Abstract

A four dimensional data set of the cardiac cycle of a zebrafish embryo was acquired using postacquisition synchronization of real time photoacoustic b-scans. Utilizing an off-axis photoacoustic microscopy (OA-PAM) setup, we have expanded upon our previous work with OA-PAM to develop a system that can sustain 100 kHz line rates while demodulating the bipolar photoacoustic signal in real-time. Real-time processing was accomplished by quadrature demodulation on a Field Programmable Gate Array (FPGA) in line with the signal digitizer. Simulated data acquisition verified the system is capable of real-time processing up to a line rate of 1 MHz. Galvanometer-scanning of the excitation laser inside the focus of the ultrasonic transducer enables real data acquisition of a 200 by 200 by 200 pixel, volumetric data set across a 2 millimeter field of view at a rate of 2.5 Hz.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
    [CrossRef]
  2. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
    [CrossRef] [PubMed]
  3. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
    [CrossRef] [PubMed]
  4. L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
    [CrossRef] [PubMed]
  5. S. L. Chen, Z. X. Xie, T. Ling, L. J. Guo, X. B. Wei, and X. D. Wang, “Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning,” Opt. Lett.37(20), 4263–4265 (2012).
    [CrossRef] [PubMed]
  6. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  7. H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
    [CrossRef] [PubMed]
  8. J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
    [CrossRef] [PubMed]
  9. C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
    [CrossRef] [PubMed]
  10. R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
    [CrossRef] [PubMed]
  11. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
    [CrossRef] [PubMed]
  12. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
    [CrossRef] [PubMed]
  13. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  14. Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
    [CrossRef] [PubMed]
  15. Z. Lin, C. Lin, X. Lu, R. Ye, and Y. Huang, “Study of photoacoustic imaging based on all-optical detection,” 71602K (2008).
  16. R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
    [CrossRef] [PubMed]
  17. W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
    [CrossRef] [PubMed]
  18. G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
    [CrossRef] [PubMed]
  19. Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
    [CrossRef] [PubMed]
  20. Z. Li, Z. Zeng, W. Xie, and H. Li, “A method for simultaneously estimating acoustic and optical properties of heterogeneous absorber using focused photoacoustic imaging based on Hilbert transform,” 82232D (2012).
  21. J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
    [CrossRef] [PubMed]
  22. S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).
  23. R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
    [CrossRef] [PubMed]
  24. M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
    [CrossRef] [PubMed]
  25. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
    [CrossRef] [PubMed]
  26. J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
    [CrossRef] [PubMed]
  27. C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
    [CrossRef] [PubMed]
  28. Z. X. Xie, S. L. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
    [CrossRef] [PubMed]
  29. M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
    [CrossRef] [PubMed]
  30. N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
    [CrossRef] [PubMed]

2013 (1)

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

2012 (4)

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

S. L. Chen, Z. X. Xie, T. Ling, L. J. Guo, X. B. Wei, and X. D. Wang, “Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning,” Opt. Lett.37(20), 4263–4265 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (3)

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (6)

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

2007 (2)

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

2006 (3)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

2005 (2)

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
[CrossRef] [PubMed]

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

2001 (1)

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

1999 (1)

G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
[CrossRef] [PubMed]

1979 (1)

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
[CrossRef]

Applegate, B. E.

R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
[CrossRef] [PubMed]

Ashkenazi, S.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Bapatla, S.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Challa, A. K.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Chang, J. H.

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

Chatti, K.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Che, S. A.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).

Chen, J.

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

Chen, Q.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Chen, S. L.

Cheng, Y.-J.

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

Colyer, R. A.

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

Dickinson, M. E.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Enevoldsen, M. S.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Ferguson, R. D.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Forbrich, A.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Forouhar, A. S.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Fraser, S. E.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Galanzha, E. I.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Gharib, M.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Glade, C. P.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Gratton, E.

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

Guo, L. J.

Hajireza, P.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Hammer, D. X.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Hansen, J. M.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Hemmsen, M. C.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Hou, Y.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Hu, S.

Huang, S.-W.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Iftimia, N. V.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Jensen, J. A.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Jiao, S. L.

Karlsson, J.

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

Khlebtsov, N. G.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Kim, J.-W.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Kim, Y.

G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
[CrossRef] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Lach, J.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).

Lee, C.

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

Li, J.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).

Li, M. L.

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

Liebling, M.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Ling, T.

Luukkala, M.

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
[CrossRef]

Margenthaler, J. A.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

Marthi, A.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Maslov, K.

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
[CrossRef] [PubMed]

Moond, M.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Mulder, M. J.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Nikolov, S. I.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

O’Donnell, M.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Oh, J.-T.

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

Olsson, P. E.

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

Pedersen, M. M.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Penttinen, A.

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
[CrossRef]

Pihl, M. J.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Puliafito, C. A.

Rana, N.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Rao, B.

Sarvepalli, T.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Shao, P.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Shashkov, E. V.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Sheaffer, J. W.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).

Shelton, R. L.

R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
[CrossRef] [PubMed]

Shi, W.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Shung, K. K.

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

Skadron, K.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).

Song, K. H.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

Steenbergen, W.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Stein, E. W.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

Stoica, G.

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
[CrossRef] [PubMed]

Tuchin, V. V.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Ustun, T. E.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

van Leeuwen, T. G.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

von Hofsten, J.

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

Wang, L. D.

Wang, L. V.

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
[CrossRef] [PubMed]

Wang, X. D.

Wang, Y.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Wei, X. B.

Wickline, S.

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

Witte, R.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Xie, Z. X.

Xing, D.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Yao, J. J.

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

Yen, J. T.

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

York, G.

G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
[CrossRef] [PubMed]

Zemp, R. J.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Zeng, Y. G.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Zhang, C.

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

Zhang, H. F.

Zharov, V. P.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
[CrossRef] [PubMed]

Electron. Lett. (1)

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (8)

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Mar. Biotechnol. (NY) (1)

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

Microsc. Res. Tech. (1)

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Phys. Med. Biol. (1)

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Zebrafish (1)

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Other (3)

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).

Z. Li, Z. Zeng, W. Xie, and H. Li, “A method for simultaneously estimating acoustic and optical properties of heterogeneous absorber using focused photoacoustic imaging based on Hilbert transform,” 82232D (2012).

Z. Lin, C. Lin, X. Lu, R. Ye, and Y. Huang, “Study of photoacoustic imaging based on all-optical detection,” 71602K (2008).

Supplementary Material (2)

» Media 1: AVI (2073 KB)     
» Media 2: AVI (842 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics