with 1-ps pulses and pulse trains,” Comm. Biomed. Appl. Ultrafast Lasers. 3616, 148–155 (1999).
[Crossref]

1998 (1)

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139,” J. Biol. Chem. 273(10), 5858–5868 (1998).
[Crossref] [PubMed]

1994 (2)

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

M. H. Niemz, “Investigation and Spectral-Analysis of the Plasma-Induced Ablation Mechanism of Dental Hydroxyapatite,” Appl. Phys. B 58(4), 273–281 (1994).
[Crossref]

1993 (1)

L. Reinisch and R. H. Ossoff, “Plasma ablation of hard tissue by the free-electron laser,” Proc. SPIE 1854145 (1993).

1987 (1)

R. Mocharla, H. Mocharla, and M. E. Hodes, “A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations,” Nucleic Acids Res. 15(24), 10589 (1987).
[Crossref] [PubMed]

1965 (1)

M. J. Waring, “Complex Formation between Ethidium Bromide and Nucleic Acids,” J. Mol. Biol. 13(1), 269–282 (1965).
[Crossref] [PubMed]

Aguilar, G.

F. G. Pérez-Gutiérrez, S. Camacho-López, and G. Aguilar, “Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses,” J. Biomed. Opt. 16(11), 115001 (2011).
[Crossref] [PubMed]

Ali, M. F.

M. F. Ali, “Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal,” Lasers Med. Sci. 26(2), 267–275 (2011).
[Crossref] [PubMed]

Amici, E.

V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “New insight into agarose gel mechanical properties,” Biomacromolecules 1(4), 730–738 (2000).
[Crossref] [PubMed]

Anderson, R. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

Auger, F. A.

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Aymard, P.

V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “New insight into agarose gel mechanical properties,” Biomacromolecules 1(4), 730–738 (2000).
[Crossref] [PubMed]

Bali, S. J.

G. Sutton, S. J. Bali, and C. Hodge, “Femtosecond cataract surgery: transitioning to laser cataract,” Curr. Opin. Ophthalmol. 24(1), 3–8 (2013).
[Crossref] [PubMed]

Benson, S. V.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Ben-Yakar, A.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Bille, J. F.

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Bisson, F.

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Blinder, P.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[Crossref] [PubMed]

Bolduc, S.

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Bonner, W. M.

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139,” J. Biol. Chem. 273(10), 5858–5868 (1998).
[Crossref] [PubMed]

Bonnet, A.

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Braun, A.

F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)

Brown, J.

C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
[Crossref] [PubMed]

Butcher, J. T.

H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol. 299(5), H1728–H1735 (2010).
[Crossref] [PubMed]

Camacho-López, S.

F. G. Pérez-Gutiérrez, S. Camacho-López, and G. Aguilar, “Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses,” J. Biomed. Opt. 16(11), 115001 (2011).
[Crossref] [PubMed]

Carlson, C. S.

N. K. Simha, C. S. Carlson, and J. L. Lewis, “Evaluation of fracture toughness of cartilage by micropenetration,” J. Mater. Sci. Mater. Med. 15(5), 631–639 (2004).
[Crossref] [PubMed]

Celli, J.

F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J. 6(2), 204–212 (2011).
[Crossref] [PubMed]

Cerami, L. R.

Chandler, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Chaudhuri, O.

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

Chen, K. P.

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of 'transparent' fused silica with 1-ps pulses and pulse trains,” Comm. Biomed. Appl. Ultrafast Lasers. 3616, 148–155 (1999).
[Crossref]

Cherian, A. V.

A. V. Cherian and K. R. Rau, “Pulsed-laser-induced damage in rat corneas: time-resolved imaging of physical effects and acute biological response,” J. Biomed. Opt. 13(2), 024009 (2008).
[Crossref] [PubMed]

Chung, M. T.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Chung, S.

