Abstract

We suggest a general method to determine the optimum laser parameters for maximizing the ablation efficiency for different materials (in particular human cornea) at different incidence angles. The model is comprehensive and incorporates laser beam characteristics and ablative spot properties. The model further provides a method to convert energy fluctuations during ablation to equivalent ablation deviations in the cornea. The proposed model can be used for calibration, verification and validation purposes of laser systems used for ablation processes at relatively low cost and would directly improve the quality of results.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg.10(5), 498–510 (1994).
    [PubMed]
  2. K. Ditzen, H. Huschka, and S. Pieger, “Laser in situ keratomileusis for hyperopia,” J. Cataract Refract. Surg.24(1), 42–47 (1998).
    [CrossRef] [PubMed]
  3. M. A. el Danasoury, G. O. Waring, A. el Maghraby, and K. Mehrez, “Excimer laser in situ keratomileusis to correct compound myopic astigmatism,” J. Refract. Surg.13(6), 511–520 (1997).
    [PubMed]
  4. S. Arba-Mosquera and M. Shraiki, “Analysis of the PMMA and cornea temperature rise during excimer laser ablation,” J. Mod. Opt.57(5), 400–407 (2010).
    [CrossRef]
  5. S. Arba-Mosquera and N. Triefenbach, “Analysis of the cornea-to-PMMA ablation efficiency rate,” J. Mod. Opt.59(10), 930–941 (2012).
    [CrossRef]
  6. C. B. O’Donnell, J. Kemner, and F. E. O’Donnell., “Ablation smoothness as a function of excimer laser delivery system,” J. Cataract Refract. Surg.22(6), 682–685 (1996).
    [CrossRef] [PubMed]
  7. B. Müller, T. Boeck, and C. Hartmann, “Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy,” J. Cataract Refract. Surg.30(2), 464–470 (2004).
    [CrossRef] [PubMed]
  8. M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
    [CrossRef] [PubMed]
  9. M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: Management of decentered ablation,” J. Refract. Surg.18(4), 418–429 (2002).
    [PubMed]
  10. N. M. Taylor, R. H. Eikelboom, P. P. van Sarloos, and P. G. Reid, “Determining the accuracy of an eye tracking system for laser refractive surgery,” J. Refract. Surg.16(5), S643–S646 (2000).
    [PubMed]
  11. M. Bueeler, M. Mrochen, and T. Seiler, “Effect of spot size, ablation depth, and eye-tracker latency on the optical outcome of corneal laser surgery with a scanning spot laser,” In Ophthalmic Technologies XIII SPIE, 4951, 150-160 (2003).
  12. D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004).
    [CrossRef] [PubMed]
  13. M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg.17(5), S584–S587 (2001).
    [PubMed]
  14. P. S. Hersh, K. Fry, and J. W. Blaker, “Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology,” J. Cataract Refract. Surg.29(11), 2096–2104 (2003).
    [CrossRef] [PubMed]
  15. J. R. Jimenez, R. G. Anera, L. J. Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett.81(8), 1521–1523 (2002).
    [CrossRef]
  16. R. G. Anera, J. R. Jiménez, L. Jiménez del Barco, and E. Hita, “Changes in corneal asphericity after laser refractive surgery, including reflection losses and non-normal incidence upon the anterior cornea,” Opt. Lett.28(6), 417–419 (2003).
    [CrossRef] [PubMed]
  17. D. Cano, S. Barbero, and S. Marcos, “Comparison of real and computer-simulated outcomes of LASIK refractive surgery,” J. Opt. Soc. Am. A21(6), 926–936 (2004).
    [CrossRef] [PubMed]
  18. J. R. Jiménez, F. Rodríguez-Marín, R. G. Anera, and L. Jiménez Del Barco, “Deviations of Lambert-Beer’s law affect corneal refractive parameters after refractive surgery,” Opt. Express14(12), 5411–5417 (2006).
    [CrossRef] [PubMed]
  19. C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express14(13), 6142–6156 (2006).
    [CrossRef] [PubMed]
  20. C. Roberts, “Biomechanics of the cornea and wavefront-guided laser refractive surgery,” J. Refract. Surg.18(5), S589–S592 (2002).
    [PubMed]
  21. D. Huang, M. Tang, and R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol.135(3), 267–278 (2003).
    [CrossRef] [PubMed]
  22. C. Roberts, “Biomechanical customization: The next generation of laser refractive surgery,” J. Cataract Refract. Surg.31(1), 2–5 (2005).
    [CrossRef] [PubMed]
  23. C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg.14(1), 46–52 (1988).
    [CrossRef] [PubMed]
  24. G. Yoon, S. Macrae, D. R. Williams, and I. G. Cox, “Causes of spherical aberration induced by laser refractive surgery,” J. Cataract Refract. Surg.31(1), 127–135 (2005).
    [CrossRef] [PubMed]
  25. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
    [CrossRef] [PubMed]
  26. S. Arba-Mosquera and D. de Ortueta, “Geometrical analysis of the loss of ablation efficiency at non-normal incidence,” Opt. Express16(6), 3877–3895 (2008).
    [CrossRef] [PubMed]
  27. G. H. Pettit and M. N. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt.35(19), 3386–3391 (1996).
    [CrossRef] [PubMed]
  28. D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to Corneal Collagen,” IEEE J. Sel. Top. Quantum Electron.5(4), 1107–1115 (1999).
    [CrossRef]
  29. B. T. Fisher and D. W. Hahn, “Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser,” J. Opt. Soc. Am. A24(2), 265–277 (2007).
    [CrossRef] [PubMed]
  30. H. J. Huebscher, U. Genth, and T. Seiler, “Determination of excimer laser ablation rate of the human cornea using in vivo Scheimpflug videography,” Invest. Ophthalmol. Vis. Sci.37(1), 42–46 (1996).
    [PubMed]
  31. M. Mrochen, V. Semshichen, R. H. Funk, and T. Seiler, “Limitations of erbium:YAG laser photorefractive keratectomy,” J. Refract. Surg.16(1), 51–59 (2000).
    [PubMed]
  32. G. H. Pettit, “The ideal excimer beam for refractive surgery,” J. Refract. Surg.22(9), S969–S972 (2006).
    [PubMed]
  33. B. Neuenschwander, “High throughput structuring: basics, limitations and needs,” Bern University of Applied Sciences, Engineering and Information Technology, Laser Surface Engineering.
  34. D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher order wavefront aberrations,” J. Refract. Surg.17(5), S588–S591 (2001).
    [PubMed]
  35. A. Guirao, D. R. Williams, and S. M. MacRae, “Effect of beam size on the expected benefit of customized laser refractive surgery,” J. Refract. Surg.19(1), 15–23 (2003).
    [PubMed]
  36. G. H. Pettit, “The Alcon/Summit/Autonomous perspective on fixed vs. variable spot ablation,” J. Refract. Surg.17(5), S592–S593 (2001).
    [PubMed]
  37. J. E. A. Pedder, A. S. Holmes, and P. E. Dyer, “Improved model for the angular dependence of excimer laser ablation rates in polymer materials,” Appl. Phys. Lett.95(17), 174105 (2009).
    [CrossRef]
  38. J. R. Jiménez, J. J. Castro, C. Ortiz, and R. G. Anera, “Testing a model for excimer laser-ablation rates on corneal shape after refractive surgery,” Opt. Lett.35(11), 1789–1791 (2010).
    [CrossRef] [PubMed]
  39. C. Dorronsoro, S. Schumacher, P. Pérez-Merino, J. Siegel, M. Mrochen, and S. Marcos, “Effect of air-flow on the evaluation of refractive surgery ablation patterns,” Opt. Express19(5), 4653–4666 (2011).
    [CrossRef] [PubMed]

