Abstract

We present a novel algorithm to detect contact with tissue and automate data acquisition. Contact fiber-optic probe systems are useful in noninvasive applications and real-time analysis of tissue properties. However, applications of these technologies are limited to procedures with visualization to ensure probe-tissue contact and individual user techniques can introduce variability. The software design exploits the system previously designed by our group as an optical method to automatically detect tissue contact and trigger acquisition. This method detected tissue contact with 91% accuracy, detected removal from tissue with 83% accuracy and reduced user variability by > 8%. Without the need for additional hardware, this software algorithm can easily integrate into any fiber-optic system and expands applications where visualization is difficult.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
    [CrossRef] [PubMed]
  2. R. L. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol.50, 2573 (2005).
    [CrossRef] [PubMed]
  3. J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In-vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt.48, D26–D35 (2009).
    [CrossRef]
  4. Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol.6, 37–41 (2012).
    [CrossRef]
  5. N. Thekkek, S. Anandasabapathy, and R. Richards-Kortum, “Optical molecular imaging for detection of barretts associated neoplasia,” World J. Gastroentero.17, 53 (2011).
    [CrossRef]
  6. H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
    [CrossRef] [PubMed]
  7. L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt.16, 011012 (2011).
    [CrossRef] [PubMed]
  8. Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16, 4250–4262 (2008).
    [CrossRef] [PubMed]
  9. V. T.C. Chang, D. Merisier, B. Yu, D. K. Walmer, and N. Ramanujam, “Towards a field-compatible optical spectroscopic device for cervical cancer screening in resource-limited settings: effects of calibration and pressure,” Opt. Express19, 17908–17924 (2011).
    [CrossRef] [PubMed]
  10. R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008).
    [CrossRef] [PubMed]
  11. S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express1, 489 (2010).
    [CrossRef]
  12. M. Lu, J. Xiong, and T. Cui, “A flexible tri-axis contact force sensor for tubular medical device applications,” J. Micromech. Microeng.21, 035004 (2011).
    [CrossRef]
  13. K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
    [CrossRef]
  14. A. Chouinard, “Linear gap displacement transducer sheds light on proximity sensing,” Sensors Mag.18, 18 (2001).
  15. T. Y. Lin, P. C. P. Chao, W. D. Chen, and C. H. Tsai, “A novel 3-d optical proximity sensor panel and its readout circuit,” IEEE Sensors.108–113 (2010).
  16. R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
    [CrossRef] [PubMed]
  17. L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006).
    [CrossRef]
  18. E. Cibula and D. Donlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” App. Opt.44, 2736–2744 (2005).
    [CrossRef]
  19. A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
    [CrossRef] [PubMed]
  20. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
    [CrossRef]
  21. E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).
  22. H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).
  23. J. M. Yamal, D. D. Cox, E. N. Atkinson, C. MacAulay, R. Price, and M. Follen, “Repeatability of tissue fluorescence measurements for the detection of cervical intraepithelial neoplasia,” Biomed. Opt. Express1, 641 (2010).
    [CrossRef]

2012 (2)

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol.6, 37–41 (2012).
[CrossRef]

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

2011 (5)

E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).

M. Lu, J. Xiong, and T. Cui, “A flexible tri-axis contact force sensor for tubular medical device applications,” J. Micromech. Microeng.21, 035004 (2011).
[CrossRef]

N. Thekkek, S. Anandasabapathy, and R. Richards-Kortum, “Optical molecular imaging for detection of barretts associated neoplasia,” World J. Gastroentero.17, 53 (2011).
[CrossRef]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt.16, 011012 (2011).
[CrossRef] [PubMed]

V. T.C. Chang, D. Merisier, B. Yu, D. K. Walmer, and N. Ramanujam, “Towards a field-compatible optical spectroscopic device for cervical cancer screening in resource-limited settings: effects of calibration and pressure,” Opt. Express19, 17908–17924 (2011).
[CrossRef] [PubMed]

2010 (5)

S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express1, 489 (2010).
[CrossRef]

J. M. Yamal, D. D. Cox, E. N. Atkinson, C. MacAulay, R. Price, and M. Follen, “Repeatability of tissue fluorescence measurements for the detection of cervical intraepithelial neoplasia,” Biomed. Opt. Express1, 641 (2010).
[CrossRef]

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

T. Y. Lin, P. C. P. Chao, W. D. Chen, and C. H. Tsai, “A novel 3-d optical proximity sensor panel and its readout circuit,” IEEE Sensors.108–113 (2010).