V. Nuzzo, I. Maxwell, S. Chung, E. Mazur, and A. Heisterkamp, “Subcellular Surgery and Nanoneurosurgery Using Femtosecond Laser Pulses,” Nato. Sci. Peace Sec. B. 2011, 203–218 (2011)

Connolly, A. J.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Contag, C. H.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Copeland, M.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Covarrubias, A.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

D’Souza, J. S.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of Intense, Ultrashort Laser Pulses on DNA Plasmids in their Native State: Strand Breakages Induced by In Situ Electrons and Radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Davidson, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Dean, J.

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

Dehn, C.

F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)

Demirci, U.

F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J. 6(2), 204–212 (2011).
[Crossref] [PubMed]

Dharmadhikari, A. K.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of Intense, Ultrashort Laser Pulses on DNA Plasmids in their Native State: Strand Breakages Induced by In Situ Electrons and Radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Dharmadhikari, J. A.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of Intense, Ultrashort Laser Pulses on DNA Plasmids in their Native State: Strand Breakages Induced by In Situ Electrons and Radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Dille, C.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Douglas, D. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Drury, J. L.

J. L. Drury and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials 24(24), 4337–4351 (2003).
[Crossref] [PubMed]

Dylla, H. F.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Edwards, G.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

El-Brawany, M. A.

M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol. 33(3), 249–256 (2009).
[Crossref] [PubMed]

Everett, W. N.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Farinelli, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Feng, Y.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Ferincz, I. E.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Fisher, O. Z.

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, “Hydrogels in Regenerative Medicine,” Adv. Mater. 21(32-33), 3307–3329 (2009).
[Crossref] [PubMed]

Forrester, P.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

Frank, F.

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

Frentzen, M.

F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)

Frieder, H.

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Gao, C.

Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
[Crossref] [PubMed]

Gattass, R. R.

Gauvin, R.

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Germain, L.

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Gong, J. P.

J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, “Double-network hydrogels with extremely high mechanical strength,” Adv. Mater. 15(14), 1155–1158 (2003)

Gong, Y.

Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
[Crossref] [PubMed]

Graper, D.

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

Grova, M.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Gruh, I.

Gubeli, J.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Haloui, H.

F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)

Hasan, T.

F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J. 6(2), 204–212 (2011).
[Crossref] [PubMed]

He, L.

Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
[Crossref] [PubMed]

Heidrich, M.

Heisterkamp, A.

K. Kuetemeyer, G. Kensah, M. Heidrich, H. Meyer, U. Martin, I. Gruh, and A. Heisterkamp, “Two-photon induced collagen cross-linking in bioartificial cardiac tissue,” Opt. Express 19(17), 15996–16007 (2011).
[Crossref] [PubMed]

V. Nuzzo, I. Maxwell, S. Chung, E. Mazur, and A. Heisterkamp, “Subcellular Surgery and Nanoneurosurgery Using Femtosecond Laser Pulses,” Nato. Sci. Peace Sec. B. 2011, 203–218 (2011)

Herman, P. R.

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of 'transparent' fused silica with 1-ps pulses and pulse trains,” Comm. Biomed. Appl. Ultrafast Lasers. 3616, 148–155 (1999).
[Crossref]

Herron, G. S.

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

Hodes, M. E.

R. Mocharla, H. Mocharla, and M. E. Hodes, “A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations,” Nucleic Acids Res. 15(24), 10589 (1987).
[Crossref] [PubMed]

Hodge, C.

G. Sutton, S. J. Bali, and C. Hodge, “Femtosecond cataract surgery: transitioning to laser cataract,” Curr. Opin. Ophthalmol. 24(1), 3–8 (2013).
[Crossref] [PubMed]

Horvath, C.

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Hoy, C. L.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Hyun, J. S.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Illeperuma, W. R. K.

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

Ivanova, V. S.

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139,” J. Biol. Chem. 273(10), 5858–5868 (1998).
[Crossref] [PubMed]

Jin, Y.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[Crossref] [PubMed]

Johnson, B.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Jordan, K.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Juhasz, T.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[Crossref] [PubMed]

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Kaifosh, P.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Katsuyama, Y.

J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, “Double-network hydrogels with extremely high mechanical strength,” Adv. Mater. 15(14), 1155–1158 (2003)

Kensah, G.