2012 (1)

S. Arba-Mosquera and N. Triefenbach, “Analysis of the cornea-to-PMMA ablation efficiency rate,” J. Mod. Opt.59(10), 930–941 (2012).
[CrossRef]

2011 (1)

2010 (2)

J. R. Jiménez, J. J. Castro, C. Ortiz, and R. G. Anera, “Testing a model for excimer laser-ablation rates on corneal shape after refractive surgery,” Opt. Lett.35(11), 1789–1791 (2010).
[CrossRef] [PubMed]

S. Arba-Mosquera and M. Shraiki, “Analysis of the PMMA and cornea temperature rise during excimer laser ablation,” J. Mod. Opt.57(5), 400–407 (2010).
[CrossRef]

2009 (1)

J. E. A. Pedder, A. S. Holmes, and P. E. Dyer, “Improved model for the angular dependence of excimer laser ablation rates in polymer materials,” Appl. Phys. Lett.95(17), 174105 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (3)

2005 (2)

G. Yoon, S. Macrae, D. R. Williams, and I. G. Cox, “Causes of spherical aberration induced by laser refractive surgery,” J. Cataract Refract. Surg.31(1), 127–135 (2005).
[CrossRef] [PubMed]

C. Roberts, “Biomechanical customization: The next generation of laser refractive surgery,” J. Cataract Refract. Surg.31(1), 2–5 (2005).
[CrossRef] [PubMed]

2004 (3)