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (5)

Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16, 4250–4262 (2008).
[CrossRef] [PubMed]

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008).
[CrossRef] [PubMed]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

2006 (1)

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006).
[CrossRef]

2005 (2)

E. Cibula and D. Donlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” App. Opt.44, 2736–2744 (2005).
[CrossRef]

R. L. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol.50, 2573 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
[CrossRef] [PubMed]

2001 (1)

A. Chouinard, “Linear gap displacement transducer sheds light on proximity sensing,” Sensors Mag.18, 18 (2001).

AAmar, O.

R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008).
[CrossRef] [PubMed]

Aeby, N.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Amelink, A.

R. L. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol.50, 2573 (2005).
[CrossRef] [PubMed]

Amorosino, M. S.

R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008).
[CrossRef] [PubMed]

Anandasabapathy, S.

N. Thekkek, S. Anandasabapathy, and R. Richards-Kortum, “Optical molecular imaging for detection of barretts associated neoplasia,” World J. Gastroentero.17, 53 (2011).
[CrossRef]

Atkinson, E. N.

J. M. Yamal, D. D. Cox, E. N. Atkinson, C. MacAulay, R. Price, and M. Follen, “Repeatability of tissue fluorescence measurements for the detection of cervical intraepithelial neoplasia,” Biomed. Opt. Express1, 641 (2010).
[CrossRef]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
[CrossRef] [PubMed]

Austwick, M.

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

Backman, V.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express1, 489 (2010).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Bajaj, S.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

Bigio, I.

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

Bigio, I. J.

E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).

R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008).
[CrossRef] [PubMed]

Bocklage, T. J.

Bown, S.

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

Brand, R. E.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Bürgi, L.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006).
[CrossRef]

Calabro, K. W.

R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008).
[CrossRef] [PubMed]

Chang, S.

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
[CrossRef] [PubMed]

Chang, V. T.C.

Chao, P. C. P.

T. Y. Lin, P. C. P. Chao, W. D. Chen, and C. H. Tsai, “A novel 3-d optical proximity sensor panel and its readout circuit,” IEEE Sensors.108–113 (2010).

Chen, W. D.

T. Y. Lin, P. C. P. Chao, W. D. Chen, and C. H. Tsai, “A novel 3-d optical proximity sensor panel and its readout circuit,” IEEE Sensors.108–113 (2010).

Chicken, D.

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

Chouinard, A.

A. Chouinard, “Linear gap displacement transducer sheds light on proximity sensing,” Sensors Mag.18, 18 (2001).

Cibula, E.

E. Cibula and D. Donlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” App. Opt.44, 2736–2744 (2005).
[CrossRef]

Cox, D.

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
[CrossRef] [PubMed]

Cox, D. D.

Cui, T.

M. Lu, J. Xiong, and T. Cui, “A flexible tri-axis contact force sensor for tubular medical device applications,” J. Micromech. Microeng.21, 035004 (2011).
[CrossRef]

Donlagic, D.

E. Cibula and D. Donlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” App. Opt.44, 2736–2744 (2005).
[CrossRef]

Dorin, M. H.

Follen, M.

J. M. Yamal, D. D. Cox, E. N. Atkinson, C. MacAulay, R. Price, and M. Follen, “Repeatability of tissue fluorescence measurements for the detection of cervical intraepithelial neoplasia,” Biomed. Opt. Express1, 641 (2010).
[CrossRef]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
[CrossRef] [PubMed]

Fought, A. J.

Ghaffari, R.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Goldberg, M. J.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Gomes, A.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Gomes, A. J.

S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express1, 489 (2010).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

Greene, H. M.

Hasabou, N.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Huang, C. S.

E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).

Huang, Y.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Ikeda, A.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Jameel, M.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

Jepeal, L. I.

E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).

Jovanovic, B. D.

Kang, Z.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Kaplan, D. L.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Keshtgar, M.

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

Kim, B. H.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Kim, D. G.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Kim, D. H.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Kim, R. H.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Kim, Y. L.

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

Kiy, M.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006).
[CrossRef]

Konda, V. J.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

Kromine, A.

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Lambert, H.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Lazzara, R.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Le, A. P.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Leo, G.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Li, M.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Lim, L.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt.16, 011012 (2011).
[CrossRef] [PubMed]

Lin, T. Y.

T. Y. Lin, P. C. P. Chao, W. D. Chen, and C. H. Tsai, “A novel 3-d optical proximity sensor panel and its readout circuit,” IEEE Sensors.108–113 (2010).

Lin, W. C.

Liu, Y.

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

Liu, Z.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Lu, M.

M. Lu, J. Xiong, and T. Cui, “A flexible tri-axis contact force sensor for tubular medical device applications,” J. Micromech. Microeng.21, 035004 (2011).
[CrossRef]

MacAulay, C.

Malyarchuk, V.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Menke-Pluymers, M.

R. L. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol.50, 2573 (2005).
[CrossRef] [PubMed]

Merisier, D.

Metzler, P.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006).
[CrossRef]

Mosse, C.

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

Mourant, J. R.

Mücklich, M.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006).
[CrossRef]

Mutyal, N. N.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

Nakagawa, H.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Nath, A.

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
[CrossRef] [PubMed]

Nichols, B.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt.16, 011012 (2011).
[CrossRef] [PubMed]

Nuzzo, R. G.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Omenetto, F. G.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Panilaitis, B.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Park, S. I.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Pfeiffer, R.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006).
[CrossRef]

Pitha, J. V.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Powers, T. M.

Price, R.

Radosevich, A.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

Rajaram, N.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt.16, 011012 (2011).
[CrossRef] [PubMed]

Ramanujam, N.

Reif, R.

R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008).
[CrossRef] [PubMed]

Richards-Kortum, R.

N. Thekkek, S. Anandasabapathy, and R. Richards-Kortum, “Optical molecular imaging for detection of barretts associated neoplasia,” World J. Gastroentero.17, 53 (2011).
[CrossRef]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
[CrossRef] [PubMed]

Rivoire, K.

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
[CrossRef] [PubMed]

Rodriguez-Diaz, E.

E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).

Rogers, J.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Rogers, J. A.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Rogers, J. D.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express1, 489 (2010).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

Roy, H. K.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Ruderman, S.

S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express1, 489 (2010).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Shah, D. C.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Sharma, A.

E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).

Sharma, T.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Singh, S. K.

E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).

R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008).
[CrossRef] [PubMed]

Smith, H. O.

Somasundaram, S.

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

Sterenborg, H. J.

R. L. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol.50, 2573 (2005).
[CrossRef] [PubMed]

Stoyneva, V.

Terry, N. G.

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol.6, 37–41 (2012).
[CrossRef]

Thekkek, N.

N. Thekkek, S. Anandasabapathy, and R. Richards-Kortum, “Optical molecular imaging for detection of barretts associated neoplasia,” World J. Gastroentero.17, 53 (2011).
[CrossRef]

Ti, Y.

Tsai, C. H.

T. Y. Lin, P. C. P. Chao, W. D. Chen, and C. H. Tsai, “A novel 3-d optical proximity sensor panel and its readout circuit,” IEEE Sensors.108–113 (2010).

Tunnell, J. W.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt.16, 011012 (2011).
[CrossRef] [PubMed]

Turzhitsky, V.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Turzhitsky, V. M.

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

Upadhye, S.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

Vakil, P.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Van Dam, J.

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

van der Pol, C.

R. L. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol.50, 2573 (2005).
[CrossRef] [PubMed]

van Veen, R. L.

R. L. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol.50, 2573 (2005).
[CrossRef] [PubMed]

Walmer, D. K.

Wax, A.

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol.6, 37–41 (2012).
[CrossRef]

Waxman, A. G.

Winnewisser, C.

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006).
[CrossRef]

Xiao, J.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Xiong, J.

M. Lu, J. Xiong, and T. Cui, “A flexible tri-axis contact force sensor for tubular medical device applications,” J. Micromech. Microeng.21, 035004 (2011).
[CrossRef]

Yamal, J. M.