Khademhosseini, A.

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, “Hydrogels in Regenerative Medicine,” Adv. Mater. 21(32-33), 3307–3329 (2009).
[Crossref] [PubMed]

Khurshid, S. S.

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, “Hydrogels in Regenerative Medicine,” Adv. Mater. 21(32-33), 3307–3329 (2009).
[Crossref] [PubMed]

Kim, P.

P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
[Crossref] [PubMed]

Kleinfeld, D.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[Crossref] [PubMed]

Kobler, J.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Krueger, R. R.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Kruger, A.

N. Tinne, E. Lubking, H. Lubatschowski, A. Kruger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. 57(Suppl 1),302–305 (2012)

Kuetemeyer, K.

Kurokawa, T.

J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, “Double-network hydrogels with extremely high mechanical strength,” Adv. Mater. 15(14), 1155–1158 (2003)

Kurtz, R. M.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Larouche, D.

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Laubach, H.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Leng, T.

C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
[Crossref] [PubMed]

Leung, L. S.

C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
[Crossref] [PubMed]

Lewis, J. L.

N. K. Simha, C. S. Carlson, and J. L. Lewis, “Evaluation of fracture toughness of cartilage by micropenetration,” J. Mater. Sci. Mater. Med. 15(5), 631–639 (2004).
[Crossref] [PubMed]

Li, J.

Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
[Crossref] [PubMed]

Lilge, L.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Liu, C. J.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Lo, D. D.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Logan, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Longaker, M. T.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Lootens, D. L.

V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “New insight into agarose gel mechanical properties,” Biomacromolecules 1(4), 730–738 (2000).
[Crossref] [PubMed]

Lozhken, K.

M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol. 33(3), 249–256 (2009).
[Crossref] [PubMed]

Lubatschowski, H.

N. Tinne, E. Lubking, H. Lubatschowski, A. Kruger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. 57(Suppl 1),302–305 (2012)

Lubking, E.

N. Tinne, E. Lubking, H. Lubatschowski, A. Kruger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. 57(Suppl 1),302–305 (2012)

Ma, Z.

Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
[Crossref] [PubMed]

Maciunas, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Mackanos, M. A.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Manstein, D.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

Marcoux, H.

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Marjoribanks, R.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

Marjoribanks, R. S.

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of 'transparent' fused silica with 1-ps pulses and pulse trains,” Comm. Biomed. Appl. Ultrafast Lasers. 3616, 148–155 (1999).
[Crossref]

Martin, U.

Mathur, D.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of Intense, Ultrashort Laser Pulses on DNA Plasmids in their Native State: Strand Breakages Induced by In Situ Electrons and Radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Maxwell, I.

V. Nuzzo, I. Maxwell, S. Chung, E. Mazur, and A. Heisterkamp, “Subcellular Surgery and Nanoneurosurgery Using Femtosecond Laser Pulses,” Nato. Sci. Peace Sec. B. 2011, 203–218 (2011)

Mazur, E.

V. Nuzzo, I. Maxwell, S. Chung, E. Mazur, and A. Heisterkamp, “Subcellular Surgery and Nanoneurosurgery Using Femtosecond Laser Pulses,” Nato. Sci. Peace Sec. B. 2011, 203–218 (2011)

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006).
[Crossref] [PubMed]

McCaughey, R. G.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[Crossref] [PubMed]

McKinney, L.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

Meister, J.

F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)

Mendenhall, M.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Meyer, H.

Migliori, B. J.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[Crossref] [PubMed]

Mocharla, H.

R. Mocharla, H. Mocharla, and M. E. Hodes, “A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations,” Nucleic Acids Res. 15(24), 10589 (1987).
[Crossref] [PubMed]

Mocharla, R.

R. Mocharla, H. Mocharla, and M. E. Hodes, “A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations,” Nucleic Acids Res. 15(24), 10589 (1987).
[Crossref] [PubMed]

Montoro, D. T.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Moon, S.

F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J. 6(2), 204–212 (2011).
[Crossref] [PubMed]

Mooney, D. J.