D. Cano, S. Barbero, and S. Marcos, “Comparison of real and computer-simulated outcomes of LASIK refractive surgery,” J. Opt. Soc. Am. A21(6), 926–936 (2004).
[CrossRef] [PubMed]

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004).
[CrossRef] [PubMed]

B. Müller, T. Boeck, and C. Hartmann, “Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy,” J. Cataract Refract. Surg.30(2), 464–470 (2004).
[CrossRef] [PubMed]

2003 (5)

P. S. Hersh, K. Fry, and J. W. Blaker, “Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology,” J. Cataract Refract. Surg.29(11), 2096–2104 (2003).
[CrossRef] [PubMed]

R. G. Anera, J. R. Jiménez, L. Jiménez del Barco, and E. Hita, “Changes in corneal asphericity after laser refractive surgery, including reflection losses and non-normal incidence upon the anterior cornea,” Opt. Lett.28(6), 417–419 (2003).
[CrossRef] [PubMed]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

D. Huang, M. Tang, and R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol.135(3), 267–278 (2003).
[CrossRef] [PubMed]

A. Guirao, D. R. Williams, and S. M. MacRae, “Effect of beam size on the expected benefit of customized laser refractive surgery,” J. Refract. Surg.19(1), 15–23 (2003).
[PubMed]

2002 (3)

C. Roberts, “Biomechanics of the cornea and wavefront-guided laser refractive surgery,” J. Refract. Surg.18(5), S589–S592 (2002).
[PubMed]

J. R. Jimenez, R. G. Anera, L. J. Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett.81(8), 1521–1523 (2002).
[CrossRef]

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: Management of decentered ablation,” J. Refract. Surg.18(4), 418–429 (2002).
[PubMed]

2001 (4)

M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg.17(5), S584–S587 (2001).
[PubMed]

D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher order wavefront aberrations,” J. Refract. Surg.17(5), S588–S591 (2001).
[PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

G. H. Pettit, “The Alcon/Summit/Autonomous perspective on fixed vs. variable spot ablation,” J. Refract. Surg.17(5), S592–S593 (2001).
[PubMed]

2000 (2)

M. Mrochen, V. Semshichen, R. H. Funk, and T. Seiler, “Limitations of erbium:YAG laser photorefractive keratectomy,” J. Refract. Surg.16(1), 51–59 (2000).
[PubMed]

N. M. Taylor, R. H. Eikelboom, P. P. van Sarloos, and P. G. Reid, “Determining the accuracy of an eye tracking system for laser refractive surgery,” J. Refract. Surg.16(5), S643–S646 (2000).
[PubMed]

1999 (1)

D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to Corneal Collagen,” IEEE J. Sel. Top. Quantum Electron.5(4), 1107–1115 (1999).
[CrossRef]

1998 (1)

K. Ditzen, H. Huschka, and S. Pieger, “Laser in situ keratomileusis for hyperopia,” J. Cataract Refract. Surg.24(1), 42–47 (1998).
[CrossRef] [PubMed]

1997 (1)

M. A. el Danasoury, G. O. Waring, A. el Maghraby, and K. Mehrez, “Excimer laser in situ keratomileusis to correct compound myopic astigmatism,” J. Refract. Surg.13(6), 511–520 (1997).
[PubMed]

1996 (3)

C. B. O’Donnell, J. Kemner, and F. E. O’Donnell., “Ablation smoothness as a function of excimer laser delivery system,” J. Cataract Refract. Surg.22(6), 682–685 (1996).
[CrossRef] [PubMed]

H. J. Huebscher, U. Genth, and T. Seiler, “Determination of excimer laser ablation rate of the human cornea using in vivo Scheimpflug videography,” Invest. Ophthalmol. Vis. Sci.37(1), 42–46 (1996).
[PubMed]

G. H. Pettit and M. N. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt.35(19), 3386–3391 (1996).
[CrossRef] [PubMed]

1994 (1)

I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg.10(5), 498–510 (1994).
[PubMed]

1988 (1)

C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg.14(1), 46–52 (1988).
[CrossRef] [PubMed]

Anera, R. G.

Arba-Mosquera, S.

S. Arba-Mosquera and N. Triefenbach, “Analysis of the cornea-to-PMMA ablation efficiency rate,” J. Mod. Opt.59(10), 930–941 (2012).
[CrossRef]

S. Arba-Mosquera and M. Shraiki, “Analysis of the PMMA and cornea temperature rise during excimer laser ablation,” J. Mod. Opt.57(5), 400–407 (2010).
[CrossRef]

S. Arba-Mosquera and D. de Ortueta, “Geometrical analysis of the loss of ablation efficiency at non-normal incidence,” Opt. Express16(6), 3877–3895 (2008).
[CrossRef] [PubMed]

Arif, M.

D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher order wavefront aberrations,” J. Refract. Surg.17(5), S588–S591 (2001).
[PubMed]

Barbero, S.

Barco, L. J.

J. R. Jimenez, R. G. Anera, L. J. Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett.81(8), 1521–1523 (2002).
[CrossRef]

Blaker, J. W.

P. S. Hersh, K. Fry, and J. W. Blaker, “Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology,” J. Cataract Refract. Surg.29(11), 2096–2104 (2003).
[CrossRef] [PubMed]

Boeck, T.

B. Müller, T. Boeck, and C. Hartmann, “Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy,” J. Cataract Refract. Surg.30(2), 464–470 (2004).
[CrossRef] [PubMed]

Bueeler, M.

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: Management of decentered ablation,” J. Refract. Surg.18(4), 418–429 (2002).
[PubMed]

Cano, D.

Carrillo, C.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004).
[CrossRef] [PubMed]

Castro, J. J.

Chayet, A. S.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004).
[CrossRef] [PubMed]

Cox, I. G.

G. Yoon, S. Macrae, D. R. Williams, and I. G. Cox, “Causes of spherical aberration induced by laser refractive surgery,” J. Cataract Refract. Surg.31(1), 127–135 (2005).
[CrossRef] [PubMed]

de Ortueta, D.

Ditzen, K.

K. Ditzen, H. Huschka, and S. Pieger, “Laser in situ keratomileusis for hyperopia,” J. Cataract Refract. Surg.24(1), 42–47 (1998).
[CrossRef] [PubMed]

Dorronsoro, C.

Dyer, P. E.

J. E. A. Pedder, A. S. Holmes, and P. E. Dyer, “Improved model for the angular dependence of excimer laser ablation rates in polymer materials,” Appl. Phys. Lett.95(17), 174105 (2009).
[CrossRef]

Ediger, M. N.

Eikelboom, R. H.

N. M. Taylor, R. H. Eikelboom, P. P. van Sarloos, and P. G. Reid, “Determining the accuracy of an eye tracking system for laser refractive surgery,” J. Refract. Surg.16(5), S643–S646 (2000).
[PubMed]

el Danasoury, M. A.

M. A. el Danasoury, G. O. Waring, A. el Maghraby, and K. Mehrez, “Excimer laser in situ keratomileusis to correct compound myopic astigmatism,” J. Refract. Surg.13(6), 511–520 (1997).
[PubMed]

el Maghraby, A.

M. A. el Danasoury, G. O. Waring, A. el Maghraby, and K. Mehrez, “Excimer laser in situ keratomileusis to correct compound myopic astigmatism,” J. Refract. Surg.13(6), 511–520 (1997).
[PubMed]

Fisher, B. T.

Fry, K.

P. S. Hersh, K. Fry, and J. W. Blaker, “Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology,” J. Cataract Refract. Surg.29(11), 2096–2104 (2003).
[CrossRef] [PubMed]

Funk, R. H.

M. Mrochen, V. Semshichen, R. H. Funk, and T. Seiler, “Limitations of erbium:YAG laser photorefractive keratectomy,” J. Refract. Surg.16(1), 51–59 (2000).
[PubMed]

Genth, U.

H. J. Huebscher, U. Genth, and T. Seiler, “Determination of excimer laser ablation rate of the human cornea using in vivo Scheimpflug videography,” Invest. Ophthalmol. Vis. Sci.37(1), 42–46 (1996).
[PubMed]

Gorner, H.

D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to Corneal Collagen,” IEEE J. Sel. Top. Quantum Electron.5(4), 1107–1115 (1999).
[CrossRef]

Guirao, A.

A. Guirao, D. R. Williams, and S. M. MacRae, “Effect of beam size on the expected benefit of customized laser refractive surgery,” J. Refract. Surg.19(1), 15–23 (2003).
[PubMed]

Hahn, D. W.

Hartmann, C.

B. Müller, T. Boeck, and C. Hartmann, “Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy,” J. Cataract Refract. Surg.30(2), 464–470 (2004).
[CrossRef] [PubMed]

Hersh, P. S.

P. S. Hersh, K. Fry, and J. W. Blaker, “Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology,” J. Cataract Refract. Surg.29(11), 2096–2104 (2003).
[CrossRef] [PubMed]

Hita, E.

R. G. Anera, J. R. Jiménez, L. Jiménez del Barco, and E. Hita, “Changes in corneal asphericity after laser refractive surgery, including reflection losses and non-normal incidence upon the anterior cornea,” Opt. Lett.28(6), 417–419 (2003).
[CrossRef] [PubMed]

J. R. Jimenez, R. G. Anera, L. J. Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett.81(8), 1521–1523 (2002).
[CrossRef]

Holmes, A. S.