Yao, J.

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Yokoyama, K.

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Young, K. L.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

Yu, B.

Zhu, Y.

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol.6, 37–41 (2012).
[CrossRef]

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

Zsemlye, M. M.

App. Opt. (2)

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008).
[CrossRef]

E. Cibula and D. Donlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” App. Opt.44, 2736–2744 (2005).
[CrossRef]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Brit. J. Surg. (1)

M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010).
[CrossRef] [PubMed]

Circ. Arrhythm. Electrophysiol. (1)

K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008).
[CrossRef]

Expert Rev. Gastroenterol. Hepatol. (1)

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol.6, 37–41 (2012).
[CrossRef]

Gastroenterology (3)

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008).
[CrossRef] [PubMed]

E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).

H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).

IEEE Sensors. (1)

T. Y. Lin, P. C. P. Chao, W. D. Chen, and C. H. Tsai, “A novel 3-d optical proximity sensor panel and its readout circuit,” IEEE Sensors.108–113 (2010).

J. Biomed. Opt. (3)

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt.16, 011012 (2011).
[CrossRef] [PubMed]

R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008).
[CrossRef] [PubMed]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

M. Lu, J. Xiong, and T. Cui, “A flexible tri-axis contact force sensor for tubular medical device applications,” J. Micromech. Microeng.21, 035004 (2011).
[CrossRef]

Nat. Mater. (1)

R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Org. Electron. (1)

L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006).
[CrossRef]

Phys. Med. Biol. (1)

R. L. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol.50, 2573 (2005).
[CrossRef] [PubMed]

Sensors Mag. (1)

A. Chouinard, “Linear gap displacement transducer sheds light on proximity sensing,” Sensors Mag.18, 18 (2001).

World J. Gastroentero. (1)

N. Thekkek, S. Anandasabapathy, and R. Richards-Kortum, “Optical molecular imaging for detection of barretts associated neoplasia,” World J. Gastroentero.17, 53 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of polarization-gating probe and system.

Fig. 2
Fig. 2

Temporal change in oxygenation with applied pressure. Oxygenation continues to decrease during the 15 seconds when pressure is applied to the probe. For measurements within the first 5 seconds (left of the dashed line), there is no significant change at either pressure. Oxygenation measurements were normalized to the first measurement in the sequence, corresponding to initial probe contact. Either gentle or firm pressure was applied consistently throughout the measurement sequence. Data and graph adapted from Ref. [11]

Fig. 3
Fig. 3

Algorithm Flow Chart

Fig. 4
Fig. 4

Wavelength Range Optimization. Reflected intensity at distinct wavelengths to establish signal changes with proximity to tissue. Reflected intensity increases as fiber-optic probe approaches the tissue surface.

Fig. 5
Fig. 5

Illustration of automated trigger sequence. Graph represents 3 isolated sequences when the probe was placed in contact with tissue. The first, labeled A, shows applying pressure to the probe continues to increase the reflected intensity. The second, labeled B, shows large variation in reflected intensity when the probe slides along tissue surface. Both cases have recordings above the ON-threshold with variability > 3% and therefore, do not trigger data acquisition. The last sequence, labeled C–E, is a continuous set of detection readings and red circles highlight the 5 consecutive readings required for stable contact. The dashed line after each set of red points indicate when a tissue measurement was triggered, the program switched modes to acquire and transfer data, and then resumed contact detection mode (avg 600ms). Each point indicates the recorded reflected intensity and the sampling interval is 170ms for points connected by the dotted line. Ticks represent larger time intervals. The solid, blue line is the ON-contact threshold (0.08) and dashed, green line is the OFF-contact threshold (0.06).

Fig. 6
Fig. 6

Initial in-vivo evaluation of automated algorithm across physicians. (a) Mean oxygenation per patient is grouped by physician for both modes of data acquisition. Data acquired with the ’Automated Mode’ show reduction in the spread of oxygenation values, fewer outliers (denoted as +) and the mean value for each physician is more closely matched (0.604 – 0.649) than data acquired in the ’Manual Mode’(0.483 – 0.571). Also, the ’Auto Mode’ reduces both the Interpatient variability ((b) top panel) and the Intrapatient variability ((b) bottom panel).

Metrics