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

J. L. Drury and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials 24(24), 4337–4351 (2003).
[Crossref] [PubMed]

Mordovanakis, A. G.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Mourou, G.

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Nantel, M.

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

Nassiri, D. K.

M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol. 33(3), 249–256 (2009).
[Crossref] [PubMed]

Neev, J.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[Crossref] [PubMed]

Neil, G. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Niemz, M. H.

M. H. Niemz, “Investigation and Spectral-Analysis of the Plasma-Induced Ablation Mechanism of Dental Hydroxyapatite,” Appl. Phys. B 58(4), 273–281 (1994).
[Crossref]

Nishimura, N.

H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol. 299(5), H1728–H1735 (2010).
[Crossref] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Normand, V.

V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “New insight into agarose gel mechanical properties,” Biomacromolecules 1(4), 730–738 (2000).
[Crossref] [PubMed]

Nuzzo, V.

V. Nuzzo, I. Maxwell, S. Chung, E. Mazur, and A. Heisterkamp, “Subcellular Surgery and Nanoneurosurgery Using Femtosecond Laser Pulses,” Nato. Sci. Peace Sec. B. 2011, 203–218 (2011)

O’Day, D.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Oettl, A.

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of 'transparent' fused silica with 1-ps pulses and pulse trains,” Comm. Biomed. Appl. Ultrafast Lasers. 3616, 148–155 (1999).
[Crossref]

Oh, K. H.

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

Orr, A. H.

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139,” J. Biol. Chem. 273(10), 5858–5868 (1998).
[Crossref] [PubMed]

Osada, Y.

J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, “Double-network hydrogels with extremely high mechanical strength,” Adv. Mater. 15(14), 1155–1158 (2003)

Ossoff, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Ossoff, R. H.

L. Reinisch and R. H. Ossoff, “Plasma ablation of hard tissue by the free-electron laser,” Proc. SPIE 1854145 (1993).

Palanker, D.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Parenteau-Bareil, R.

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Paulus, Y. M.

C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
[Crossref] [PubMed]

Peppas, N. A.

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, “Hydrogels in Regenerative Medicine,” Adv. Mater. 21(32-33), 3307–3329 (2009).
[Crossref] [PubMed]

Pérez-Gutiérrez, F. G.

F. G. Pérez-Gutiérrez, S. Camacho-López, and G. Aguilar, “Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses,” J. Biomed. Opt. 16(11), 115001 (2011).
[Crossref] [PubMed]

Pilch, D. R.

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139,” J. Biol. Chem. 273(10), 5858–5868 (1998).
[Crossref] [PubMed]

Plucknett, K. P.

V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “New insight into agarose gel mechanical properties,” Biomacromolecules 1(4), 730–738 (2000).
[Crossref] [PubMed]

Polz, S.

F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)

Qian, Z.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Rane, A. A.

H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol. 299(5), H1728–H1735 (2010).
[Crossref] [PubMed]

Rao, B. J.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of Intense, Ultrashort Laser Pulses on DNA Plasmids in their Native State: Strand Breakages Induced by In Situ Electrons and Radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Ratkay-Traub, I.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Rau, K. R.

A. V. Cherian and K. R. Rau, “Pulsed-laser-induced damage in rat corneas: time-resolved imaging of physical effects and acute biological response,” J. Biomed. Opt. 13(2), 024009 (2008).
[Crossref] [PubMed]

Reinisch, L.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

L. Reinisch and R. H. Ossoff, “Plasma ablation of hard tissue by the free-electron laser,” Proc. SPIE 1854145 (1993).

Rioblanc, M.

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

Ripken, T.

N. Tinne, E. Lubking, H. Lubatschowski, A. Kruger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. 57(Suppl 1),302–305 (2012)

Rivens, I.

M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol. 33(3), 249–256 (2009).
[Crossref] [PubMed]

Rizvi, I.

F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J. 6(2), 204–212 (2011).
[Crossref] [PubMed]

Rogakou, E. P.

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139,” J. Biol. Chem. 273(10), 5858–5868 (1998).
[Crossref] [PubMed]

Rootman, D. S.

P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
[Crossref] [PubMed]

Rothholtz, V. S.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[Crossref] [PubMed]

Schaffer, C. B.

H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol. 299(5), H1728–H1735 (2010).
[Crossref] [PubMed]

Schelle, F.

F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)

Schoenly, J. E.

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Schuele, G.

C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
[Crossref] [PubMed]

Shaw, A.

M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol. 33(3), 249–256 (2009).
[Crossref] [PubMed]

Shekhar, A.

H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol. 299(5), H1728–H1735 (2010).
[Crossref] [PubMed]

Shen, J.

Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
[Crossref] [PubMed]

Shinn, M.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Shull, K. R.

K. R. Shull, “Materials Science: A Hard Concept in Soft Matter,” Nature 489(7414), 36–37 (2012).
[Crossref] [PubMed]

Simha, N. K.

N. K. Simha, C. S. Carlson, and J. L. Lewis, “Evaluation of fracture toughness of cartilage by micropenetration,” J. Mater. Sci. Mater. Med. 15(5), 631–639 (2004).
[Crossref] [PubMed]

Sink, R. K.

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

Slaughter, B. V.

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, “Hydrogels in Regenerative Medicine,” Adv. Mater. 21(32-33), 3307–3329 (2009).
[Crossref] [PubMed]

Squier, J. A.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[Crossref] [PubMed]

Sramek, C.

C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
[Crossref] [PubMed]

Sun, H.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[Crossref] [PubMed]

Sun, J. Y.

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

Suo, Z. G.

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

Sutton, G.

G. Sutton, S. J. Bali, and C. Hodge, “Femtosecond cataract surgery: transitioning to laser cataract,” Curr. Opin. Ophthalmol. 24(1), 3–8 (2013).
[Crossref] [PubMed]

Sutton, G. L.

P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
[Crossref] [PubMed]

Tanner, H.

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

Terhaar, G.

M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol. 33(3), 249–256 (2009).
[Crossref] [PubMed]

Tinne, N.

N. Tinne, E. Lubking, H. Lubatschowski, A. Kruger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. 57(Suppl 1),302–305 (2012)

Tribble, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Tsai, P. S.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[Crossref] [PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Vlassak, J. J.

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Wan, D. C.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Wang, J.

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Waring, M. J.

M. J. Waring, “Complex Formation between Ethidium Bromide and Nucleic Acids,” J. Mol. Biol. 13(1), 269–282 (1965).
[Crossref] [PubMed]

Werkhaven, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Williams, G. P.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Wong, B. J. F.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[Crossref] [PubMed]

Xu, F.

F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J. 6(2), 204–212 (2011).
[Crossref] [PubMed]

Yalcin, H. C.

H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol. 299(5), H1728–H1735 (2010).
[Crossref] [PubMed]

Yaroslavsky, A. N.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Yildirim, M.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Zeitels, S. M.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Zhao, X. H.

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

Zhou, Q.

Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
[Crossref] [PubMed]

Acta Biomater. (1)

R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater. 7(9), 3294–3301 (2011).
[Crossref] [PubMed]

Adv. Mater. (2)

J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, “Double-network hydrogels with extremely high mechanical strength,” Adv. Mater. 15(14), 1155–1158 (2003)

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, “Hydrogels in Regenerative Medicine,” Adv. Mater. 21(32-33), 3307–3329 (2009).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol. 299(5), H1728–H1735 (2010).
[Crossref] [PubMed]

Appl. Phys. B (2)

M. H. Niemz, “Investigation and Spectral-Analysis of the Plasma-Induced Ablation Mechanism of Dental Hydroxyapatite,” Appl. Phys. B 58(4), 273–281 (1994).
[Crossref]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Biomacromolecules (1)

V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “New insight into agarose gel mechanical properties,” Biomacromolecules 1(4), 730–738 (2000).
[Crossref] [PubMed]

Biomaterials (1)

J. L. Drury and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials 24(24), 4337–4351 (2003).
[Crossref] [PubMed]

Biomed. Tech. (1)

N. Tinne, E. Lubking, H. Lubatschowski, A. Kruger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. 57(Suppl 1),302–305 (2012)

Biotechnol. J. (1)

F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J. 6(2), 204–212 (2011).
[Crossref] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Comm. Biomed. Appl. Ultrafast Lasers. (1)

P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of 'transparent' fused silica with 1-ps pulses and pulse trains,” Comm. Biomed. Appl. Ultrafast Lasers. 3616, 148–155 (1999).
[Crossref]

Curr. Opin. Biotechnol. (1)

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (2)

P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
[Crossref] [PubMed]

G. Sutton, S. J. Bali, and C. Hodge, “Femtosecond cataract surgery: transitioning to laser cataract,” Curr. Opin. Ophthalmol. 24(1), 3–8 (2013).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

J. Biol. Chem. (1)

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139,” J. Biol. Chem. 273(10), 5858–5868 (1998).
[Crossref] [PubMed]

J. Biomed. Mater. Res. B Appl. Biomater. (1)

Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 192–204 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[Crossref] [PubMed]

C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt. 16(2), 028004 (2011).
[Crossref] [PubMed]

F. G. Pérez-Gutiérrez, S. Camacho-López, and G. Aguilar, “Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses,” J. Biomed. Opt. 16(11), 115001 (2011).
[Crossref] [PubMed]

A. V. Cherian and K. R. Rau, “Pulsed-laser-induced damage in rat corneas: time-resolved imaging of physical effects and acute biological response,” J. Biomed. Opt. 13(2), 024009 (2008).
[Crossref] [PubMed]

J. Mater. Sci. Mater. Med. (1)

N. K. Simha, C. S. Carlson, and J. L. Lewis, “Evaluation of fracture toughness of cartilage by micropenetration,” J. Mater. Sci. Mater. Med. 15(5), 631–639 (2004).
[Crossref] [PubMed]

J. Med. Eng. Technol. (1)

M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol. 33(3), 249–256 (2009).
[Crossref] [PubMed]

J. Mol. Biol. (1)

M. J. Waring, “Complex Formation between Ethidium Bromide and Nucleic Acids,” J. Mol. Biol. 13(1), 269–282 (1965).
[Crossref] [PubMed]

J. Refract. Surg. (1)

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Laser Med. Sci. (1)

F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci. 2013, 1–9 (2013)

Lasers Med. Sci. (1)

M. F. Ali, “Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal,” Lasers Med. Sci. 26(2), 267–275 (2011).
[Crossref] [PubMed]

Lasers Surg. Med. (3)

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med. 44(10), 805–814 (2012).
[Crossref] [PubMed]

Nato. Sci. Peace Sec. B. (1)

V. Nuzzo, I. Maxwell, S. Chung, E. Mazur, and A. Heisterkamp, “Subcellular Surgery and Nanoneurosurgery Using Femtosecond Laser Pulses,” Nato. Sci. Peace Sec. B. 2011, 203–218 (2011)

Nature (3)

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

K. R. Shull, “Materials Science: A Hard Concept in Soft Matter,” Nature 489(7414), 36–37 (2012).
[Crossref] [PubMed]

J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature 489(7414), 133–136 (2012).
[Crossref] [PubMed]

Nucleic Acids Res. (1)

R. Mocharla, H. Mocharla, and M. E. Hodes, “A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations,” Nucleic Acids Res. 15(24), 10589 (1987).
[Crossref] [PubMed]

Opt. Express (2)

Photon. Lasers Med. (1)

R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med. 1(3), 155–169 (2012).
[Crossref]

Phys. Rev. Lett. (1)

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of Intense, Ultrashort Laser Pulses on DNA Plasmids in their Native State: Strand Breakages Induced by In Situ Electrons and Radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Proc. SPIE (2)

L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE 5970,14 (2005).