J. E. A. Pedder, A. S. Holmes, and P. E. Dyer, “Improved model for the angular dependence of excimer laser ablation rates in polymer materials,” Appl. Phys. Lett.95(17), 174105 (2009).
[CrossRef]

Huang, D.

D. Huang, M. Tang, and R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol.135(3), 267–278 (2003).
[CrossRef] [PubMed]

D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher order wavefront aberrations,” J. Refract. Surg.17(5), S588–S591 (2001).
[PubMed]

Huebscher, H. J.

H. J. Huebscher, U. Genth, and T. Seiler, “Determination of excimer laser ablation rate of the human cornea using in vivo Scheimpflug videography,” Invest. Ophthalmol. Vis. Sci.37(1), 42–46 (1996).
[PubMed]

Huschka, H.

K. Ditzen, H. Huschka, and S. Pieger, “Laser in situ keratomileusis for hyperopia,” J. Cataract Refract. Surg.24(1), 42–47 (1998).
[CrossRef] [PubMed]

Jimenez, J. R.

J. R. Jimenez, R. G. Anera, L. J. Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett.81(8), 1521–1523 (2002).
[CrossRef]

Jiménez, J. R.

Jiménez Del Barco, L.

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

Kemner, J.

C. B. O’Donnell, J. Kemner, and F. E. O’Donnell., “Ablation smoothness as a function of excimer laser delivery system,” J. Cataract Refract. Surg.22(6), 682–685 (1996).
[CrossRef] [PubMed]

Koons, S. J.

C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg.14(1), 46–52 (1988).
[CrossRef] [PubMed]

Krueger, R. R.

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: Management of decentered ablation,” J. Refract. Surg.18(4), 418–429 (2002).
[PubMed]

Litwak, S.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004).
[CrossRef] [PubMed]

Macrae, S.

G. Yoon, S. Macrae, D. R. Williams, and I. G. Cox, “Causes of spherical aberration induced by laser refractive surgery,” J. Cataract Refract. Surg.31(1), 127–135 (2005).
[CrossRef] [PubMed]

MacRae, S. M.

A. Guirao, D. R. Williams, and S. M. MacRae, “Effect of beam size on the expected benefit of customized laser refractive surgery,” J. Refract. Surg.19(1), 15–23 (2003).
[PubMed]

Marcos, S.

Marshall, J.

C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg.14(1), 46–52 (1988).
[CrossRef] [PubMed]

Mehrez, K.

M. A. el Danasoury, G. O. Waring, A. el Maghraby, and K. Mehrez, “Excimer laser in situ keratomileusis to correct compound myopic astigmatism,” J. Refract. Surg.13(6), 511–520 (1997).
[PubMed]

Merayo-Lloves, J.

Mierdel, P.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

Missiroli, F.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004).
[CrossRef] [PubMed]

Mrochen, M.

C. Dorronsoro, S. Schumacher, P. Pérez-Merino, J. Siegel, M. Mrochen, and S. Marcos, “Effect of air-flow on the evaluation of refractive surgery ablation patterns,” Opt. Express19(5), 4653–4666 (2011).
[CrossRef] [PubMed]

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: Management of decentered ablation,” J. Refract. Surg.18(4), 418–429 (2002).
[PubMed]

M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg.17(5), S584–S587 (2001).
[PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

M. Mrochen, V. Semshichen, R. H. Funk, and T. Seiler, “Limitations of erbium:YAG laser photorefractive keratectomy,” J. Refract. Surg.16(1), 51–59 (2000).
[PubMed]

Müller, B.

B. Müller, T. Boeck, and C. Hartmann, “Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy,” J. Cataract Refract. Surg.30(2), 464–470 (2004).
[CrossRef] [PubMed]

Munnerlyn, C. R.

C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg.14(1), 46–52 (1988).
[CrossRef] [PubMed]

Nikogosyan, D. N.

D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to Corneal Collagen,” IEEE J. Sel. Top. Quantum Electron.5(4), 1107–1115 (1999).
[CrossRef]

O’Donnell, C. B.

C. B. O’Donnell, J. Kemner, and F. E. O’Donnell., “Ablation smoothness as a function of excimer laser delivery system,” J. Cataract Refract. Surg.22(6), 682–685 (1996).
[CrossRef] [PubMed]

O’Donnell, F. E.

C. B. O’Donnell, J. Kemner, and F. E. O’Donnell., “Ablation smoothness as a function of excimer laser delivery system,” J. Cataract Refract. Surg.22(6), 682–685 (1996).
[CrossRef] [PubMed]

Ortiz, C.

Pallikaris, I. G.

I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg.10(5), 498–510 (1994).
[PubMed]

Pedder, J. E. A.

J. E. A. Pedder, A. S. Holmes, and P. E. Dyer, “Improved model for the angular dependence of excimer laser ablation rates in polymer materials,” Appl. Phys. Lett.95(17), 174105 (2009).
[CrossRef]

Pérez-Merino, P.

Pettit, G. H.

G. H. Pettit, “The ideal excimer beam for refractive surgery,” J. Refract. Surg.22(9), S969–S972 (2006).
[PubMed]

G. H. Pettit, “The Alcon/Summit/Autonomous perspective on fixed vs. variable spot ablation,” J. Refract. Surg.17(5), S592–S593 (2001).
[PubMed]

G. H. Pettit and M. N. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt.35(19), 3386–3391 (1996).
[CrossRef] [PubMed]

Pieger, S.

K. Ditzen, H. Huschka, and S. Pieger, “Laser in situ keratomileusis for hyperopia,” J. Cataract Refract. Surg.24(1), 42–47 (1998).
[CrossRef] [PubMed]

Reid, P. G.

N. M. Taylor, R. H. Eikelboom, P. P. van Sarloos, and P. G. Reid, “Determining the accuracy of an eye tracking system for laser refractive surgery,” J. Refract. Surg.16(5), S643–S646 (2000).
[PubMed]

Roberts, C.

C. Roberts, “Biomechanical customization: The next generation of laser refractive surgery,” J. Cataract Refract. Surg.31(1), 2–5 (2005).
[CrossRef] [PubMed]

C. Roberts, “Biomechanics of the cornea and wavefront-guided laser refractive surgery,” J. Refract. Surg.18(5), S589–S592 (2002).
[PubMed]

Robledo, N.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004).
[CrossRef] [PubMed]

Rodríguez-Marín, F.

Schumacher, S.

Seiler, T.

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: Management of decentered ablation,” J. Refract. Surg.18(4), 418–429 (2002).
[PubMed]

M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg.17(5), S584–S587 (2001).
[PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

M. Mrochen, V. Semshichen, R. H. Funk, and T. Seiler, “Limitations of erbium:YAG laser photorefractive keratectomy,” J. Refract. Surg.16(1), 51–59 (2000).
[PubMed]

H. J. Huebscher, U. Genth, and T. Seiler, “Determination of excimer laser ablation rate of the human cornea using in vivo Scheimpflug videography,” Invest. Ophthalmol. Vis. Sci.37(1), 42–46 (1996).
[PubMed]

Semshichen, V.

M. Mrochen, V. Semshichen, R. H. Funk, and T. Seiler, “Limitations of erbium:YAG laser photorefractive keratectomy,” J. Refract. Surg.16(1), 51–59 (2000).
[PubMed]

Shekhar, R.

D. Huang, M. Tang, and R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol.135(3), 267–278 (2003).
[CrossRef] [PubMed]

Shraiki, M.

S. Arba-Mosquera and M. Shraiki, “Analysis of the PMMA and cornea temperature rise during excimer laser ablation,” J. Mod. Opt.57(5), 400–407 (2010).
[CrossRef]

Siegel, J.

Siganos, D. S.

I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg.10(5), 498–510 (1994).
[PubMed]

Tang, M.

D. Huang, M. Tang, and R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol.135(3), 267–278 (2003).
[CrossRef] [PubMed]

Taylor, N. M.

N. M. Taylor, R. H. Eikelboom, P. P. van Sarloos, and P. G. Reid, “Determining the accuracy of an eye tracking system for laser refractive surgery,” J. Refract. Surg.16(5), S643–S646 (2000).
[PubMed]

Triefenbach, N.

S. Arba-Mosquera and N. Triefenbach, “Analysis of the cornea-to-PMMA ablation efficiency rate,” J. Mod. Opt.59(10), 930–941 (2012).
[CrossRef]

van Sarloos, P. P.

N. M. Taylor, R. H. Eikelboom, P. P. van Sarloos, and P. G. Reid, “Determining the accuracy of an eye tracking system for laser refractive surgery,” J. Refract. Surg.16(5), S643–S646 (2000).
[PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Waring, G. O.

M. A. el Danasoury, G. O. Waring, A. el Maghraby, and K. Mehrez, “Excimer laser in situ keratomileusis to correct compound myopic astigmatism,” J. Refract. Surg.13(6), 511–520 (1997).
[PubMed]

Williams, D. R.

G. Yoon, S. Macrae, D. R. Williams, and I. G. Cox, “Causes of spherical aberration induced by laser refractive surgery,” J. Cataract Refract. Surg.31(1), 127–135 (2005).
[CrossRef] [PubMed]

A. Guirao, D. R. Williams, and S. M. MacRae, “Effect of beam size on the expected benefit of customized laser refractive surgery,” J. Refract. Surg.19(1), 15–23 (2003).
[PubMed]

Yoon, G.

G. Yoon, S. Macrae, D. R. Williams, and I. G. Cox, “Causes of spherical aberration induced by laser refractive surgery,” J. Cataract Refract. Surg.31(1), 127–135 (2005).
[CrossRef] [PubMed]

Zadok, D.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (2)

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004).
[CrossRef] [PubMed]

D. Huang, M. Tang, and R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol.135(3), 267–278 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. E. A. Pedder, A. S. Holmes, and P. E. Dyer, “Improved model for the angular dependence of excimer laser ablation rates in polymer materials,” Appl. Phys. Lett.95(17), 174105 (2009).
[CrossRef]

J. R. Jimenez, R. G. Anera, L. J. Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett.81(8), 1521–1523 (2002).
[CrossRef]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to Corneal Collagen,” IEEE J. Sel. Top. Quantum Electron.5(4), 1107–1115 (1999).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

H. J. Huebscher, U. Genth, and T. Seiler, “Determination of excimer laser ablation rate of the human cornea using in vivo Scheimpflug videography,” Invest. Ophthalmol. Vis. Sci.37(1), 42–46 (1996).
[PubMed]

J. Cataract Refract. Surg. (8)

P. S. Hersh, K. Fry, and J. W. Blaker, “Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology,” J. Cataract Refract. Surg.29(11), 2096–2104 (2003).
[CrossRef] [PubMed]

K. Ditzen, H. Huschka, and S. Pieger, “Laser in situ keratomileusis for hyperopia,” J. Cataract Refract. Surg.24(1), 42–47 (1998).
[CrossRef] [PubMed]

C. B. O’Donnell, J. Kemner, and F. E. O’Donnell., “Ablation smoothness as a function of excimer laser delivery system,” J. Cataract Refract. Surg.22(6), 682–685 (1996).
[CrossRef] [PubMed]

B. Müller, T. Boeck, and C. Hartmann, “Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy,” J. Cataract Refract. Surg.30(2), 464–470 (2004).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

C. Roberts, “Biomechanical customization: The next generation of laser refractive surgery,” J. Cataract Refract. Surg.31(1), 2–5 (2005).
[CrossRef] [PubMed]

C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg.14(1), 46–52 (1988).
[CrossRef] [PubMed]

G. Yoon, S. Macrae, D. R. Williams, and I. G. Cox, “Causes of spherical aberration induced by laser refractive surgery,” J. Cataract Refract. Surg.31(1), 127–135 (2005).
[CrossRef] [PubMed]

J. Mod. Opt. (2)

S. Arba-Mosquera and M. Shraiki, “Analysis of the PMMA and cornea temperature rise during excimer laser ablation,” J. Mod. Opt.57(5), 400–407 (2010).
[CrossRef]

S. Arba-Mosquera and N. Triefenbach, “Analysis of the cornea-to-PMMA ablation efficiency rate,” J. Mod. Opt.59(10), 930–941 (2012).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Refract. Corneal Surg. (1)

I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg.10(5), 498–510 (1994).
[PubMed]

J. Refract. Surg. (10)

M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg.17(5), S584–S587 (2001).
[PubMed]

M. Mrochen, V. Semshichen, R. H. Funk, and T. Seiler, “Limitations of erbium:YAG laser photorefractive keratectomy,” J. Refract. Surg.16(1), 51–59 (2000).
[PubMed]

G. H. Pettit, “The ideal excimer beam for refractive surgery,” J. Refract. Surg.22(9), S969–S972 (2006).
[PubMed]

M. A. el Danasoury, G. O. Waring, A. el Maghraby, and K. Mehrez, “Excimer laser in situ keratomileusis to correct compound myopic astigmatism,” J. Refract. Surg.13(6), 511–520 (1997).
[PubMed]

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: Management of decentered ablation,” J. Refract. Surg.18(4), 418–429 (2002).
[PubMed]

N. M. Taylor, R. H. Eikelboom, P. P. van Sarloos, and P. G. Reid, “Determining the accuracy of an eye tracking system for laser refractive surgery,” J. Refract. Surg.16(5), S643–S646 (2000).
[PubMed]

C. Roberts, “Biomechanics of the cornea and wavefront-guided laser refractive surgery,” J. Refract. Surg.18(5), S589–S592 (2002).
[PubMed]

D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher order wavefront aberrations,” J. Refract. Surg.17(5), S588–S591 (2001).
[PubMed]