L. Reinisch and R. H. Ossoff, “Plasma ablation of hard tissue by the free-electron laser,” Proc. SPIE 1854145 (1993).

Other (4)

C. Dille, P. Kaifosh, P. Forrester, A. G. Mordovanakis, L. Lilge, and R. Marjoribanks, “Ablation of Hard Dental Tissue Using Ultrashort Pulsetrain-Burst (>100MHz) Laser,” in CLEO, p. JThE67, Optical Society of America, Baltimore, Maryland (2009).

A. Vogel and V. Venugopalan, “Pulsed Laser Ablation of Soft Biological Tissues,” in Optical-Thermal Reponse of Laser-Irradiated Tissue A. J. Welch and M. J. C. van Gemert, Eds., (Springer Science + Business Media B. V. 2011), pp. 551–615.

A. Tunnermann and J. Limpert, “Ultrafast Fiber Laser Technology: Status and Prospects,” Laser Resonators and Beam Control XII 7579((2010)

D. Manstein and H.-J. Laubach, “Fractional Photothermolysis,” in Lasers in Dermatology and Medicine K. Nouri, Ed., pp. 123–147, Springer, New York (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for pulsetrain-burst mode laser ablation experiments. The oscilloscope traces show that the N-pulse selector selects a portion of the burst from the oscillator. This selected burst is amplified by two four-pass amplifiers and focused onto the target. A 90:10 beam splitter (BS) directs part of the oncoming laser light to an energy monitor and part of the laser light reflected from the target to an equivalent target plane (CCD-ETP). Relevant lens focal lengths are shown in the image.

Fig. 2
Fig. 2

Comparing the number of intentionally insulted cells within the hydrogel to those in a naïve control hydrogel. (a) Cellular necrosis induced by heating with a hot water bath. (b) Cellular apoptosis induced by cis-platin. (c) DNA double-stranded breaks (DSBs) induced by an X-ray source at various dosages. The dimension listed near the top of each plot is the volume scanned by the confocal microscope.

Fig. 3
Fig. 3

The distribution of cells as a function of depth into the hydrogel, averaged over 4 field-of-views of 320µm × 320µm. (a) Cells tagged with Hoechst 33324 prior to seeding into the hydrogel. (b) Cells seeded into the hydrogel then tagged post facto with Hoechst 33342. (c) Necrotic cells within the hydrogel tagged post facto with PI. The cell count is relatively constant until a depth of ~700 μm from the hydrogel surface.

Fig. 4
Fig. 4

The normalized fluorescence intensity detected from various biomarkers as a function of depth into the hydrogel. Each set of data traces is normalized to the maximum intensity of each trace. The fluorescence data for cells tagged by PI, Annexin-V, and γH2AX is from the controlled insult experiments found in Fig. 2. Fluctuations in the fluorescence intensity with depth may reflect the inhomogeneity of marked cells within a given hydrogel sample.

Fig. 5
Fig. 5

(a) A lateral slice through an ablation crater in hydrogel as viewed under CFLSM. Voids at the crater edges are image artifacts, due to the steep edges of the crater. (b) The volume of the ablation crater in hydrogel as a function of per-pulse laser intensity at several pulsetrain burst durations.

Fig. 6
Fig. 6

(a) The number of viable and necrotic cells in hydrogel irradiated at a 4.6 × 1013-W/cm2 intensity and 1-μs-duration pulsetrain-burst as a function of distance from the centroid of the distribution of necrotic cells, but at the gel surface. Cells are binned in equal-volume, hemispherical shells. (b) Cylindrical projection of viable and necrotic cells, with hemispherical bins used for the analysis overlaid. The red hemisphere-line marks the necrosis range according to Gaussian fit. (c) The necrosis range as a function of the per-pulse laser intensity for a 1-μs-duration pulsetrain-burst. The line through the data points is a power-law fit with equation shown in the figure, where I 0 =1.0× 10 13 W/c m 2 , and C=138±28μm . Error bars on data points are standard deviations multiple of Gaussian fits using different total number of hemispherical shells. Data shown was taken over 5 days of experiments from 5 separately produced gels providing 21 punch-hole gel biopsies.

Tables (1)

Tables Icon

Table 1 The fracture stress and strain of 1% agarose hydrogel and various human biotissues.

Metrics