A. Guirao, D. R. Williams, and S. M. MacRae, “Effect of beam size on the expected benefit of customized laser refractive surgery,” J. Refract. Surg.19(1), 15–23 (2003).
[PubMed]

G. H. Pettit, “The Alcon/Summit/Autonomous perspective on fixed vs. variable spot ablation,” J. Refract. Surg.17(5), S592–S593 (2001).
[PubMed]

Opt. Express (4)

Opt. Lett. (2)

Other (2)

M. Bueeler, M. Mrochen, and T. Seiler, “Effect of spot size, ablation depth, and eye-tracker latency on the optical outcome of corneal laser surgery with a scanning spot laser,” In Ophthalmic Technologies XIII SPIE, 4951, 150-160 (2003).

B. Neuenschwander, “High throughput structuring: basics, limitations and needs,” Bern University of Applied Sciences, Engineering and Information Technology, Laser Surface Engineering.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a. The progression of each metric with the increasing radiant exposure. At threshold fluence, all metrics collapse to zero, they all achieve saturation after the threshold fluence with different rate. The metric spot diameter becomes saturated faster compared to other metrics. The other metrics achieve saturation at higher radiant exposures. b. The figure represents how different metrics per radiant exposure behave with respect to the radiant exposure. The optimum for each metric is clearly represented with a peak in the curve. This optimum value is in accordance with Table 1. The metric spot volume has the highest optimum fluence value. Before the optimum fluence, the metric value increases (representing increasing ablation efficiency). Beyond the optimum value the metric value starts to decline (representing reducing ablation efficiency). The rate of increment in efficiency below optimum is observed to be higher compared to the rate of decrement in efficiency beyond optimum.

Fig. 2
Fig. 2

a. The increase in optimum fluence with the increasing radial distance for a typical radius of curvature (7.81 mm). The increase at the periphery of the cornea can be explained by the changing incidence angle. With the loss of efficiency due to non-normal incidence at the periphery, the optimum fluence value increases for all the metrics. b. The progression of optimum fluence for varying radius of curvature at a radial distance of 4 mm from the center of the cornea. For lesser radii of curvature (steeper corneas) the optimum fluence is higher compared to higher radii of curvature (flatter corneas). The optimum value collapses to normal incidence for all the metrics for a flat surface (radius of curvature = ∞).

Fig. 3
Fig. 3

For a given energy fluctuation (−20% in the figure as reference), as the radiant exposure increases, the relative ablation deviation decreases. For all metrics at optimum fluence (as per Table 1) relative ablation deviation equals relative energy deviation. For radiant exposures beyond optimum fluence, ablation deviations are smaller than energy fluctuations (Relative ablation deviation < −20% which is the reference energy deviation). For radiant exposures lesser than optimum fluence, ablation deviations are larger than energy fluctuations (increasing slope as the radiant exposure is reduced below optimum fluence). The metric spot volume shows the most sensitive behavior for radiant exposures below optimum fluence. For all metrics, the effect of energy deviation in ablation accounts for −100% (no ablation) close to the threshold. This implies that working at a radiant exposure above and beyond the optimum value can reduce the effects of energy fluctuations on the outcomes by reducing the ablation deviations.

Tables (1)

Tables Icon

Table 1 Calculated Optimized Values for Different Metrics using Typical Specifications and Normal Incidence

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d S = 1 α ln( I 0 cosθ I Th )
FP= 2 R 0 cosθ [ ln( I 0 cosθ I Th ) 2 ] 1 2N
A S = π R 0 2 cosθ [ ln( I 0 I Th )ln( I 0 cosθ I Th ) 4 ] 1 2N
V S = π R 0 2 α 2 1 N [ ln( I 0 I Th ) ] 1 N [ N N+1 ln( I 0 I Th )+ln( cosθ ) ]
I 0 = 2 1 N N E Pulse π R 0 2 Γ( 1 N )
Metri c AblationEfficiency = ValuableMetric E Pulse
Metri c AblationEfficiency I 0 =0
ΔValuableMetric=ΔEnergy ValuableMetric I 0
I 0,Optimum = I Th cosθ e
d S = 1 α
I 0,Optimum = I Th cosθ e 1 2N
FP= 2 R 0 cosθ ( 1 4N ) 1 2N
I 0,Optimum = I Th cosθ e 1 N
A S = π R 0 2 cosθ ( 1 2N ) 1 N
I 0,Optimum = I Th cosθ e N+1 N
V S = π R 0 2 2 1 N α [ N+1 N ln(cosθ) ] 1 N { 1+ln[ ( cosθ ) 1 N+1 ] }
ΔT= α ρc I 0 .( 1R )

Metrics